organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o954-o955

N-Benzyl-9-iso­propyl-9H-purin-6-amine

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín 762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 6 May 2013; accepted 16 May 2013; online 25 May 2013)

The asymmetric unit of the title compound, C15H17N5, consists of two mol­ecules in which the dihedral angles between the best planes of the purine ring system (r.m.s. deviations = 0.0060 and 0.0190 Å) and the benzene ring are 89.21 (3) and 82.14 (4)°. The mol­ecules within the asymmetric unit are linked into dimers by pairs of N—H⋯N hydrogen bonds. Weak C—H⋯π contacts and ππ inter­actions [centroid–centroid = 3.3071 (1) Å] further connect the mol­ecules into a three-dimensional network.

Related literature

The title compound was prepared according to a modified procedure published by Fiorini & Abel (1998[Fiorini, M. T. & Abel, C. (1998). Tetrahedron Lett. 39, 1827-1830.]). For the biological activity of 6,9-disubstituted purines, see: Cappellacci et al. (2011[Cappellacci, L., Petrelli, R., Franchetti, P., Vita, P., Kusumanchi, P., Kumar, M., Jayram, H. N., Zhou, B., Yen, Y. & Grifantini, M. (2011). Eur. J. Med. Chem. 46, 1499-1504.]); Jorda et al. (2011[Jorda, R., Sacerdoti-Sierra, N., Volle, J., Havlíček, L., Kráčalíková, K., Nowicki, M. W., Nasereddin, A., Kryštof, V., Strnad, M., Walkinshaw, M. D. & Jaffe, C. L. (2011). Bioorg. Med. Chem. Lett. 21, 4233-4237.]); Tunçbilek et al. (2009[Tunçbilek, M., Ateş-Alagöz, Z., Altanlar, N., Karayel, A. & Özbey, S. (2009). Bioorg. Med. Chem. 17, 1693-1700.]). For crystallographic data for related compounds, see: Novotná & Trávníček (2013[Novotná, R. & Trávníček, Z. (2013). Acta Cryst. E69, o390.]); Rouchal et al. (2009a[Rouchal, M., Nečas, M., Carvalho, F. P. de & Vícha, R. (2009a). Acta Cryst. E65, o298-o299.],b[Rouchal, M., Nečas, M. & Vícha, R. (2009b). Acta Cryst. E65, o1268.]); Trávníček et al. (2010[Trávníček, Z., Popa, I., Čajan, M., Zbořil, R., Kryštof, V. & Mikulík, J. (2010). J. Inorg. Biochem. 104, 405-417.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N5

  • Mr = 267.34

  • Monoclinic, P 21 /c

  • a = 12.9926 (5) Å

  • b = 21.1673 (7) Å

  • c = 11.2622 (6) Å

  • β = 114.274 (5)°

  • V = 2823.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.50 × 0.38 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.942, Tmax = 1.000

  • 21460 measured reflections

  • 4972 independent reflections

  • 3280 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.058

  • S = 0.83

  • 4972 reflections

  • 373 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are centroids of the C10–C15, C30–C35, N1/N2/C1–C4 and N21/N22/C21–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯N23 0.896 (13) 2.129 (11) 2.9883 (13) 160.2 (12)
N25—H25N⋯N3 0.908 (12) 2.151 (12) 3.0088 (15) 157.2 (12)
C25—H25⋯Cg1 0.95 2.76 3.6413 (14) 156
C5—H5⋯Cg2 0.95 2.72 3.6179 (13) 158
C12—H12⋯Cg3i 0.95 2.93 3.6703 (17) 135
C15—H15⋯Cg4ii 0.95 2.60 3.5158 (15) 161
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of purine derivatives bearing various substituents at C6 and N9 positions is closely related with the eventual biological activity of the final molecule. Recently, several 6,9-disubstituted purines were described as antibacterial (Tunçbilek et al., 2009), antileishmanial (Jorda et al., 2011) and antitumor (Cappellacci et al., 2011) agents. The title molecule, N-benzyl-9-isopropyl-9H-purin-6-amine, was prepared as a part of our ongoing research aimed at preparation of new disubstituted purine series.

The asymmetric unit of the title compound consists of two purine-based molecules slightly different in their geometries (Fig. 1). The dihedral angles between the best planes of the purine and benzene rings are 89.21 (3)° and 82.14 (4)°, respectively. The torsion angles N1—C1—N5—C9, C1—N5—C9—C10, N5—C9—C10—C11 and C5—N4—C6—C7 indicating the mutual orientation of substituents and purine ring are 2.85 (19), -110.7 (14), 33.8 (18) and 31.3 (18)°, respectively. The corresponding values of torsion angles for the second conformer are 0.44 (19), -96.7 (15), 35.5 (17) and 35.9 (18)°, respectively. The molecules within the asymmetric unit are linked by N5—H5N···N23 and N25—H25N···N3 hydrogen bonds (Table 1, Fig. 2) to form dimers with dihedral angles between the best planes of the two purines being 32.53 (3)°. In contrast, the benzene rings are essentially parallel with the dihedral angle of 2.88 (3)°. The crystal packing is further stabilized via short intermolecular non-bonding C—H···π contacts and π···π interactions (Table 1, Fig. 2). The interplanar distance between the adjacent purine best planes of the π···π stacked molecules is of 3.2583 (13) Å.

Related literature top

The title compound was prepared according to a modified procedure published by Fiorini & Abel (1998). For the biological activity of 6,9-disubstituted purines, see: Cappellacci et al. (2011); Jorda et al. (2011); Tunçbilek et al. (2009). For crystallographic data for related compounds, see: Novotná & Trávníček (2013); Rouchal et al. (2009a,b); Trávníček et al. (2010).

Experimental top

The title compound was prepared according to a slightly modified literature procedure (Fiorini & Abel, 1998). 6-Chloro-9-isopropyl-9H-purine (100 mg, 0.51 mmol) and benzylamine (58 mg, 0.54 mmol) were dissolved in a mixture of DMSO (4 ml) and triethylamine (57 mg, 0.56 mmol). The resulting solution was stirred at 90 °C for 2 h. Subsequently, the mixture was diluted with water and extracted with diethyl ether (7 × 10 ml). The combined organic layers were washed twice with brine, dried over Na2SO4 and evaporated in vacuum. The desired product was obtained after the purification of crude material using column chromatography (silica gel; petroleum ether/ethyl acetate, 1/3, v/v) as a colourless crystalline powder (66 mg, 49%, mp 388–391 K). The crystals used for data collection were grown by spontaneous evaporation from deuterochloroform at room temperature.

Refinement top

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids. H-atoms are showed as small spheres of arbitrary radii. H-bonds are denoted with dashed lines.
[Figure 2] Fig. 2. A fragment of the molecular packing. H-atoms have been omitted for clarity with exception to those participating in weak interactions. The red dashed lines denote the H-bonds, the green dashed lines denote the π···π interactions and the black dotted lines denote the C—H···π contacts. Cg1, Cg2,Cg3 and Cg4 are respective centers of gravity of C10–C15; C30–C35; C1,N1,C2,N2,C3,C4 and C21,N21,C22,N22,C23,C24 rings. Symmetry codes: i) -x + 1, -y + 1, -z + 2; ii) x, y, z + 1; iii) -x + 2, -y + 1, -z + 2.
N-Benzyl-9-isopropyl-9H-purin-6-amine top
Crystal data top
C15H17N5F(000) = 1136
Mr = 267.34Dx = 1.258 Mg m3
Monoclinic, P21/cMelting point: 390 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.9926 (5) ÅCell parameters from 6488 reflections
b = 21.1673 (7) Åθ = 2.9–27.3°
c = 11.2622 (6) ŵ = 0.08 mm1
β = 114.274 (5)°T = 120 K
V = 2823.5 (2) Å3Pyramid, colourless
Z = 80.50 × 0.38 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur (Sapphire2)
diffractometer
4972 independent reflections
Radiation source: Enhance (Mo) X-ray Source3280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scanh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2523
Tmin = 0.942, Tmax = 1.000l = 1310
21460 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 0.83Δρmax = 0.13 e Å3
4972 reflectionsΔρmin = 0.16 e Å3
373 parameters
Crystal data top
C15H17N5V = 2823.5 (2) Å3
Mr = 267.34Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.9926 (5) ŵ = 0.08 mm1
b = 21.1673 (7) ÅT = 120 K
c = 11.2622 (6) Å0.50 × 0.38 × 0.20 mm
β = 114.274 (5)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire2)
diffractometer
4972 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3280 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 1.000Rint = 0.035
21460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.13 e Å3
4972 reflectionsΔρmin = 0.16 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.48434 (8)0.47471 (5)0.65985 (10)0.0260 (3)
N20.35401 (8)0.55081 (5)0.51464 (10)0.0262 (3)
N30.61994 (8)0.62964 (5)0.66899 (10)0.0313 (3)
N40.44524 (8)0.65164 (5)0.51961 (10)0.0263 (3)
N50.67119 (9)0.49857 (5)0.79188 (10)0.0265 (3)
C10.57003 (10)0.51658 (6)0.70266 (12)0.0241 (3)
C20.38440 (10)0.49452 (6)0.57007 (12)0.0279 (3)
H20.32650.46340.54190.033*
C30.44264 (10)0.59076 (6)0.55935 (12)0.0235 (3)
C40.54997 (10)0.57782 (6)0.65076 (11)0.0235 (3)
C50.55292 (10)0.67225 (6)0.58899 (12)0.0324 (3)
H50.57750.71360.58040.039*
C60.34853 (10)0.68646 (6)0.42406 (12)0.0264 (3)
H60.29960.65530.35840.032*
C70.38698 (11)0.73471 (7)0.35260 (13)0.0440 (4)
H7A0.43390.71410.31460.066*
H7B0.43100.76760.41360.066*
H7C0.32100.75380.28310.066*
C80.27902 (11)0.71513 (6)0.48996 (13)0.0374 (4)
H8A0.26020.68240.53940.056*
H8B0.20930.73290.42390.056*
H8C0.32240.74870.54930.056*
C90.69743 (10)0.43519 (6)0.84296 (12)0.0275 (3)
H9A0.76640.42070.83400.033*
H9B0.63490.40680.78980.033*
C100.71588 (10)0.42924 (6)0.98378 (12)0.0226 (3)
C110.65661 (10)0.46597 (6)1.03600 (13)0.0289 (3)
H110.60310.49580.98240.035*
C120.67436 (11)0.45977 (7)1.16490 (13)0.0369 (4)
H120.63250.48501.19920.044*
C130.75233 (11)0.41715 (7)1.24409 (14)0.0381 (4)
H130.76460.41311.33290.046*
C140.81238 (11)0.38046 (6)1.19388 (14)0.0363 (4)
H140.86660.35111.24810.044*
C150.79357 (10)0.38652 (6)1.06441 (13)0.0289 (3)
H150.83490.36081.03020.035*
N211.00117 (8)0.72864 (5)0.95195 (10)0.0239 (3)
N221.08432 (8)0.68113 (5)1.16590 (9)0.0236 (3)
N230.87221 (8)0.57374 (5)0.96305 (10)0.0279 (3)
N240.99893 (8)0.57966 (5)1.17200 (10)0.0256 (3)
N250.85603 (9)0.68204 (5)0.77541 (10)0.0260 (3)
C210.92837 (9)0.68029 (6)0.90160 (12)0.0220 (3)
C221.07258 (10)0.72557 (6)1.07788 (12)0.0252 (3)
H221.12240.76051.10900.030*
C231.01033 (9)0.63394 (6)1.11174 (12)0.0214 (3)
C240.93237 (9)0.62980 (6)0.98385 (12)0.0215 (3)
C250.91468 (10)0.54632 (6)1.07785 (13)0.0310 (3)
H250.88890.50661.09400.037*
C261.05832 (10)0.56472 (6)1.31163 (12)0.0297 (3)
H261.13490.58461.34420.036*
C271.07405 (11)0.49430 (6)1.33211 (13)0.0417 (4)
H27A1.11170.47761.27910.063*
H27B1.00020.47401.30620.063*
H27C1.12040.48561.42430.063*
C280.99545 (12)0.59390 (7)1.38523 (14)0.0486 (4)
H28A0.99070.63971.37180.073*
H28B1.03580.58471.47830.073*
H28C0.91920.57611.35320.073*
C290.85268 (10)0.73381 (6)0.68906 (12)0.0278 (3)
H29A0.83870.71630.60230.033*
H29B0.92750.75460.72320.033*
C300.76355 (10)0.78312 (6)0.67322 (12)0.0246 (3)
C310.73658 (10)0.79940 (6)0.77588 (13)0.0307 (3)
H310.77610.78020.85860.037*
C320.65295 (11)0.84318 (6)0.75992 (14)0.0376 (4)
H320.63500.85370.83120.045*
C330.59581 (12)0.87150 (6)0.64080 (16)0.0429 (4)
H330.53790.90130.62950.051*
C340.62262 (11)0.85664 (6)0.53779 (15)0.0405 (4)
H340.58400.87660.45580.049*
C350.70600 (10)0.81253 (6)0.55402 (13)0.0321 (3)
H350.72400.80230.48270.038*
H5N0.7264 (11)0.5272 (6)0.8262 (12)0.037 (4)*
H25N0.7954 (10)0.6558 (6)0.7491 (12)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0217 (6)0.0304 (6)0.0255 (6)0.0021 (5)0.0093 (5)0.0038 (5)
N20.0209 (6)0.0308 (7)0.0259 (7)0.0027 (5)0.0087 (5)0.0041 (5)
N30.0241 (6)0.0316 (7)0.0299 (7)0.0035 (5)0.0026 (5)0.0040 (6)
N40.0201 (6)0.0298 (7)0.0243 (6)0.0000 (5)0.0043 (5)0.0002 (5)
N50.0222 (6)0.0272 (7)0.0248 (7)0.0012 (5)0.0045 (5)0.0000 (5)
C10.0220 (7)0.0327 (8)0.0194 (8)0.0008 (6)0.0103 (6)0.0048 (6)
C20.0223 (7)0.0328 (8)0.0292 (8)0.0045 (6)0.0114 (6)0.0062 (7)
C30.0206 (7)0.0300 (8)0.0204 (8)0.0003 (6)0.0090 (6)0.0034 (6)
C40.0213 (7)0.0280 (8)0.0198 (8)0.0021 (6)0.0072 (6)0.0017 (6)
C50.0236 (7)0.0333 (8)0.0328 (9)0.0048 (6)0.0042 (6)0.0021 (7)
C60.0214 (7)0.0328 (8)0.0201 (8)0.0026 (6)0.0036 (6)0.0001 (6)
C70.0321 (8)0.0602 (11)0.0350 (9)0.0074 (7)0.0092 (7)0.0188 (8)
C80.0387 (8)0.0418 (9)0.0317 (9)0.0115 (7)0.0144 (7)0.0023 (7)
C90.0248 (7)0.0263 (8)0.0299 (8)0.0037 (6)0.0097 (6)0.0034 (6)
C100.0199 (7)0.0197 (7)0.0274 (8)0.0027 (6)0.0089 (6)0.0033 (6)
C110.0247 (7)0.0306 (8)0.0298 (9)0.0048 (6)0.0097 (6)0.0000 (7)
C120.0360 (8)0.0450 (10)0.0338 (9)0.0042 (7)0.0186 (7)0.0038 (7)
C130.0426 (9)0.0442 (9)0.0302 (9)0.0042 (7)0.0176 (7)0.0040 (7)
C140.0370 (8)0.0307 (9)0.0387 (10)0.0045 (7)0.0132 (7)0.0126 (7)
C150.0289 (7)0.0216 (8)0.0379 (9)0.0034 (6)0.0154 (7)0.0014 (6)
N210.0202 (6)0.0243 (6)0.0270 (7)0.0002 (5)0.0094 (5)0.0011 (5)
N220.0202 (5)0.0251 (6)0.0251 (6)0.0022 (5)0.0090 (5)0.0015 (5)
N230.0248 (6)0.0261 (6)0.0273 (7)0.0031 (5)0.0050 (5)0.0033 (5)
N240.0201 (6)0.0278 (6)0.0231 (6)0.0041 (5)0.0029 (5)0.0037 (5)
N250.0223 (6)0.0270 (7)0.0245 (7)0.0016 (5)0.0054 (5)0.0042 (5)
C210.0164 (6)0.0249 (7)0.0256 (8)0.0030 (6)0.0097 (6)0.0019 (6)
C220.0206 (7)0.0256 (8)0.0301 (8)0.0015 (6)0.0112 (6)0.0043 (7)
C230.0168 (6)0.0228 (7)0.0246 (8)0.0011 (5)0.0086 (6)0.0005 (6)
C240.0173 (6)0.0224 (7)0.0235 (8)0.0001 (5)0.0071 (6)0.0006 (6)
C250.0251 (7)0.0281 (8)0.0323 (9)0.0071 (6)0.0043 (7)0.0045 (7)
C260.0228 (7)0.0369 (9)0.0226 (8)0.0038 (6)0.0023 (6)0.0069 (6)
C270.0379 (8)0.0416 (9)0.0370 (9)0.0032 (7)0.0065 (7)0.0145 (7)
C280.0530 (10)0.0584 (11)0.0321 (9)0.0091 (8)0.0151 (8)0.0064 (8)
C290.0286 (7)0.0310 (8)0.0243 (8)0.0016 (6)0.0114 (6)0.0043 (6)
C300.0228 (7)0.0248 (8)0.0260 (8)0.0036 (6)0.0099 (6)0.0011 (6)
C310.0299 (7)0.0313 (8)0.0298 (8)0.0023 (6)0.0111 (7)0.0000 (7)
C320.0374 (8)0.0327 (9)0.0488 (10)0.0000 (7)0.0238 (8)0.0045 (8)
C330.0343 (8)0.0288 (9)0.0654 (12)0.0067 (7)0.0203 (8)0.0028 (8)
C340.0380 (9)0.0313 (9)0.0468 (10)0.0057 (7)0.0119 (8)0.0120 (8)
C350.0325 (8)0.0315 (8)0.0324 (9)0.0007 (6)0.0136 (7)0.0053 (7)
Geometric parameters (Å, º) top
N1—C21.3434 (15)N21—C221.3396 (14)
N1—C11.3476 (15)N21—C211.3500 (14)
N2—C21.3276 (15)N22—C221.3291 (14)
N2—C31.3482 (14)N22—C231.3460 (14)
N3—C51.3185 (15)N23—C251.3138 (14)
N3—C41.3851 (14)N23—C241.3869 (14)
N4—C51.3635 (14)N24—C251.3661 (14)
N4—C31.3693 (15)N24—C231.3730 (14)
N4—C61.4725 (14)N24—C261.4733 (14)
N5—C11.3404 (15)N25—C211.3440 (15)
N5—C91.4441 (14)N25—C291.4539 (15)
N5—H5N0.897 (12)N25—H25N0.908 (12)
C1—C41.4017 (16)C21—C241.4012 (16)
C2—H20.9500C22—H220.9500
C3—C41.3781 (15)C23—C241.3815 (15)
C5—H50.9500C25—H250.9500
C6—C71.5069 (17)C26—C271.5093 (17)
C6—C81.5119 (16)C26—C281.5141 (18)
C6—H61.0000C26—H261.0000
C7—H7A0.9800C27—H27A0.9800
C7—H7B0.9800C27—H27B0.9800
C7—H7C0.9800C27—H27C0.9800
C8—H8A0.9800C28—H28A0.9800
C8—H8B0.9800C28—H28B0.9800
C8—H8C0.9800C28—H28C0.9800
C9—C101.5086 (16)C29—C301.5141 (16)
C9—H9A0.9900C29—H29A0.9900
C9—H9B0.9900C29—H29B0.9900
C10—C151.3811 (16)C30—C311.3826 (17)
C10—C111.3842 (16)C30—C351.3869 (16)
C11—C121.3794 (17)C31—C321.3825 (17)
C11—H110.9500C31—H310.9500
C12—C131.3757 (17)C32—C331.3753 (18)
C12—H120.9500C32—H320.9500
C13—C141.3764 (18)C33—C341.3778 (19)
C13—H130.9500C33—H330.9500
C14—C151.3818 (17)C34—C351.3841 (17)
C14—H140.9500C34—H340.9500
C15—H150.9500C35—H350.9500
C2—N1—C1117.70 (11)C22—N21—C21117.94 (11)
C2—N2—C3110.12 (10)C22—N22—C23110.22 (10)
C5—N3—C4103.39 (10)C25—N23—C24103.43 (10)
C5—N4—C3105.74 (10)C25—N24—C23105.28 (10)
C5—N4—C6128.68 (11)C25—N24—C26128.21 (11)
C3—N4—C6125.56 (10)C23—N24—C26126.27 (10)
C1—N5—C9124.12 (11)C21—N25—C29122.94 (11)
C1—N5—H5N119.7 (8)C21—N25—H25N117.6 (8)
C9—N5—H5N116.1 (8)C29—N25—H25N117.3 (8)
N5—C1—N1119.51 (12)N25—C21—N21119.20 (12)
N5—C1—C4122.18 (11)N25—C21—C24122.67 (11)
N1—C1—C4118.31 (11)N21—C21—C24118.13 (11)
N2—C2—N1129.98 (12)N22—C22—N21129.88 (11)
N2—C2—H2115.0N22—C22—H22115.1
N1—C2—H2115.0N21—C22—H22115.1
N2—C3—N4126.89 (11)N22—C23—N24126.80 (11)
N2—C3—C4126.94 (12)N22—C23—C24126.90 (12)
N4—C3—C4106.13 (11)N24—C23—C24106.28 (10)
C3—C4—N3110.75 (11)C23—C24—N23110.56 (11)
C3—C4—C1116.93 (11)C23—C24—C21116.92 (11)
N3—C4—C1132.26 (11)N23—C24—C21132.52 (11)
N3—C5—N4113.99 (12)N23—C25—N24114.45 (11)
N3—C5—H5123.0N23—C25—H25122.8
N4—C5—H5123.0N24—C25—H25122.8
N4—C6—C7111.03 (10)N24—C26—C27110.72 (11)
N4—C6—C8110.17 (10)N24—C26—C28109.45 (11)
C7—C6—C8112.72 (11)C27—C26—C28112.88 (12)
N4—C6—H6107.6N24—C26—H26107.9
C7—C6—H6107.6C27—C26—H26107.9
C8—C6—H6107.6C28—C26—H26107.9
C6—C7—H7A109.5C26—C27—H27A109.5
C6—C7—H7B109.5C26—C27—H27B109.5
H7A—C7—H7B109.5H27A—C27—H27B109.5
C6—C7—H7C109.5C26—C27—H27C109.5
H7A—C7—H7C109.5H27A—C27—H27C109.5
H7B—C7—H7C109.5H27B—C27—H27C109.5
C6—C8—H8A109.5C26—C28—H28A109.5
C6—C8—H8B109.5C26—C28—H28B109.5
H8A—C8—H8B109.5H28A—C28—H28B109.5
C6—C8—H8C109.5C26—C28—H28C109.5
H8A—C8—H8C109.5H28A—C28—H28C109.5
H8B—C8—H8C109.5H28B—C28—H28C109.5
N5—C9—C10113.94 (10)N25—C29—C30114.18 (11)
N5—C9—H9A108.8N25—C29—H29A108.7
C10—C9—H9A108.8C30—C29—H29A108.7
N5—C9—H9B108.8N25—C29—H29B108.7
C10—C9—H9B108.8C30—C29—H29B108.7
H9A—C9—H9B107.7H29A—C29—H29B107.6
C15—C10—C11118.18 (12)C31—C30—C35118.45 (12)
C15—C10—C9120.21 (11)C31—C30—C29121.18 (11)
C11—C10—C9121.60 (11)C35—C30—C29120.36 (12)
C12—C11—C10120.81 (12)C32—C31—C30120.95 (13)
C12—C11—H11119.6C32—C31—H31119.5
C10—C11—H11119.6C30—C31—H31119.5
C13—C12—C11120.31 (13)C33—C32—C31119.95 (14)
C13—C12—H12119.8C33—C32—H32120.0
C11—C12—H12119.8C31—C32—H32120.0
C12—C13—C14119.63 (13)C32—C33—C34119.99 (13)
C12—C13—H13120.2C32—C33—H33120.0
C14—C13—H13120.2C34—C33—H33120.0
C13—C14—C15119.79 (13)C33—C34—C35119.86 (14)
C13—C14—H14120.1C33—C34—H34120.1
C15—C14—H14120.1C35—C34—H34120.1
C10—C15—C14121.27 (12)C34—C35—C30120.79 (13)
C10—C15—H15119.4C34—C35—H35119.6
C14—C15—H15119.4C30—C35—H35119.6
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are centroids of the C10–C15, C30–C35, N1/N2/C1–C4 and N21/N22/C21–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5N···N230.896 (13)2.129 (11)2.9883 (13)160.2 (12)
N25—H25N···N30.908 (12)2.151 (12)3.0088 (15)157.2 (12)
C25—H25···Cg10.952.763.6413 (14)156
C5—H5···Cg20.952.723.6179 (13)158
C12—H12···Cg3i0.952.933.6703 (17)135
C15—H15···Cg4ii0.952.603.5158 (15)161
Cg3···Cg3iii3.3071 (1)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H17N5
Mr267.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.9926 (5), 21.1673 (7), 11.2622 (6)
β (°) 114.274 (5)
V3)2823.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.38 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire2)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.942, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21460, 4972, 3280
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.058, 0.83
No. of reflections4972
No. of parameters373
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are centroids of the C10–C15, C30–C35, N1/N2/C1–C4 and N21/N22/C21–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5N···N230.896 (13)2.129 (11)2.9883 (13)160.2 (12)
N25—H25N···N30.908 (12)2.151 (12)3.0088 (15)157.2 (12)
C25—H25···Cg10.952.763.6413 (14)155.5
C5—H5···Cg20.952.723.6179 (13)157.9
C12—H12···Cg3i0.952.933.6703 (17)135.2
C15—H15···Cg4ii0.952.603.5158 (15)161.3
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2.
 

Acknowledgements

The financial support of this work by the Inter­nal Founding Agency of Tomas Bata University in Zlin (project No. IGA/FT/2013/008) is gratefully acknowledged.

References

First citationCappellacci, L., Petrelli, R., Franchetti, P., Vita, P., Kusumanchi, P., Kumar, M., Jayram, H. N., Zhou, B., Yen, Y. & Grifantini, M. (2011). Eur. J. Med. Chem. 46, 1499–1504.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFiorini, M. T. & Abel, C. (1998). Tetrahedron Lett. 39, 1827–1830.  Web of Science CrossRef CAS Google Scholar
First citationJorda, R., Sacerdoti-Sierra, N., Volle, J., Havlíček, L., Kráčalíková, K., Nowicki, M. W., Nasereddin, A., Kryštof, V., Strnad, M., Walkinshaw, M. D. & Jaffe, C. L. (2011). Bioorg. Med. Chem. Lett. 21, 4233–4237.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNovotná, R. & Trávníček, Z. (2013). Acta Cryst. E69, o390.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRouchal, M., Nečas, M., Carvalho, F. P. de & Vícha, R. (2009a). Acta Cryst. E65, o298–o299.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRouchal, M., Nečas, M. & Vícha, R. (2009b). Acta Cryst. E65, o1268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrávníček, Z., Popa, I., Čajan, M., Zbořil, R., Kryštof, V. & Mikulík, J. (2010). J. Inorg. Biochem. 104, 405–417.  Web of Science PubMed Google Scholar
First citationTunçbilek, M., Ateş-Alagöz, Z., Altanlar, N., Karayel, A. & Özbey, S. (2009). Bioorg. Med. Chem. 17, 1693–1700.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o954-o955
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds