organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,12-Bis[(tri­cyclo­hexyl­sil­yl)ethyn­yl]indeno­[1,2-b]fluorene

aDepartment of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA, and bCAMCOR, University of Oregon, 1443 East 13th Avenue, Eugene, Oregon 97403, USA
*Correspondence e-mail: haley@uoregon.edu

(Received 25 February 2013; accepted 3 May 2013; online 15 May 2013)

The title compound, C60H76Si2, a formally anti-aromatic system containing 20-π electrons, contains a rare p-xylylene motif. This is displayed by the alternating short and long bonds. The outer rings possess nearly homogenous bond lengths. In the crystal, the molecules forms layers perpendicular to the c axis and within these layers there are two one-dimensional stacks with one stack that has a sp2 carbon contact of 3.283 (6) Å, less than the sum of the van der Waals radii. The center of the mol­ecule sits on an inversion center.

Related literature

For the synthetic procedure, see: Kendrick et al. (2012[Kendrick, M. J., Neunzert, A., Payne, M. M., Purushothaman, B., Rose, B. D., Anthony, J. E., Haley, M. M. & Ostroverkhova, O. (2012). J. Phys. Chem. C, 116, 18108-18116.]). For information about the indeno­fluorene mol­ecular framework, see: Fix et al. (2012[Fix, A. G., Chase, D. T. & Haley, M. M. (2012). Top. Curr. Chem. doi:10.1007/128_2012_376. ]) and about crystal packing, see: Anthony et al. (2010[Anthony, J. E., Fachetti, A., Heeney, M., Marder, S. R. & Zhan, X. (2010). Adv. Mater. 22, 3876-3892.]).

[Scheme 1]

Experimental

Crystal data
  • C60H76Si2

  • Mr = 853.39

  • Monoclinic, C 2/c

  • a = 20.219 (7) Å

  • b = 7.246 (2) Å

  • c = 33.885 (11) Å

  • β = 103.017 (7)°

  • V = 4837 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 193 K

  • 0.08 × 0.03 × 0.01 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.991, Tmax = 0.999

  • 22528 measured reflections

  • 4268 independent reflections

  • 2181 reflections with I > 2σ(I)

  • Rint = 0.176

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.151

  • S = 1.01

  • 4268 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: XL in SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic electronics are a burgeoning technology that may allow mass printable inexpensive electronic devices such as photovoltaics, organic thin film transistors (OTFT), and light emitting diodes (Anthony, et al. 2010). The design of these materials is difficult as there are many factors that affect device performance, for example, the solid state molecular packing and energy levels of the frontier orbitals; thus, the title compound was made to explore this and the solid state structure explored via X-ray crystallography. The main findings from this study are that there are no close intermolecular contacts between the sp2 hybridized carbon atoms. Ideally for a small molecule OFET material, there would be multiple close C—C contacts which are less than the sum of the van der Waals radii (3.4 Å) between the carbon scaffold to allow for efficient charge transport in mulitple dimensions. One of the closest sp2 C—C intermolecular contact [C7(x,y,z)···C7(1.5-x,-0.5-y,2-z) = 3.283 (6) Å] is found to be sub van der Waals in one dimension. This molecule also provides an example of a crystallographically characterized p-xylylene motif that posessed bond length alternation.

Related literature top

For the synthetic procedure, see: Kendrick et al. (2012). For information about the indenofluorene molecular framework, see: Fix et al. (2012) and about crystal packing, see: Anthony et al. (2010).

Experimental top

Compound was synthesized according to literature procedure (Kendrick, et al. 2012). A single-crystal was grown from slow evaporation of chloroform.

Refinement top

H atoms were refined in calculated positions in a rigid group model, C—H = 1.2Ueq(C) for –CH2 and –CH groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008); program(s) used to refine structure: XL in SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound. ellipsoids drawn with with 30% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code (A): 1 - x, -y, 2 - z].
[Figure 2] Fig. 2. View of molecular stacks of the title compound.
6,12-Bis[(tricyclohexylsilyl)ethynyl]indeno[1,2-b]fluorene top
Crystal data top
C60H76Si2F(000) = 1856
Mr = 853.39Dx = 1.172 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 547 reflections
a = 20.219 (7) Åθ = 2.6–15.4°
b = 7.246 (2) ŵ = 0.11 mm1
c = 33.885 (11) ÅT = 193 K
β = 103.017 (7)°Block, purple
V = 4837 (3) Å30.08 × 0.03 × 0.01 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
4268 independent reflections
Radiation source: fine-focus sealed tube2181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.176
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2424
Tmin = 0.991, Tmax = 0.999k = 88
22528 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0419P)2]
where P = (Fo2 + 2Fc2)/3
4268 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C60H76Si2V = 4837 (3) Å3
Mr = 853.39Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.219 (7) ŵ = 0.11 mm1
b = 7.246 (2) ÅT = 193 K
c = 33.885 (11) Å0.08 × 0.03 × 0.01 mm
β = 103.017 (7)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2181 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.999Rint = 0.176
22528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
4268 reflectionsΔρmin = 0.28 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.64679 (6)0.27756 (16)0.85715 (3)0.0270 (3)
C10.5070 (2)0.1499 (5)0.97336 (11)0.0288 (10)
H1A0.51230.24790.95570.035*
C20.5493 (2)0.0092 (5)0.97752 (11)0.0246 (10)
C30.5413 (2)0.1567 (5)1.00438 (11)0.0260 (10)
C40.5924 (2)0.2973 (6)1.00215 (11)0.0286 (10)
C50.63048 (19)0.2320 (5)0.97507 (10)0.0244 (9)
C60.60219 (19)0.0535 (5)0.95896 (11)0.0249 (10)
C70.6839 (2)0.3316 (6)0.96734 (12)0.0347 (11)
H7A0.71030.28520.94960.042*
C80.6983 (2)0.5026 (6)0.98614 (13)0.0391 (12)
H8A0.73500.57390.98120.047*
C90.6603 (2)0.5689 (6)1.01174 (13)0.0415 (12)
H9A0.67030.68701.02380.050*
C100.6070 (2)0.4658 (6)1.02035 (12)0.0362 (11)
H10A0.58130.51161.03850.043*
C110.6207 (2)0.0464 (5)0.92737 (12)0.0270 (10)
C120.63409 (19)0.1298 (6)0.89918 (12)0.0280 (10)
C130.6609 (2)0.1232 (5)0.81513 (11)0.0298 (10)
H13A0.70430.05590.82630.036*
C140.6076 (2)0.0260 (6)0.80074 (13)0.0441 (13)
H14A0.60240.10110.82430.053*
H14B0.56340.03370.78930.053*
C150.6257 (3)0.1525 (6)0.76890 (13)0.0506 (14)
H15A0.66690.22390.78120.061*
H15B0.58820.24110.75950.061*
C160.6381 (2)0.0457 (6)0.73328 (13)0.0490 (13)
H16A0.59520.01170.71860.059*
H16B0.65390.13070.71440.059*
C170.6908 (3)0.1026 (7)0.74695 (13)0.0551 (14)
H17A0.69560.17650.72320.066*
H17B0.73510.04360.75840.066*
C180.6726 (2)0.2297 (6)0.77841 (12)0.0451 (13)
H18A0.63100.29940.76600.054*
H18B0.70980.31980.78740.054*
C190.72462 (19)0.4184 (5)0.87874 (12)0.0272 (10)
H19A0.71830.46280.90560.033*
C200.7901 (2)0.3061 (5)0.88827 (12)0.0336 (11)
H20A0.78410.19950.90540.040*
H20B0.79900.25740.86270.040*
C210.8510 (2)0.4179 (6)0.90996 (13)0.0396 (12)
H21A0.89240.34050.91410.048*
H21B0.84460.45590.93690.048*
C220.8603 (2)0.5878 (6)0.88565 (13)0.0415 (12)
H22A0.89880.66170.90100.050*
H22B0.87140.54940.85990.050*
C230.7967 (2)0.7052 (6)0.87667 (13)0.0435 (12)
H23A0.80330.81040.85930.052*
H23B0.78870.75570.90230.052*
C240.7351 (2)0.5942 (5)0.85547 (13)0.0372 (12)
H24A0.74050.55930.82810.045*
H24B0.69410.67260.85210.045*
C250.5693 (2)0.4297 (6)0.84335 (12)0.0308 (11)
H25A0.57490.50910.82020.037*
C260.5644 (2)0.5583 (6)0.87825 (13)0.0390 (12)
H26A0.60550.63670.88470.047*
H26B0.56340.48320.90250.047*
C270.5016 (2)0.6826 (6)0.86891 (15)0.0476 (13)
H27A0.49940.75550.89330.057*
H27B0.50530.76990.84700.057*
C280.4383 (2)0.5714 (6)0.85617 (15)0.0498 (13)
H28A0.39880.65550.84890.060*
H28B0.43210.49380.87910.060*
C290.4407 (2)0.4491 (7)0.82035 (15)0.0549 (14)
H29A0.44200.52700.79650.066*
H29B0.39920.37250.81370.066*
C300.5032 (2)0.3236 (6)0.82947 (14)0.0494 (14)
H30A0.49860.23430.85080.059*
H30B0.50510.25260.80480.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0259 (7)0.0320 (7)0.0262 (6)0.0027 (6)0.0122 (5)0.0036 (6)
C10.032 (3)0.028 (3)0.027 (2)0.006 (2)0.007 (2)0.0055 (19)
C20.026 (2)0.026 (2)0.022 (2)0.001 (2)0.0062 (19)0.0042 (19)
C30.028 (2)0.028 (2)0.023 (2)0.003 (2)0.009 (2)0.0007 (19)
C40.034 (3)0.029 (3)0.025 (2)0.002 (2)0.009 (2)0.003 (2)
C50.026 (2)0.027 (2)0.020 (2)0.000 (2)0.0050 (18)0.0040 (19)
C60.024 (2)0.030 (3)0.022 (2)0.003 (2)0.009 (2)0.003 (2)
C70.035 (3)0.043 (3)0.029 (3)0.002 (2)0.011 (2)0.001 (2)
C80.040 (3)0.045 (3)0.033 (3)0.009 (2)0.010 (2)0.004 (2)
C90.050 (3)0.037 (3)0.038 (3)0.013 (2)0.011 (3)0.004 (2)
C100.042 (3)0.038 (3)0.031 (3)0.001 (2)0.014 (2)0.005 (2)
C110.026 (2)0.027 (3)0.029 (2)0.002 (2)0.009 (2)0.002 (2)
C120.024 (2)0.032 (3)0.028 (3)0.001 (2)0.007 (2)0.000 (2)
C130.029 (3)0.033 (3)0.028 (2)0.005 (2)0.010 (2)0.004 (2)
C140.051 (3)0.041 (3)0.047 (3)0.000 (2)0.026 (3)0.005 (2)
C150.071 (4)0.043 (3)0.040 (3)0.002 (3)0.016 (3)0.009 (2)
C160.061 (3)0.053 (3)0.035 (3)0.010 (3)0.014 (3)0.007 (3)
C170.067 (4)0.068 (4)0.039 (3)0.001 (3)0.032 (3)0.005 (3)
C180.063 (3)0.052 (3)0.027 (2)0.009 (3)0.025 (2)0.006 (2)
C190.029 (2)0.031 (3)0.024 (2)0.002 (2)0.011 (2)0.001 (2)
C200.037 (3)0.036 (3)0.031 (3)0.003 (2)0.012 (2)0.002 (2)
C210.030 (3)0.047 (3)0.041 (3)0.006 (2)0.005 (2)0.002 (2)
C220.029 (3)0.056 (3)0.042 (3)0.008 (2)0.012 (2)0.004 (2)
C230.042 (3)0.042 (3)0.049 (3)0.009 (3)0.016 (2)0.002 (3)
C240.032 (3)0.033 (3)0.046 (3)0.001 (2)0.009 (2)0.009 (2)
C250.029 (3)0.033 (3)0.033 (3)0.002 (2)0.014 (2)0.001 (2)
C260.026 (3)0.035 (3)0.055 (3)0.001 (2)0.008 (2)0.011 (2)
C270.029 (3)0.040 (3)0.078 (4)0.005 (2)0.020 (3)0.009 (3)
C280.032 (3)0.051 (3)0.069 (4)0.010 (2)0.016 (3)0.006 (3)
C290.033 (3)0.064 (4)0.065 (4)0.005 (3)0.006 (3)0.013 (3)
C300.031 (3)0.053 (3)0.059 (3)0.014 (2)0.001 (2)0.019 (3)
Geometric parameters (Å, º) top
Si1—C121.845 (4)C17—H17B0.9900
Si1—C191.880 (4)C18—H18A0.9900
Si1—C131.882 (4)C18—H18B0.9900
Si1—C251.887 (4)C19—C201.525 (5)
C1—C3i1.364 (5)C19—C241.537 (5)
C1—C21.423 (5)C19—H19A1.0000
C1—H1A0.9500C20—C211.519 (5)
C2—C61.395 (5)C20—H20A0.9900
C2—C31.437 (5)C20—H20B0.9900
C3—C1i1.364 (5)C21—C221.516 (5)
C3—C41.465 (5)C21—H21A0.9900
C4—C101.370 (5)C21—H21B0.9900
C4—C51.406 (5)C22—C231.514 (5)
C5—C71.372 (5)C22—H22A0.9900
C5—C61.469 (5)C22—H22B0.9900
C6—C111.411 (5)C23—C241.521 (5)
C7—C81.394 (5)C23—H23A0.9900
C7—H7A0.9500C23—H23B0.9900
C8—C91.370 (5)C24—H24A0.9900
C8—H8A0.9500C24—H24B0.9900
C9—C101.394 (5)C25—C301.521 (5)
C9—H9A0.9500C25—C261.527 (5)
C10—H10A0.9500C25—H25A1.0000
C11—C121.211 (5)C26—C271.530 (5)
C13—C141.528 (5)C26—H26A0.9900
C13—C181.528 (5)C26—H26B0.9900
C13—H13A1.0000C27—C281.492 (6)
C14—C151.522 (5)C27—H27A0.9900
C14—H14A0.9900C27—H27B0.9900
C14—H14B0.9900C28—C291.512 (6)
C15—C161.502 (6)C28—H28A0.9900
C15—H15A0.9900C28—H28B0.9900
C15—H15B0.9900C29—C301.531 (5)
C16—C171.510 (6)C29—H29A0.9900
C16—H16A0.9900C29—H29B0.9900
C16—H16B0.9900C30—H30A0.9900
C17—C181.515 (5)C30—H30B0.9900
C17—H17A0.9900
C12—Si1—C19105.33 (18)H18A—C18—H18B107.9
C12—Si1—C13108.07 (18)C20—C19—C24109.7 (3)
C19—Si1—C13111.14 (18)C20—C19—Si1113.8 (3)
C12—Si1—C25106.13 (18)C24—C19—Si1116.7 (3)
C19—Si1—C25110.79 (18)C20—C19—H19A105.1
C13—Si1—C25114.77 (19)C24—C19—H19A105.1
C3i—C1—C2117.7 (4)Si1—C19—H19A105.1
C3i—C1—H1A121.2C21—C20—C19112.9 (3)
C2—C1—H1A121.2C21—C20—H20A109.0
C6—C2—C1130.3 (4)C19—C20—H20A109.0
C6—C2—C3108.7 (3)C21—C20—H20B109.0
C1—C2—C3121.0 (3)C19—C20—H20B109.0
C1i—C3—C2121.3 (4)H20A—C20—H20B107.8
C1i—C3—C4131.0 (4)C20—C21—C22110.9 (3)
C2—C3—C4107.7 (3)C20—C21—H21A109.5
C10—C4—C5120.0 (4)C22—C21—H21A109.5
C10—C4—C3132.8 (4)C20—C21—H21B109.5
C5—C4—C3107.2 (3)C22—C21—H21B109.5
C7—C5—C4121.1 (4)H21A—C21—H21B108.1
C7—C5—C6130.5 (4)C23—C22—C21111.2 (3)
C4—C5—C6108.3 (3)C23—C22—H22A109.4
C2—C6—C11125.8 (4)C21—C22—H22A109.4
C2—C6—C5108.0 (3)C23—C22—H22B109.4
C11—C6—C5125.9 (3)C21—C22—H22B109.4
C5—C7—C8118.3 (4)H22A—C22—H22B108.0
C5—C7—H7A120.9C22—C23—C24111.5 (4)
C8—C7—H7A120.9C22—C23—H23A109.3
C9—C8—C7120.8 (4)C24—C23—H23A109.3
C9—C8—H8A119.6C22—C23—H23B109.3
C7—C8—H8A119.6C24—C23—H23B109.3
C8—C9—C10121.0 (4)H23A—C23—H23B108.0
C8—C9—H9A119.5C23—C24—C19112.9 (3)
C10—C9—H9A119.5C23—C24—H24A109.0
C4—C10—C9118.8 (4)C19—C24—H24A109.0
C4—C10—H10A120.6C23—C24—H24B109.0
C9—C10—H10A120.6C19—C24—H24B109.0
C12—C11—C6177.3 (4)H24A—C24—H24B107.8
C11—C12—Si1173.1 (4)C30—C25—C26110.1 (3)
C14—C13—C18109.0 (3)C30—C25—Si1113.8 (3)
C14—C13—Si1116.4 (3)C26—C25—Si1111.1 (3)
C18—C13—Si1113.2 (3)C30—C25—H25A107.2
C14—C13—H13A105.8C26—C25—H25A107.2
C18—C13—H13A105.8Si1—C25—H25A107.2
Si1—C13—H13A105.8C25—C26—C27113.2 (4)
C15—C14—C13112.8 (4)C25—C26—H26A108.9
C15—C14—H14A109.0C27—C26—H26A108.9
C13—C14—H14A109.0C25—C26—H26B108.9
C15—C14—H14B109.0C27—C26—H26B108.9
C13—C14—H14B109.0H26A—C26—H26B107.7
H14A—C14—H14B107.8C28—C27—C26111.1 (4)
C16—C15—C14111.7 (4)C28—C27—H27A109.4
C16—C15—H15A109.3C26—C27—H27A109.4
C14—C15—H15A109.3C28—C27—H27B109.4
C16—C15—H15B109.3C26—C27—H27B109.4
C14—C15—H15B109.3H27A—C27—H27B108.0
H15A—C15—H15B107.9C27—C28—C29111.6 (4)
C15—C16—C17110.7 (4)C27—C28—H28A109.3
C15—C16—H16A109.5C29—C28—H28A109.3
C17—C16—H16A109.5C27—C28—H28B109.3
C15—C16—H16B109.5C29—C28—H28B109.3
C17—C16—H16B109.5H28A—C28—H28B108.0
H16A—C16—H16B108.1C28—C29—C30111.2 (4)
C16—C17—C18112.5 (4)C28—C29—H29A109.4
C16—C17—H17A109.1C30—C29—H29A109.4
C18—C17—H17A109.1C28—C29—H29B109.4
C16—C17—H17B109.1C30—C29—H29B109.4
C18—C17—H17B109.1H29A—C29—H29B108.0
H17A—C17—H17B107.8C25—C30—C29112.9 (4)
C17—C18—C13111.8 (4)C25—C30—H30A109.0
C17—C18—H18A109.2C29—C30—H30A109.0
C13—C18—H18A109.2C25—C30—H30B109.0
C17—C18—H18B109.2C29—C30—H30B109.0
C13—C18—H18B109.2H30A—C30—H30B107.8
C3i—C1—C2—C6179.9 (4)C19—Si1—C13—C1864.5 (4)
C3i—C1—C2—C30.3 (6)C25—Si1—C13—C1862.2 (4)
C6—C2—C3—C1i180.0 (4)C18—C13—C14—C1554.6 (5)
C1—C2—C3—C1i0.3 (6)Si1—C13—C14—C15175.9 (3)
C6—C2—C3—C40.4 (4)C13—C14—C15—C1655.5 (5)
C1—C2—C3—C4179.3 (3)C14—C15—C16—C1753.9 (5)
C1i—C3—C4—C102.0 (8)C15—C16—C17—C1854.7 (5)
C2—C3—C4—C10178.5 (4)C16—C17—C18—C1355.9 (5)
C1i—C3—C4—C5178.5 (4)C14—C13—C18—C1754.4 (5)
C2—C3—C4—C51.1 (4)Si1—C13—C18—C17174.3 (3)
C10—C4—C5—C72.1 (6)C12—Si1—C19—C2069.1 (3)
C3—C4—C5—C7178.3 (4)C13—Si1—C19—C2047.7 (3)
C10—C4—C5—C6177.6 (4)C25—Si1—C19—C20176.5 (3)
C3—C4—C5—C62.0 (4)C12—Si1—C19—C24161.5 (3)
C1—C2—C6—C117.7 (7)C13—Si1—C19—C2481.7 (3)
C3—C2—C6—C11172.6 (4)C25—Si1—C19—C2447.1 (3)
C1—C2—C6—C5178.1 (4)C24—C19—C20—C2153.6 (4)
C3—C2—C6—C51.6 (4)Si1—C19—C20—C21173.6 (3)
C7—C5—C6—C2178.0 (4)C19—C20—C21—C2256.2 (5)
C4—C5—C6—C22.3 (4)C20—C21—C22—C2356.1 (5)
C7—C5—C6—C117.8 (7)C21—C22—C23—C2455.3 (5)
C4—C5—C6—C11171.9 (4)C22—C23—C24—C1954.2 (5)
C4—C5—C7—C81.9 (6)C20—C19—C24—C2352.4 (5)
C6—C5—C7—C8177.8 (4)Si1—C19—C24—C23176.3 (3)
C5—C7—C8—C90.2 (6)C12—Si1—C25—C3060.6 (3)
C7—C8—C9—C101.4 (7)C19—Si1—C25—C30174.4 (3)
C5—C4—C10—C90.6 (6)C13—Si1—C25—C3058.7 (4)
C3—C4—C10—C9179.9 (4)C12—Si1—C25—C2664.3 (3)
C8—C9—C10—C41.1 (7)C19—Si1—C25—C2649.5 (3)
C2—C6—C11—C1269 (9)C13—Si1—C25—C26176.4 (3)
C5—C6—C11—C12104 (9)C30—C25—C26—C2752.0 (5)
C6—C11—C12—Si175 (10)Si1—C25—C26—C27179.0 (3)
C19—Si1—C12—C1199 (3)C25—C26—C27—C2854.7 (5)
C13—Si1—C12—C11142 (3)C26—C27—C28—C2955.9 (5)
C25—Si1—C12—C1119 (3)C27—C28—C29—C3056.0 (6)
C12—Si1—C13—C1452.9 (4)C26—C25—C30—C2951.8 (5)
C19—Si1—C13—C14168.0 (3)Si1—C25—C30—C29177.3 (3)
C25—Si1—C13—C1465.3 (4)C28—C29—C30—C2554.4 (5)
C12—Si1—C13—C18179.6 (3)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC60H76Si2
Mr853.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)20.219 (7), 7.246 (2), 33.885 (11)
β (°) 103.017 (7)
V3)4837 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.08 × 0.03 × 0.01
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.991, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
22528, 4268, 2181
Rint0.176
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.151, 1.01
No. of reflections4268
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), XS in SHELXTL (Sheldrick, 2008), XL in SHELXTL (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Science Foundation (CHE-1013032) for financial support. BDR acknowledges the American Chemical Society Division of Organic Chemistry for the 2012–2013 Troyanski Fellowship.

References

First citationAnthony, J. E., Fachetti, A., Heeney, M., Marder, S. R. & Zhan, X. (2010). Adv. Mater. 22, 3876–3892.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFix, A. G., Chase, D. T. & Haley, M. M. (2012). Top. Curr. Chem. doi:10.1007/128_2012_376.  Google Scholar
First citationKendrick, M. J., Neunzert, A., Payne, M. M., Purushothaman, B., Rose, B. D., Anthony, J. E., Haley, M. M. & Ostroverkhova, O. (2012). J. Phys. Chem. C, 116, 18108–18116.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds