organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-tert-Butyl-2-(4-meth­­oxy­anilino)-N′-(4-meth­­oxy­phen­yl)-2-phenyl­acetimidamide

aDepartment of Chemistry and Biochemistry, 1306 E University Boulevard, The University of Arizona, Tucson, AZ 85721, USA, bCollege of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ 85721, USA, and cBio5 Oro Valley, The University of Arizona, Oro Valley, AZ 85737, USA
*Correspondence e-mail: suer@email.arizona.edu

(Received 10 April 2013; accepted 9 May 2013; online 18 May 2013)

In the crystal of the title compound, C26H31N3O2, pairs of N—H⋯O hydrogen bonds link molecules, forming inversion dimers, which enclose an R22(20) ring motif. One N atom does not form hydrogen bonds and lies in a hydro­phobic pocket with closest inter­molecular contacts of 4.196 (2) and 4.262 (2) Å.

Related literature

For the synthesis of the title compound, and a discussion of the use of the three-component Ugi reaction to synthesize amidines, see: Saha et al. (2013[Saha, B., Frett, B., Wang, Y. & Li, H.-Y. (2013). Tetrahedron Lett. 54, 2340-2343.]).

[Scheme 1]

Experimental

Crystal data
  • C26H31N3O2

  • Mr = 417.54

  • Triclinic, [P \overline 1]

  • a = 10.0804 (17) Å

  • b = 10.5784 (17) Å

  • c = 11.1573 (18) Å

  • α = 80.982 (4)°

  • β = 85.152 (4)°

  • γ = 80.270 (4)°

  • V = 1156.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.89, Tmax = 0.99

  • 32612 measured reflections

  • 6607 independent reflections

  • 5476 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 0.94

  • 6607 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.887 (15) 2.328 (15) 3.1698 (13) 158.5 (12)
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was prepared as a secondary product of the three component Ugi reaction (Saha et al., 2013). The central C1—C22 single bond has four bulky substituents arranged, roughly, as if pointing at the corners of a tetrahedron. The angle between the planes containing the substituents, defined by N1—C22—N3 and C2—C1—C20, is 72.41 (1)°. Pairs of hydrogen bonds between N2 and O1 [3.170 (1) Å] connect two molecules across an inversion center, creating a cavity around the inversion center with a diameter of about 5 Å. The closest contact across the inversion center involving atoms not involved in the hydrogen bonding is 3.151 (3) Å between the hydrogen bonded to C3 and its symmetry equivalent (symmetry transformation -x + 1, -y + 2, -z + 2). The hydrogen bonding graph set is R22(20). Nitrogen N3 is unusual in that, although protonated, it does not form hydrogen bonds with acceptor atoms. Instead, it lies in a hydrophobic cavity with closest intermolecular contacts of 4.196 (2) Å and 4.262 (2) Å to C15 and C16 respectively.

Related literature top

For the synthesis of the title compound, and a discussion of the use of the three-component Ugi reaction to synthesize amidines, see: Saha et al. (2013)

Experimental top

The compound was synthesized as previously reported [compound 5a in (Saha et al., 2013)]. The crude residue was purified by silica gel column chromatography using (10–30%) ethylacetate-hexane to obtain the pure product. The pure compound was dissolved in 50% ethylacetate-hexane and kept at room temperature for 2 days during which crystals formed.

Refinement top

All hydrogen atoms were visible in a difference Fourier map and, except for H2 were added at calculated positions. Bond distances are set to 0.95 Å for aromatic carbon-hydrogen bonds, 0.98 Å for methyl group carbon-hydrogen bonds and 0.88 Å for nitrogen-hydrogen bonds. Thermal parameters for hydrogen atoms were set to 1.2 times the isotropic equivalent thermal parameter of the atom to which the hydrogen atom is bonded, except for methyl group hydrogen atoms where the thermal parameter was set to 1.5 times the isotropic equivalent thermal parameter of the carbon atom the hydrogen atom is bonded to. The positional and isotropic thermal parameters of H2 were refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Non-hydrogen atoms are shown as 50% probability ellipsoids.
[Figure 2] Fig. 2. View showing unit cell packing. Unit cell axes are labeled in the figure.
(Z)-N-tert-Butyl-2-(4-methoxyanilino)-N'-(4-methoxyphenyl)-2-phenylacetimidamide top
Crystal data top
C26H31N3O2Z = 2
Mr = 417.54F(000) = 448
Triclinic, P1Dx = 1.199 Mg m3
a = 10.0804 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5784 (17) ÅCell parameters from 9952 reflections
c = 11.1573 (18) Åθ = 2.9–29.8°
α = 80.982 (4)°µ = 0.08 mm1
β = 85.152 (4)°T = 100 K
γ = 80.270 (4)°Block, colourless
V = 1156.1 (3) Å30.20 × 0.20 × 0.10 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6607 independent reflections
Radiation source: fine-focus sealed tube5476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.3333 pixels mm-1θmax = 29.9°, θmin = 1.9°
ϕ and ω scansh = 1411
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1412
Tmin = 0.89, Tmax = 0.99l = 1513
32612 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.6486P]
where P = (Fo2 + 2Fc2)/3
6607 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C26H31N3O2γ = 80.270 (4)°
Mr = 417.54V = 1156.1 (3) Å3
Triclinic, P1Z = 2
a = 10.0804 (17) ÅMo Kα radiation
b = 10.5784 (17) ŵ = 0.08 mm1
c = 11.1573 (18) ÅT = 100 K
α = 80.982 (4)°0.20 × 0.20 × 0.10 mm
β = 85.152 (4)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5476 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.99Rint = 0.019
32612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.36 e Å3
6607 reflectionsΔρmin = 0.38 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C200.37947 (10)1.03405 (9)0.68022 (9)0.01884 (19)
C110.15660 (10)0.92039 (10)1.16518 (9)0.0213 (2)
H110.08220.98361.18420.026*
C180.15655 (11)1.15884 (10)0.70473 (10)0.0226 (2)
H180.07081.16950.74750.027*
C150.40664 (11)1.12635 (10)0.57996 (9)0.02047 (19)
H150.49191.11550.53630.025*
C160.31125 (11)1.23257 (10)0.54406 (9)0.0219 (2)
H160.33131.29400.47610.026*
C220.35777 (10)0.75795 (9)0.82814 (9)0.01868 (19)
C100.36795 (11)0.78673 (11)1.21611 (9)0.0228 (2)
H100.43770.75821.27090.027*
C120.16277 (10)0.86653 (10)1.05826 (9)0.0212 (2)
H120.09060.89211.00570.025*
C190.25281 (11)1.05135 (10)0.74063 (10)0.0224 (2)
H190.23150.98900.80740.027*
C80.27219 (10)0.77613 (10)1.02648 (9)0.01957 (19)
C10.46163 (10)0.84821 (9)0.83240 (9)0.01839 (18)
H10.42600.90820.89270.022*
C170.18548 (10)1.25005 (10)0.60709 (9)0.0206 (2)
C90.37371 (11)0.73460 (10)1.10887 (9)0.0223 (2)
H90.44730.67001.09100.027*
C20.59808 (10)0.77504 (10)0.87123 (9)0.0209 (2)
C260.27437 (11)0.63246 (10)0.68176 (9)0.0220 (2)
C30.67295 (12)0.83256 (11)0.93977 (11)0.0280 (2)
H30.63670.91440.96360.034*
C240.12887 (12)0.70234 (13)0.67994 (12)0.0318 (3)
H24A0.09620.71830.76230.048*
H24B0.07220.64840.65050.048*
H24C0.12490.78520.62580.048*
C70.65156 (13)0.65363 (12)0.83952 (12)0.0329 (3)
H70.60100.61210.79380.039*
C250.32629 (13)0.61040 (12)0.55297 (10)0.0299 (2)
H25A0.31670.69360.49910.045*
H25B0.27390.55240.52390.045*
H25C0.42150.57100.55320.045*
C40.80027 (13)0.77209 (13)0.97403 (12)0.0336 (3)
H40.85050.81271.02090.040*
C210.02644 (12)1.38154 (12)0.63778 (12)0.0333 (3)
H21A0.07841.31190.63440.050*
H21B0.07851.46490.60520.050*
H21C0.00781.38290.72230.050*
C140.15403 (12)1.02124 (13)1.38420 (12)0.0335 (3)
H14A0.14601.09891.32290.050*
H14B0.16741.04491.46330.050*
H14C0.07150.98271.38970.050*
C50.85386 (12)0.65322 (13)0.94015 (12)0.0350 (3)
H50.94190.61280.96160.042*
C230.28606 (16)0.50314 (12)0.76560 (12)0.0366 (3)
H23A0.38000.45970.76290.055*
H23B0.22850.44830.73880.055*
H23C0.25730.51830.84900.055*
C60.77862 (14)0.59305 (14)0.87460 (13)0.0405 (3)
H60.81410.50980.85350.049*
O20.09729 (8)1.35968 (7)0.56724 (7)0.02582 (17)
O10.26631 (8)0.92977 (8)1.35034 (7)0.02582 (17)
N20.47953 (9)0.92663 (8)0.71356 (8)0.01953 (17)
N30.36308 (9)0.71424 (9)0.71966 (8)0.02124 (18)
H3A0.42680.73740.66580.025*
N10.27336 (9)0.72595 (9)0.91628 (8)0.02123 (18)
C130.26038 (10)0.88065 (10)1.24380 (9)0.0204 (2)
H20.5625 (15)0.9449 (14)0.6977 (13)0.027 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C200.0210 (4)0.0187 (4)0.0171 (4)0.0043 (4)0.0002 (3)0.0025 (3)
C110.0189 (4)0.0221 (5)0.0226 (5)0.0038 (4)0.0033 (4)0.0041 (4)
C180.0203 (5)0.0226 (5)0.0236 (5)0.0037 (4)0.0019 (4)0.0008 (4)
C150.0230 (5)0.0221 (5)0.0164 (4)0.0057 (4)0.0020 (4)0.0025 (3)
C160.0275 (5)0.0212 (5)0.0168 (4)0.0066 (4)0.0000 (4)0.0002 (3)
C220.0206 (4)0.0177 (4)0.0170 (4)0.0019 (3)0.0004 (3)0.0022 (3)
C100.0227 (5)0.0274 (5)0.0177 (4)0.0019 (4)0.0007 (4)0.0033 (4)
C120.0198 (4)0.0246 (5)0.0191 (4)0.0052 (4)0.0003 (4)0.0017 (4)
C190.0229 (5)0.0210 (5)0.0212 (5)0.0034 (4)0.0025 (4)0.0016 (4)
C80.0219 (5)0.0212 (5)0.0160 (4)0.0072 (4)0.0026 (4)0.0018 (3)
C10.0202 (4)0.0185 (4)0.0160 (4)0.0032 (3)0.0014 (3)0.0021 (3)
C170.0228 (5)0.0189 (5)0.0205 (4)0.0036 (4)0.0036 (4)0.0022 (4)
C90.0231 (5)0.0236 (5)0.0186 (4)0.0005 (4)0.0014 (4)0.0035 (4)
C20.0204 (4)0.0227 (5)0.0176 (4)0.0023 (4)0.0017 (4)0.0003 (4)
C260.0253 (5)0.0227 (5)0.0190 (4)0.0051 (4)0.0019 (4)0.0050 (4)
C30.0265 (5)0.0246 (5)0.0331 (6)0.0050 (4)0.0047 (4)0.0024 (4)
C240.0237 (5)0.0407 (7)0.0322 (6)0.0036 (5)0.0011 (4)0.0112 (5)
C70.0319 (6)0.0317 (6)0.0344 (6)0.0050 (5)0.0052 (5)0.0120 (5)
C250.0323 (6)0.0362 (6)0.0235 (5)0.0045 (5)0.0005 (4)0.0132 (4)
C40.0283 (6)0.0347 (6)0.0371 (6)0.0080 (5)0.0088 (5)0.0036 (5)
C210.0233 (5)0.0299 (6)0.0406 (7)0.0017 (4)0.0003 (5)0.0062 (5)
C140.0255 (5)0.0433 (7)0.0359 (6)0.0052 (5)0.0066 (5)0.0234 (5)
C50.0249 (5)0.0396 (7)0.0336 (6)0.0028 (5)0.0021 (5)0.0080 (5)
C230.0594 (8)0.0243 (6)0.0291 (6)0.0136 (6)0.0126 (6)0.0005 (4)
C60.0363 (7)0.0366 (7)0.0433 (7)0.0128 (5)0.0028 (6)0.0091 (6)
O20.0252 (4)0.0223 (4)0.0267 (4)0.0005 (3)0.0026 (3)0.0034 (3)
O10.0240 (4)0.0337 (4)0.0215 (4)0.0035 (3)0.0026 (3)0.0124 (3)
N20.0194 (4)0.0206 (4)0.0172 (4)0.0035 (3)0.0028 (3)0.0002 (3)
N30.0237 (4)0.0240 (4)0.0171 (4)0.0065 (3)0.0030 (3)0.0056 (3)
N10.0246 (4)0.0233 (4)0.0164 (4)0.0062 (3)0.0010 (3)0.0033 (3)
C130.0213 (5)0.0235 (5)0.0173 (4)0.0069 (4)0.0035 (4)0.0047 (4)
Geometric parameters (Å, º) top
C20—C151.4057 (14)C26—C251.5264 (15)
C20—C191.3901 (14)C26—C231.5243 (16)
C20—N21.4108 (13)C26—N31.4721 (13)
C11—H110.9500C3—H30.9500
C11—C121.3930 (14)C3—C41.3897 (17)
C11—C131.3897 (15)C24—H24A0.9800
C18—H180.9500C24—H24B0.9800
C18—C191.3946 (15)C24—H24C0.9800
C18—C171.3836 (14)C7—H70.9500
C15—H150.9500C7—C61.3903 (18)
C15—C161.3807 (15)C25—H25A0.9800
C16—H160.9500C25—H25B0.9800
C16—C171.3953 (15)C25—H25C0.9800
C22—C11.5397 (14)C4—H40.9500
C22—N31.3556 (12)C4—C51.3787 (19)
C22—N11.2873 (13)C21—H21A0.9800
C10—H100.9500C21—H21B0.9800
C10—C91.3869 (14)C21—H21C0.9800
C10—C131.3906 (15)C21—O21.4220 (15)
C12—H120.9500C14—H14A0.9800
C12—C81.3930 (15)C14—H14B0.9800
C19—H190.9500C14—H14C0.9800
C8—C91.4021 (14)C14—O11.4256 (14)
C8—N11.4120 (13)C5—H50.9500
C1—H11.0000C5—C61.385 (2)
C1—C21.5213 (14)C23—H23A0.9800
C1—N21.4643 (13)C23—H23B0.9800
C17—O21.3747 (12)C23—H23C0.9800
C9—H90.9500C6—H60.9500
C2—C31.3868 (15)O1—C131.3794 (12)
C2—C71.3934 (16)N2—H20.887 (15)
C26—C241.5270 (16)N3—H3A0.8800
C15—C20—N2119.16 (9)C26—C24—H24A109.5
C19—C20—C15118.08 (9)C26—C24—H24B109.5
C19—C20—N2122.74 (9)C26—C24—H24C109.5
C12—C11—H11120.3H24A—C24—H24B109.5
C13—C11—H11120.3H24A—C24—H24C109.5
C13—C11—C12119.31 (9)H24B—C24—H24C109.5
C19—C18—H18119.9C2—C7—H7119.9
C17—C18—H18119.9C6—C7—C2120.22 (12)
C17—C18—C19120.28 (10)C6—C7—H7119.9
C20—C15—H15119.5C26—C25—H25A109.5
C16—C15—C20120.96 (10)C26—C25—H25B109.5
C16—C15—H15119.5C26—C25—H25C109.5
C15—C16—H16119.8H25A—C25—H25B109.5
C15—C16—C17120.31 (9)H25A—C25—H25C109.5
C17—C16—H16119.8H25B—C25—H25C109.5
N3—C22—C1112.76 (8)C3—C4—H4119.9
N1—C22—C1124.98 (9)C5—C4—C3120.11 (12)
N1—C22—N3122.26 (9)C5—C4—H4119.9
C9—C10—H10119.9H21A—C21—H21B109.5
C9—C10—C13120.25 (10)H21A—C21—H21C109.5
C13—C10—H10119.9H21B—C21—H21C109.5
C11—C12—H12119.2O2—C21—H21A109.5
C11—C12—C8121.63 (10)O2—C21—H21B109.5
C8—C12—H12119.2O2—C21—H21C109.5
C20—C19—C18120.99 (9)H14A—C14—H14B109.5
C20—C19—H19119.5H14A—C14—H14C109.5
C18—C19—H19119.5H14B—C14—H14C109.5
C12—C8—C9118.01 (9)O1—C14—H14A109.5
C12—C8—N1119.03 (9)O1—C14—H14B109.5
C9—C8—N1122.89 (9)O1—C14—H14C109.5
C22—C1—H1108.1C4—C5—H5120.2
C2—C1—C22112.85 (8)C4—C5—C6119.59 (11)
C2—C1—H1108.1C6—C5—H5120.2
N2—C1—C22110.37 (8)C26—C23—H23A109.5
N2—C1—H1108.1C26—C23—H23B109.5
N2—C1—C2109.12 (8)C26—C23—H23C109.5
C18—C17—C16119.35 (9)H23A—C23—H23B109.5
O2—C17—C18123.94 (10)H23A—C23—H23C109.5
O2—C17—C16116.71 (9)H23B—C23—H23C109.5
C10—C9—C8120.74 (10)C7—C6—H6119.8
C10—C9—H9119.6C5—C6—C7120.43 (12)
C8—C9—H9119.6C5—C6—H6119.8
C3—C2—C1118.49 (9)C17—O2—C21116.18 (8)
C3—C2—C7118.73 (10)C13—O1—C14117.04 (9)
C7—C2—C1122.78 (10)C20—N2—C1118.01 (8)
C25—C26—C24109.45 (9)C20—N2—H2112.8 (9)
C23—C26—C24111.49 (10)C1—N2—H2113.0 (9)
C23—C26—C25109.80 (10)C22—N3—C26127.34 (9)
N3—C26—C24110.61 (9)C22—N3—H3A116.3
N3—C26—C25105.50 (9)C26—N3—H3A116.3
N3—C26—C23109.82 (9)C22—N1—C8119.35 (9)
C2—C3—H3119.6C11—C13—C10119.96 (9)
C2—C3—C4120.89 (11)O1—C13—C11124.18 (9)
C4—C3—H3119.6O1—C13—C10115.85 (9)
C20—C15—C16—C170.05 (16)C9—C8—N1—C2272.76 (14)
C11—C12—C8—C93.56 (15)C2—C1—N2—C20157.97 (9)
C11—C12—C8—N1179.35 (9)C2—C3—C4—C50.11 (19)
C18—C17—O2—C214.27 (15)C2—C7—C6—C50.7 (2)
C15—C20—C19—C181.56 (16)C3—C2—C7—C61.07 (19)
C15—C20—N2—C1166.59 (9)C3—C4—C5—C61.7 (2)
C15—C16—C17—C181.01 (16)C24—C26—N3—C2262.76 (14)
C15—C16—C17—O2178.62 (9)C7—C2—C3—C41.49 (17)
C16—C17—O2—C21175.34 (10)C25—C26—N3—C22178.98 (10)
C22—C1—C2—C3145.84 (10)C4—C5—C6—C72.1 (2)
C22—C1—C2—C735.00 (14)C14—O1—C13—C113.97 (15)
C22—C1—N2—C2077.49 (11)C14—O1—C13—C10176.82 (10)
C12—C11—C13—C100.89 (15)C23—C26—N3—C2260.72 (14)
C12—C11—C13—O1178.29 (9)N2—C20—C15—C16179.73 (9)
C12—C8—C9—C102.92 (15)N2—C20—C19—C18179.91 (10)
C12—C8—N1—C22110.29 (12)N2—C1—C2—C391.07 (11)
C19—C20—C15—C161.32 (15)N2—C1—C2—C788.08 (12)
C19—C20—N2—C115.07 (14)N3—C22—C1—C287.41 (10)
C19—C18—C17—C160.77 (16)N3—C22—C1—N234.97 (11)
C19—C18—C17—O2178.83 (10)N3—C22—N1—C8179.30 (9)
C1—C22—N3—C26176.49 (9)N1—C22—C1—C292.83 (12)
C1—C22—N1—C80.44 (15)N1—C22—C1—N2144.79 (10)
C1—C2—C3—C4177.70 (10)N1—C22—N3—C263.28 (16)
C1—C2—C7—C6178.08 (11)N1—C8—C9—C10179.89 (10)
C17—C18—C19—C200.53 (16)C13—C11—C12—C81.69 (15)
C9—C10—C13—C111.50 (16)C13—C10—C9—C80.45 (16)
C9—C10—C13—O1177.75 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.887 (15)2.328 (15)3.1698 (13)158.5 (12)
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC26H31N3O2
Mr417.54
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.0804 (17), 10.5784 (17), 11.1573 (18)
α, β, γ (°)80.982 (4), 85.152 (4), 80.270 (4)
V3)1156.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.89, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
32612, 6607, 5476
Rint0.019
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 0.94
No. of reflections6607
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.887 (15)2.328 (15)3.1698 (13)158.5 (12)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The Bruker Kappa APEXII DUO was purchased with funding from NSF grant CHE-0741837. The work was supported by start-up funds from the University of Arizona to HYL.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaha, B., Frett, B., Wang, Y. & Li, H.-Y. (2013). Tetrahedron Lett. 54, 2340–2343.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds