metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m305-m306

Poly[bis­­(piperazine-1,4-diium) [(μ4-cyclo-hexa­phosphato)dilithium] tetra­hydrate]

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn

(Received 9 April 2013; accepted 29 April 2013; online 11 May 2013)

In the title compound, {(C4H12N2)2[Li2(P6O18)]·4H2O}n, the phosphate ring anion, located around an inversion center, adopts a chair conformation. Adjacent P6O18 rings are linked via corner-sharing by LiO4 tetra­hedra, generating anionic porous {[Li2(P6O18)]4−}n layers parallel to (101). The piperazine-1,4-diium cations occupy the pores and develop hydrogen bonds with the inorganic framework. An extensive network of N—H⋯O and O—H⋯O hydrogen-bonding inter­actions link the components into a three-dimensional network and additional stabilization is provided by weak C—H⋯O hydrogen bonds.

Related literature

For applications of compounds with open-framework structures, see: Assani et al. (2012[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2012). Acta Cryst. E68, i30.]); Mahesh et al. (2002[Mahesh, S., Green, M. A. & Natarajan, S. (2002). J. Solid State Chem. 165, 334-342.]); Natarajan (2000[Natarajan, S. (2000). Proc. Indian Acad. Sci. Chem. Sci. 112, 249-272.]). For related structures with cyclo­hexa­phosphate rings, see: Abid et al. (2011[Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549-m1550.]), Amri et al. (2009[Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.]); Marouani et al. (2010[Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o702.]); For related structures with piperazine rings, see: Essid et al. (2010[Essid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244-o2245.]), Xu et al. (2007[Xu, H., Dong, P., Liu, L., Wang, J.-G., Deng, F. & Dong, J.-X. (2007). J. Porous Mater. 14, 97-101.]). For the synthesis of the precursor, see: Schülke & Kayser (1985[Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)2[Li2(P6O18)]·4H2O

  • Mr = 736.08

  • Monoclinic, P 21 /c

  • a = 10.245 (3) Å

  • b = 12.966 (4) Å

  • c = 10.910 (4) Å

  • β = 111.00 (3)°

  • V = 1352.8 (7) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 7884 measured reflections

  • 6469 independent reflections

  • 3904 reflections with I > 2σ(I)

  • Rint = 0.038

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.00

  • 6469 reflections

  • 202 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2A⋯O8 0.90 1.99 2.792 (3) 147
N1—H2B⋯O7i 0.90 1.88 2.763 (3) 166
N2—H3A⋯O11 0.90 1.83 2.707 (4) 165
N2—H3B⋯O4ii 0.90 1.91 2.802 (2) 168
O10—H110⋯O1iii 0.84 (4) 1.99 (4) 2.792 (4) 159 (5)
O11—H111⋯O5iii 0.84 (3) 2.49 (4) 3.001 (3) 120 (3)
O11—H111⋯O8iii 0.84 (3) 2.07 (3) 2.826 (3) 150 (4)
O10—H210⋯O5i 0.82 (4) 1.95 (4) 2.764 (3) 170 (4)
O11—H211⋯O10iii 0.86 (4) 1.87 (4) 2.720 (4) 170 (4)
C1—H1A⋯O6iv 0.97 2.51 3.273 (4) 135
C4—H1D⋯O10 0.97 2.56 3.227 (4) 126
C2—H2C⋯O2v 0.97 2.29 3.078 (3) 137
C3—H4B⋯O5iii 0.97 2.46 3.324 (4) 148
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) -x+2, -y+2, -z; (iv) -x+1, -y+2, -z; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The area of framework materials continues to be of interest not only because of the wide variety of structures but also due to their potential applications in the areas of catalysis, sorption and separation processes (Mahesh et al., 2002) Natarajan, 2000). Much attention has been devoted to the synthesis of open-framework phosphates which exhibit a rich structural diversity and have been widely studied as catalysts, ion-exchangers and as positive electrode in the lithium and sodium batteries (Assani et al., 2012). Within this family of compounds, the resulting anionic frameworks, generally constructed from PO4 tetrahedra that are vertex linked with MOn polyhedra (with n = 4, 5 and 6), generate pores and channels offering suitable environment to accommodate different other cations. The piperazine (C4N2H10), which is a common heterocyclic nitrogen compound, has been indicated as excellent template for preparing microporous materials (Xu et al., 2007). The crystal structure reported here gives another illustration of this type of material. The corresponding compound, (C4H12N2)2Li2P6O18.4H2O (I), is an organic-inorganic hybrid built of two main cyclic components, C4H12N2 and P6O18 (Fig. 1). The phosphoric rings are interconnected by the Li+ cations via LiO4 tetrahedra sharing corners to form a two-dimensional inorganic framework extending along the (101) plane as shown in Fig. 2. The diprotonated (C4H12N2)2+ cations are trapped within the 10-membered ring pore of the layer, whereas the water molecules are located in the interlayer region and are grafted onto the framework oxygen atoms through hydrogen bonds (Fig. 3). The asymmetric unit of this atomic arrangement is built of one half of the P6O18 ring lying on an inversion center (1/2, 1/2, 1/2), one Li+ cation, two water molecules and one piperazine-1,4-diium cation. The organic and inorganic rings adopt a chair conformation with different geometrical characteristics due to their different size and flexibility. However, the P6O18 ring has (P–O and O–O) distances and (O–P–O, P–O–P and P–P–P angles) comparable to those observed in other cyclohexaphosphates having the same internal inversion symmetry (Abid et al., 2011; Amri et al., 2009; Marouani et al., 2010). The LiO4 tetrahedra is slightly distorted with Li–O distances ranging from 1.877 (4) to 1.969 (4) Å. The smallest distance between two tetrahedral centers is 5.548 (2) Å. The organic ring has for carbon atoms (C1, C2, C3 and C4) almost coplanar (r.m.s. deviation from the mean plane = 0.014 Å) and N1 and N2 displaced from the plane by 0.672 (2) and -0.663 (2) Å, respectively. These characteristics do not differ from those particular values observed in other compounds of the piperazinium despite the different constraints of their solid states (Essid et al., 2010).

Related literature top

For applications of compounds with open-framework structures, see: Assani et al. (2012); Mahesh et al. (2002); Natarajan (2000). For related structures with cyclohexaphosphate rings, see: Abid et al. (2011), Amri et al. (2009); Marouani et al. (2010); For related structures with piperazine rings, see: Essid et al. (2010), Xu et al. (2007). For the synthesis of the precursor, see: Schülke & Kayser (1985).

Experimental top

Crystals of the title compound were prepared by adding dropwise and stirring an ethanolic solution (5 mL) of piperazine (10 mmol) then an aquous solution (10 mL) of KOH (10 mmol) to an aqueous solution (10 mL) of cyclohexaphosphoric acid (5 mmol). Colourless prismatic crystals were obtained after a slow evaporation over a few days at ambient temperature. The cyclohexaphosphoric acid H6P6O18,was produced from Li6P6O18.6H2O, prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985), through an ion-exchange resin in H-state (Amberlite IR 120).

Refinement top

N and C-bound H atoms were positioned geometrically (N–H = 0.90 Å, C–H = 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N). The bond distances of O–H and distance between two H atoms from each water molecules was restrained to be 0.85 and 1.37 Å with the default deviation respectively and with Uiso(H) = 1.5 Ueq (O).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Projection in the [101] direction, showing the pores and their occupancy by the organic groups.
[Figure 3] Fig. 3. Projection of the framework of (I) along the c direction.
Poly[bis(piperazine-1,4-diium) [(µ4-cyclo-hexaphosphato)dilithium] tetrahydrate] top
Crystal data top
(C4H12N2)2[Li2(P6O18)]·4H2OF(000) = 760
Mr = 736.08Dx = 1.807 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.245 (3) Åθ = 9.1–10.9°
b = 12.966 (4) ŵ = 0.26 mm1
c = 10.910 (4) ÅT = 293 K
β = 111.00 (3)°Parallelepiped, colourless
V = 1352.8 (7) Å30.50 × 0.40 × 0.30 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.038
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.0°
Graphite monochromatorh = 1715
non–profiled ω–scansk = 321
7884 measured reflectionsl = 018
6469 independent reflections2 standard reflections every 120 min
3904 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
6469 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.57 e Å3
6 restraintsΔρmin = 0.47 e Å3
Crystal data top
(C4H12N2)2[Li2(P6O18)]·4H2OV = 1352.8 (7) Å3
Mr = 736.08Z = 2
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
a = 10.245 (3) ŵ = 0.26 mm1
b = 12.966 (4) ÅT = 293 K
c = 10.910 (4) Å0.50 × 0.40 × 0.30 mm
β = 111.00 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.038
7884 measured reflections2 standard reflections every 120 min
6469 independent reflections intensity decay: 1%
3904 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0506 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.57 e Å3
6469 reflectionsΔρmin = 0.47 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.67085 (5)0.82511 (4)0.10243 (4)0.01597 (10)
P20.73450 (5)0.99726 (4)0.28486 (5)0.01656 (10)
P30.60626 (5)1.16305 (4)0.09894 (5)0.01660 (10)
O30.75517 (14)0.92532 (11)0.17300 (12)0.0195 (3)
O60.61176 (15)1.07330 (12)0.20122 (14)0.0232 (3)
O50.86457 (16)1.05454 (13)0.34765 (15)0.0287 (3)
O20.6560 (2)0.75209 (12)0.19975 (15)0.0325 (4)
O40.67240 (16)0.93559 (11)0.36583 (13)0.0227 (3)
O10.73374 (16)0.78864 (13)0.00746 (14)0.0267 (3)
O80.73427 (15)1.16386 (13)0.06704 (14)0.0251 (3)
O70.56459 (15)1.26004 (11)0.14913 (14)0.0232 (3)
O90.52184 (15)0.87728 (12)0.02453 (14)0.0265 (3)
N10.7657 (2)1.11939 (14)0.17128 (17)0.0267 (4)
H2A0.79081.14070.08750.032*
H2B0.70861.16730.22300.032*
C10.6902 (3)1.01996 (18)0.1870 (2)0.0304 (5)
H1A0.60791.02840.16370.036*
H1B0.75010.96870.12910.036*
C40.8925 (2)1.1093 (2)0.2064 (2)0.0354 (5)
H1C0.95761.06170.14640.042*
H1D0.93811.17580.19840.042*
C30.8530 (3)1.0702 (2)0.3449 (2)0.0335 (5)
H4A0.79661.12170.40540.040*
H4B0.93701.05920.36470.040*
N20.7735 (2)0.97230 (15)0.36309 (18)0.0290 (4)
H3A0.82880.92290.31270.035*
H3B0.74760.95220.44740.035*
Li10.6251 (4)0.7890 (3)0.3536 (3)0.0246 (7)
C20.6474 (3)0.98435 (18)0.3276 (2)0.0307 (5)
H2C0.59840.91900.33830.037*
H2D0.58461.03440.38530.037*
O101.0185 (2)1.28956 (19)0.0074 (2)0.0502 (6)
O110.9729 (2)0.8504 (2)0.1959 (3)0.0704 (9)
H1101.094 (3)1.281 (4)0.006 (4)0.106*
H2100.967 (4)1.330 (3)0.047 (4)0.106*
H1111.058 (2)0.863 (4)0.179 (4)0.106*
H2110.969 (5)0.802 (3)0.144 (4)0.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0187 (2)0.0152 (2)0.01382 (18)0.00116 (17)0.00556 (15)0.00189 (16)
P20.0190 (2)0.0153 (2)0.01505 (19)0.00225 (17)0.00565 (15)0.00241 (16)
P30.0162 (2)0.0158 (2)0.01738 (19)0.00004 (17)0.00551 (15)0.00147 (16)
O30.0212 (6)0.0209 (6)0.0181 (6)0.0030 (5)0.0091 (5)0.0058 (5)
O60.0217 (7)0.0207 (7)0.0302 (7)0.0029 (5)0.0128 (6)0.0062 (6)
O50.0250 (7)0.0285 (8)0.0271 (7)0.0091 (6)0.0027 (6)0.0082 (6)
O20.0594 (12)0.0183 (7)0.0234 (7)0.0060 (7)0.0191 (7)0.0004 (6)
O40.0337 (8)0.0192 (6)0.0185 (6)0.0016 (6)0.0137 (6)0.0005 (5)
O10.0254 (7)0.0347 (8)0.0224 (6)0.0018 (6)0.0114 (6)0.0110 (6)
O80.0205 (6)0.0345 (8)0.0224 (6)0.0001 (6)0.0103 (5)0.0014 (6)
O70.0242 (7)0.0161 (6)0.0275 (7)0.0000 (5)0.0071 (6)0.0063 (5)
O90.0196 (7)0.0258 (7)0.0267 (7)0.0058 (6)0.0007 (5)0.0122 (6)
N10.0352 (10)0.0237 (9)0.0192 (7)0.0056 (7)0.0076 (7)0.0028 (6)
C10.0372 (12)0.0262 (10)0.0362 (11)0.0027 (9)0.0235 (10)0.0068 (9)
C40.0259 (11)0.0373 (13)0.0395 (12)0.0065 (10)0.0075 (9)0.0058 (10)
C30.0349 (12)0.0400 (13)0.0333 (11)0.0017 (10)0.0215 (10)0.0040 (10)
N20.0398 (11)0.0255 (9)0.0213 (8)0.0097 (8)0.0104 (7)0.0012 (7)
Li10.0339 (19)0.0211 (17)0.0196 (15)0.0037 (15)0.0106 (14)0.0038 (13)
C20.0304 (11)0.0208 (10)0.0384 (12)0.0015 (8)0.0091 (9)0.0031 (9)
O100.0547 (13)0.0556 (13)0.0526 (12)0.0314 (11)0.0343 (11)0.0273 (10)
O110.0229 (9)0.0848 (19)0.1003 (19)0.0123 (11)0.0183 (11)0.0638 (16)
Geometric parameters (Å, º) top
P1—O21.4707 (16)N1—H2B0.9000
P1—O11.4801 (15)C1—C21.509 (3)
P1—O31.5970 (15)C1—H1A0.9700
P1—O91.6063 (16)C1—H1B0.9700
P1—Li12.978 (4)C4—C31.505 (3)
P1—Li1i2.978 (4)C4—H1C0.9700
P2—O51.4636 (16)C4—H1D0.9700
P2—O41.4925 (15)C3—N21.483 (3)
P2—O61.6011 (16)C3—H4A0.9700
P2—O31.6091 (14)C3—H4B0.9700
P2—Li13.117 (4)N2—C21.483 (3)
P3—O81.4725 (15)N2—H3A0.9000
P3—O71.4937 (15)N2—H3B0.9000
P3—O9ii1.5945 (16)Li1—O1iv1.931 (4)
P3—O61.5991 (15)Li1—O7v1.969 (4)
P3—Li1iii3.071 (4)Li1—P1iv2.978 (4)
O2—Li11.877 (4)Li1—P3v3.071 (4)
O4—Li11.954 (4)C2—H2C0.9700
O1—Li1i1.931 (4)C2—H2D0.9700
O7—Li1iii1.969 (4)O10—H1100.846 (18)
O9—P3ii1.5945 (16)O10—H2100.822 (18)
N1—C11.482 (3)O11—H1110.840 (18)
N1—C41.485 (3)O11—H2110.851 (18)
N1—H2A0.9000
O2—P1—O1118.91 (10)N1—C4—H1C109.6
O2—P1—O3110.72 (9)C3—C4—H1C109.6
O1—P1—O3107.54 (9)N1—C4—H1D109.6
O2—P1—O9109.16 (11)C3—C4—H1D109.6
O1—P1—O9109.50 (9)H1C—C4—H1D108.2
O3—P1—O999.19 (8)N2—C3—C4111.03 (19)
O1—P1—Li1147.71 (11)N2—C3—H4A109.4
O3—P1—Li185.45 (9)C4—C3—H4A109.4
O9—P1—Li196.89 (10)N2—C3—H4B109.4
O2—P1—Li1i108.38 (10)C4—C3—H4B109.4
O1—P1—Li1i33.78 (10)H4A—C3—H4B108.0
O3—P1—Li1i136.45 (9)C3—N2—C2111.29 (17)
O9—P1—Li1i85.28 (10)C3—N2—H3A109.4
Li1—P1—Li1i137.36 (7)C2—N2—H3A109.4
O5—P2—O4120.31 (9)C3—N2—H3B109.4
O5—P2—O6110.58 (10)C2—N2—H3B109.4
O4—P2—O6104.65 (8)H3A—N2—H3B108.0
O5—P2—O3107.69 (9)O2—Li1—O1iv114.5 (2)
O4—P2—O3109.77 (9)O2—Li1—O4101.07 (17)
O6—P2—O3102.40 (8)O1iv—Li1—O4113.3 (2)
O5—P2—Li1132.28 (10)O2—Li1—O7v114.8 (2)
O4—P2—Li129.20 (9)O1iv—Li1—O7v99.89 (17)
O6—P2—Li1113.21 (9)O4—Li1—O7v113.9 (2)
O3—P2—Li180.59 (9)O2—Li1—P123.82 (7)
O8—P3—O7118.45 (10)O1iv—Li1—P1130.56 (19)
O8—P3—O9ii109.62 (9)O4—Li1—P178.06 (12)
O7—P3—O9ii109.20 (8)O7v—Li1—P1119.75 (16)
O8—P3—O6111.01 (9)O2—Li1—P1iv131.81 (19)
O7—P3—O6107.46 (9)O1iv—Li1—P1iv25.22 (7)
O9ii—P3—O699.40 (9)O4—Li1—P1iv117.81 (16)
O8—P3—Li1iii147.42 (10)O7v—Li1—P1iv75.57 (12)
O7—P3—Li1iii31.94 (9)P1—Li1—P1iv153.12 (15)
O9ii—P3—Li1iii82.27 (9)O2—Li1—P3v113.75 (17)
O6—P3—Li1iii96.05 (9)O1iv—Li1—P3v79.37 (12)
P1—O3—P2129.92 (9)O4—Li1—P3v133.85 (18)
P3—O6—P2132.05 (9)O7v—Li1—P3v23.66 (7)
P1—O2—Li1125.14 (15)P1—Li1—P3v128.64 (13)
P2—O4—Li1128.93 (14)P1iv—Li1—P3v57.37 (7)
P1—O1—Li1i121.01 (15)O2—Li1—P279.37 (12)
P3—O7—Li1iii124.41 (14)O1iv—Li1—P2121.05 (17)
P3ii—O9—P1130.33 (10)O4—Li1—P221.87 (6)
C1—N1—C4111.21 (18)O7v—Li1—P2126.83 (17)
C1—N1—H2A109.4P1—Li1—P256.88 (6)
C4—N1—H2A109.4P1iv—Li1—P2134.19 (13)
C1—N1—H2B109.4P3v—Li1—P2150.11 (14)
C4—N1—H2B109.4N2—C2—C1109.55 (19)
H2A—N1—H2B108.0N2—C2—H2C109.8
N1—C1—C2109.47 (17)C1—C2—H2C109.8
N1—C1—H1A109.8N2—C2—H2D109.8
C2—C1—H1A109.8C1—C2—H2D109.8
N1—C1—H1B109.8H2C—C2—H2D108.2
C2—C1—H1B109.8H110—O10—H210111 (3)
H1A—C1—H1B108.2H111—O11—H211107 (3)
N1—C4—C3110.11 (19)
O2—P1—O3—P248.29 (15)O3—P1—Li1—O1iv91.0 (2)
O1—P1—O3—P2179.72 (12)O9—P1—Li1—O1iv170.3 (2)
O9—P1—O3—P266.34 (13)Li1i—P1—Li1—O1iv79.8 (4)
Li1—P1—O3—P229.92 (13)O2—P1—Li1—O4164.8 (3)
Li1i—P1—O3—P2159.16 (13)O1—P1—Li1—O4135.73 (16)
O5—P2—O3—P1160.31 (12)O3—P1—Li1—O419.62 (12)
O4—P2—O3—P127.66 (14)O9—P1—Li1—O479.12 (13)
O6—P2—O3—P183.09 (13)Li1i—P1—Li1—O4169.63 (10)
Li1—P2—O3—P128.79 (13)O2—P1—Li1—O7v84.4 (2)
O8—P3—O6—P28.74 (17)O1—P1—Li1—O7v113.4 (2)
O7—P3—O6—P2122.24 (13)O3—P1—Li1—O7v130.49 (19)
O9ii—P3—O6—P2124.08 (14)O9—P1—Li1—O7v31.8 (2)
Li1iii—P3—O6—P2152.78 (14)Li1i—P1—Li1—O7v58.8 (3)
O5—P2—O6—P346.37 (16)O2—P1—Li1—P1iv35.2 (3)
O4—P2—O6—P3177.31 (12)O1—P1—Li1—P1iv6.1 (4)
O3—P2—O6—P368.15 (15)O3—P1—Li1—P1iv110.0 (3)
Li1—P2—O6—P3153.10 (13)O9—P1—Li1—P1iv151.3 (3)
O1—P1—O2—Li1162.77 (19)Li1i—P1—Li1—P1iv60.8 (5)
O3—P1—O2—Li137.5 (2)O2—P1—Li1—P3v57.7 (2)
O9—P1—O2—Li170.7 (2)O1—P1—Li1—P3v86.8 (2)
Li1i—P1—O2—Li1162.0 (2)O3—P1—Li1—P3v157.13 (17)
O5—P2—O4—Li1123.45 (19)O9—P1—Li1—P3v58.39 (17)
O6—P2—O4—Li1111.54 (19)Li1i—P1—Li1—P3v32.1 (3)
O3—P2—O4—Li12.3 (2)O2—P1—Li1—P2158.8 (2)
O2—P1—O1—Li1i79.75 (19)O1—P1—Li1—P2129.75 (16)
O3—P1—O1—Li1i153.48 (16)O3—P1—Li1—P213.64 (6)
O9—P1—O1—Li1i46.64 (19)O9—P1—Li1—P285.09 (7)
Li1—P1—O1—Li1i96.36 (17)Li1i—P1—Li1—P2175.60 (15)
O8—P3—O7—Li1iii160.49 (16)O5—P2—Li1—O2110.53 (15)
O9ii—P3—O7—Li1iii34.12 (19)O4—P2—Li1—O2172.7 (3)
O6—P3—O7—Li1iii72.80 (18)O6—P2—Li1—O294.41 (14)
O2—P1—O9—P3ii83.58 (15)O3—P2—Li1—O25.13 (12)
O1—P1—O9—P3ii48.19 (17)O5—P2—Li1—O1iv1.8 (3)
O3—P1—O9—P3ii160.59 (13)O4—P2—Li1—O1iv75.0 (2)
Li1—P1—O9—P3ii112.92 (15)O6—P2—Li1—O1iv153.24 (17)
Li1i—P1—O9—P3ii24.26 (15)O3—P2—Li1—O1iv107.2 (2)
C4—N1—C1—C259.4 (2)O5—P2—Li1—O476.8 (2)
C1—N1—C4—C357.2 (3)O6—P2—Li1—O478.3 (2)
N1—C4—C3—N255.0 (3)O3—P2—Li1—O4177.8 (2)
C4—C3—N2—C256.3 (3)O5—P2—Li1—O7v136.35 (18)
P1—O2—Li1—O1iv137.38 (19)O4—P2—Li1—O7v59.6 (2)
P1—O2—Li1—O415.2 (3)O6—P2—Li1—O7v18.7 (2)
P1—O2—Li1—O7v107.9 (2)O3—P2—Li1—O7v118.2 (2)
P1—O2—Li1—P1iv159.56 (17)O5—P2—Li1—P1119.08 (11)
P1—O2—Li1—P3v133.82 (15)O4—P2—Li1—P1164.1 (2)
P1—O2—Li1—P217.96 (18)O6—P2—Li1—P185.86 (9)
P2—O4—Li1—O27.3 (3)O3—P2—Li1—P113.68 (6)
P2—O4—Li1—O1iv115.71 (19)O5—P2—Li1—P1iv29.2 (3)
P2—O4—Li1—O7v130.98 (17)O4—P2—Li1—P1iv47.53 (18)
P2—O4—Li1—P113.53 (18)O6—P2—Li1—P1iv125.81 (18)
P2—O4—Li1—P1iv143.28 (13)O3—P2—Li1—P1iv134.6 (2)
P2—O4—Li1—P3v146.51 (15)O5—P2—Li1—P3v129.8 (2)
O1—P1—Li1—O229.0 (3)O4—P2—Li1—P3v53.0 (2)
O3—P1—Li1—O2145.1 (2)O6—P2—Li1—P3v25.3 (3)
O9—P1—Li1—O2116.1 (2)O3—P2—Li1—P3v124.8 (3)
Li1i—P1—Li1—O225.6 (3)C3—N2—C2—C158.0 (2)
O2—P1—Li1—O1iv54.2 (2)N1—C1—C2—N259.0 (2)
O1—P1—Li1—O1iv25.1 (4)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O80.901.992.792 (3)147
N1—H2B···O7vi0.901.882.763 (3)166
N2—H3A···O110.901.832.707 (4)165
N2—H3B···O4vii0.901.912.802 (2)168
O10—H110···O1viii0.84 (4)1.99 (4)2.792 (4)159 (5)
O11—H111···O5viii0.84 (3)2.49 (4)3.001 (3)120 (3)
O11—H111···O8viii0.84 (3)2.07 (3)2.826 (3)150 (4)
O10—H210···O5vi0.82 (4)1.95 (4)2.764 (3)170 (4)
O11—H211···O10viii0.86 (4)1.87 (4)2.720 (4)170 (4)
C1—H1A···O6ii0.972.513.273 (4)135
C4—H1D···O100.972.563.227 (4)126
C2—H2C···O2i0.972.293.078 (3)137
C3—H4B···O5viii0.972.463.324 (4)148
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z; (vi) x, y+5/2, z1/2; (vii) x, y, z1; (viii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)2[Li2(P6O18)]·4H2O
Mr736.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.245 (3), 12.966 (4), 10.910 (4)
β (°) 111.00 (3)
V3)1352.8 (7)
Z2
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.26
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7884, 6469, 3904
Rint0.038
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 1.00
No. of reflections6469
No. of parameters202
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.47

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O80.90001.99002.792 (3)147.00
N1—H2B···O7i0.90001.88002.763 (3)166.00
N2—H3A···O110.90001.83002.707 (4)165.00
N2—H3B···O4ii0.90001.91002.802 (2)168.00
O10—H110···O1iii0.84 (4)1.99 (4)2.792 (4)159 (5)
O11—H111···O5iii0.84 (3)2.49 (4)3.001 (3)120 (3)
O11—H111···O8iii0.84 (3)2.07 (3)2.826 (3)150 (4)
O10—H210···O5i0.82 (4)1.95 (4)2.764 (3)170 (4)
O11—H211···O10iii0.86 (4)1.87 (4)2.720 (4)170 (4)
C1—H1A···O6iv0.97002.51003.273 (4)135.00
C4—H1D···O100.97002.56003.227 (4)126.00
C2—H2C···O2v0.97002.29003.078 (3)137.00
C3—H4B···O5iii0.97002.46003.324 (4)148.00
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x, y, z1; (iii) x+2, y+2, z; (iv) x+1, y+2, z; (v) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Tunisian Ministry of HEScR and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).

References

First citationAbid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549–m1550.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2012). Acta Cryst. E68, i30.  CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEssid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244–o2245.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMahesh, S., Green, M. A. & Natarajan, S. (2002). J. Solid State Chem. 165, 334–342.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNatarajan, S. (2000). Proc. Indian Acad. Sci. Chem. Sci. 112, 249–272.  CrossRef CAS Google Scholar
First citationSchülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Dong, P., Liu, L., Wang, J.-G., Deng, F. & Dong, J.-X. (2007). J. Porous Mater. 14, 97–101.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m305-m306
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds