organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl­de­hydro­abietyl­ammonium chloride ethanol monosolvate

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

(Received 25 April 2013; accepted 20 May 2013; online 25 May 2013)

The title compound {systematic name: 1-[(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenan­thren-1-yl]-N,N-di­methyl­methanaminium chloride ethanol monosolvate}, C22H36N+·Cl·C2H6O, was synthesized from dehydroabietylamine by N-methyl­ation with formaldehyde/formic acid and transformation into the hydro­chloride. The de­hydro­abietyl moiety exhibits the usual conformation with the two cyclo­hexane rings in chair and half-chair conformations and a trans-ring junction. The crystal structure is built up from columns of the de­hydro­abietyl moieties stacked along the a axis. These columns are held together by the chloride ions via N—H⋯Cl and C—H⋯Cl inter­actions, which establish a two-dimensional network parallel to (010). The ethanol solvent mol­ecules are located between the columns and anchored via O—H⋯Cl hydrogen bonds.

Related literature

For the biological activity of de­hydro­abietyl­amine derivatives, see: Goodson et al. (1999[Goodson, B., Ehrhardt, A., Simon, N. G., Nuss, J., Johnson, K., Giedlin, M., Yamamoto, R., Moos, W. H. & Krebber, A. (1999). Antimicrob. Agents Chemother. 43, 1429-1434.]); Rao et al. (2008[Rao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512-515.]); Wilkerson et al. (1993[Wilkerson, W. W., Galbraith, W., Delucca, I. & Harris, R. R. (1993). Bioorg. Med. Chem. Lett. 3, 2087-2092.]); For the crystal structures of de­hydro­abietic acid deriv­atives, see Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450-o3451.], 2009[Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.]).

[Scheme 1]

Experimental

Crystal data
  • C22H36N+·Cl·C2H6O

  • Mr = 396.04

  • Monoclinic, P 21

  • a = 6.0560 (12) Å

  • b = 10.963 (2) Å

  • c = 18.554 (4) Å

  • β = 98.62 (3)°

  • V = 1217.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.951, Tmax = 0.983

  • 4924 measured reflections

  • 4476 independent reflections

  • 2605 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.190

  • S = 0.99

  • 4476 reflections

  • 250 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2102 Friedel pairs

  • Flack parameter: −0.02 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0B⋯Cl 0.91 2.27 3.097 (4) 152
O—H0A⋯Cl 0.82 2.27 3.092 (9) 178
C18—H18B⋯Cli 0.96 2.78 3.694 (6) 160
C18—H18C⋯Clii 0.96 2.84 3.693 (6) 149
C2—H2B⋯Cl 0.97 2.86 3.775 (5) 158
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dehydroabietylamine is widely used as starting material for design and synthesis of biological compounds (Goodson et al., 1999; Rao et al., 2008; Wilkerson et al., 1993). In continuation of previous investigations (Rao et al., 2006, 2009) the title compound was studied. The overall geometry of dehydroabietyl moiety in the title compound is comparable to that found for dehydroabietic acid and related compounds (Rao et al., 2009). There are three six-membered rings, which form planar, half-chair and chair conformations, respectively. The absolute structure of the title compound could be secured via anomalous dispersion effects (Flack parameter -0.02 (13)) and is in accordance with expectations. Thus the three chiral centers in the molecule have R–, S– and R–configurations, respectively.

Related literature top

For the biological activity of dehydroabietylamine derivatives, see: Goodson et al. (1999); Rao et al. (2008); Wilkerson et al. (1993); For the crystal structures of dehydroabietic acid derivatives, see Rao et al. (2006, 2009).

Experimental top

Dehydroabietylamine (13.57 g, 0.05 mol, Hangzhou Wanjing Company), formaldehyde (11.95 g, 36%) and formic acid (12.83 g, 85%) were added to ethanol solution (13.6 g, 95%), the mixture was stirred for 4h at 60–70 °C to form N,N-dimethydehydroabietylamine. 4.0 ml concentrated hydrochloric acid was added to a solution (10.0 g, 0.032 mol) of N,N-dimethydehydroabietylamine in 50 ml water and the mixture was stirred for 4h at 60–70 °C. After cooling to room temperature, the solvent was distilled off under vacuum. Crystals were obtained by recrystallization from ethanol.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98 Å, N—H = 0.91 Å, O—H = 0.85 Å and Uiso(H) = 1.2Ueq(C,N,H) for all other H atoms. Methyl groups were refined in orientation (AFIX 137 of program SHELXL97), O—H group was generated with AFIX 83.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.
1-[(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl]-N,N-dimethylmethanaminium chloride ethanol monosolvate top
Crystal data top
C22H36N+·Cl·C2H6OF(000) = 436
Mr = 396.04Dx = 1.080 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.0560 (12) Åθ = 9–13°
b = 10.963 (2) ŵ = 0.17 mm1
c = 18.554 (4) ÅT = 293 K
β = 98.62 (3)°Block, white
V = 1217.9 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2605 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.4°, θmin = 1.1°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.951, Tmax = 0.983l = 2222
4924 measured reflections3 standard reflections every 200 reflections
4476 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.080P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4476 reflectionsΔρmax = 0.27 e Å3
250 parametersΔρmin = 0.20 e Å3
2 restraintsAbsolute structure: Flack (1983), 2102 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (13)
Crystal data top
C22H36N+·Cl·C2H6OV = 1217.9 (4) Å3
Mr = 396.04Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0560 (12) ŵ = 0.17 mm1
b = 10.963 (2) ÅT = 293 K
c = 18.554 (4) Å0.30 × 0.20 × 0.10 mm
β = 98.62 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2605 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.951, Tmax = 0.9833 standard reflections every 200 reflections
4924 measured reflections intensity decay: 1%
4476 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.190Δρmax = 0.27 e Å3
S = 0.99Δρmin = 0.20 e Å3
4476 reflectionsAbsolute structure: Flack (1983), 2102 Friedel pairs
250 parametersAbsolute structure parameter: 0.02 (13)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.1469 (2)0.07595 (14)0.50514 (8)0.0890 (5)
C10.4016 (7)0.1919 (4)0.3221 (2)0.0511 (11)
C20.4933 (8)0.0669 (5)0.3522 (2)0.0642 (12)
H2A0.65220.07470.36890.077*
H2B0.42210.04560.39390.077*
C30.4563 (11)0.0354 (5)0.2971 (3)0.0810 (17)
H3A0.29730.04800.28260.097*
H3B0.51970.11030.31910.097*
C40.5646 (9)0.0053 (4)0.2303 (3)0.0669 (14)
H4A0.54290.07300.19630.080*
H4B0.72390.00560.24490.080*
C50.4646 (7)0.1118 (4)0.1920 (3)0.0554 (12)
C60.5008 (8)0.2166 (4)0.2491 (2)0.0567 (11)
H6A0.66280.22280.26350.068*
C70.5873 (8)0.1477 (5)0.1286 (3)0.0652 (13)
C80.6409 (8)0.2667 (5)0.1122 (3)0.0654 (13)
C90.5920 (11)0.3702 (5)0.1597 (3)0.0817 (17)
H9A0.53210.43760.12900.098*
H9B0.73100.39740.18810.098*
C100.4279 (9)0.3391 (5)0.2118 (3)0.0700 (14)
H10A0.27790.33220.18510.084*
H10B0.42840.40280.24810.084*
C110.6423 (9)0.0552 (5)0.0795 (3)0.0705 (14)
H11A0.60970.02590.08810.085*
C120.7413 (8)0.0836 (6)0.0204 (3)0.0741 (14)
H12A0.77690.02140.00990.089*
C130.7905 (9)0.2049 (6)0.0044 (3)0.0745 (15)
C140.7355 (9)0.2915 (5)0.0515 (3)0.0710 (14)
H14A0.76430.37260.04160.085*
C150.2191 (8)0.0887 (6)0.1565 (3)0.0806 (15)
H15A0.21720.03780.11440.121*
H15B0.14840.16520.14230.121*
H15C0.14000.04900.19110.121*
C160.1456 (8)0.1985 (5)0.3140 (3)0.0741 (14)
H16A0.10030.19920.36140.111*
H16B0.08210.12870.28720.111*
H16C0.09450.27160.28820.111*
C170.5076 (9)0.2897 (4)0.3771 (2)0.0643 (13)
H17A0.66890.28340.38190.077*
H17B0.46550.36990.35770.077*
N0.4394 (6)0.2782 (3)0.4510 (2)0.0579 (10)
H0B0.35630.20900.45080.069*
C180.6406 (8)0.2623 (6)0.5085 (3)0.0756 (15)
H18A0.59280.24830.55490.113*
H18B0.73080.33460.51110.113*
H18C0.72650.19370.49630.113*
C190.3003 (9)0.3800 (5)0.4710 (3)0.0760 (15)
H19A0.16970.38780.43490.114*
H19B0.38470.45440.47330.114*
H19C0.25610.36400.51760.114*
C200.9025 (11)0.2391 (7)0.0617 (3)0.0890 (18)
H20A0.90400.32850.06300.107*
C210.7518 (13)0.1982 (8)0.1330 (4)0.124 (3)
H21A0.80990.23080.17440.186*
H21B0.60260.22770.13300.186*
H21C0.74990.11070.13570.186*
C221.1396 (12)0.2007 (9)0.0568 (4)0.136 (3)
H22A1.22760.24170.01670.204*
H22B1.19390.22140.10130.204*
H22C1.15030.11410.04940.204*
O0.1487 (19)0.0080 (8)0.6670 (5)0.246 (5)
H0A0.14460.02640.62390.295*
C230.117 (4)0.2011 (17)0.6937 (7)0.332 (14)
H23A0.02670.26200.71230.498*
H23B0.12690.21820.64360.498*
H23C0.26420.20200.72160.498*
C240.022 (3)0.0876 (13)0.6992 (7)0.255 (8)
H24B0.02240.06600.74990.306*
H24A0.13090.08700.67440.306*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0935 (10)0.0739 (8)0.1121 (11)0.0040 (8)0.0564 (9)0.0053 (9)
C10.044 (2)0.047 (3)0.063 (3)0.003 (2)0.013 (2)0.001 (2)
C20.069 (3)0.062 (3)0.065 (3)0.017 (3)0.021 (2)0.015 (3)
C30.108 (5)0.055 (3)0.083 (4)0.004 (3)0.022 (4)0.001 (3)
C40.083 (4)0.055 (3)0.066 (3)0.006 (3)0.021 (3)0.006 (2)
C50.052 (3)0.055 (3)0.059 (3)0.000 (2)0.007 (2)0.003 (2)
C60.070 (3)0.050 (2)0.052 (2)0.009 (2)0.015 (2)0.005 (2)
C70.062 (3)0.072 (3)0.061 (3)0.010 (3)0.008 (3)0.003 (3)
C80.073 (3)0.064 (3)0.062 (3)0.010 (3)0.020 (3)0.013 (3)
C90.118 (5)0.062 (3)0.073 (3)0.006 (3)0.039 (3)0.011 (3)
C100.077 (4)0.064 (3)0.070 (3)0.017 (3)0.015 (3)0.007 (3)
C110.087 (4)0.061 (3)0.067 (3)0.001 (3)0.023 (3)0.004 (3)
C120.070 (3)0.089 (4)0.061 (3)0.007 (4)0.006 (3)0.013 (3)
C130.068 (3)0.088 (4)0.068 (3)0.003 (3)0.011 (3)0.020 (3)
C140.077 (4)0.071 (3)0.067 (3)0.003 (3)0.016 (3)0.005 (3)
C150.071 (3)0.093 (4)0.076 (3)0.015 (3)0.007 (3)0.008 (3)
C160.053 (3)0.084 (4)0.084 (3)0.005 (3)0.007 (3)0.007 (3)
C170.078 (3)0.060 (3)0.061 (3)0.013 (3)0.028 (3)0.004 (2)
N0.053 (2)0.052 (2)0.070 (2)0.0007 (18)0.015 (2)0.0016 (19)
C180.067 (3)0.087 (4)0.070 (3)0.009 (3)0.000 (3)0.008 (3)
C190.070 (4)0.070 (3)0.091 (4)0.016 (3)0.022 (3)0.015 (3)
C200.094 (4)0.109 (5)0.069 (3)0.006 (4)0.026 (3)0.020 (3)
C210.113 (5)0.172 (8)0.081 (4)0.020 (5)0.001 (4)0.028 (5)
C220.099 (5)0.192 (9)0.124 (6)0.007 (6)0.043 (5)0.050 (6)
O0.380 (14)0.188 (7)0.170 (7)0.130 (8)0.042 (8)0.004 (6)
C230.54 (3)0.29 (2)0.171 (12)0.32 (2)0.062 (15)0.073 (12)
C240.45 (3)0.182 (13)0.162 (10)0.083 (18)0.139 (14)0.020 (10)
Geometric parameters (Å, º) top
C1—C161.537 (6)C15—H15B0.9600
C1—C21.551 (6)C15—H15C0.9600
C1—C171.551 (6)C16—H16A0.9600
C1—C61.585 (6)C16—H16B0.9600
C2—C31.511 (7)C16—H16C0.9600
C2—H2A0.9700C17—N1.496 (5)
C2—H2B0.9700C17—H17A0.9700
C3—C41.523 (7)C17—H17B0.9700
C3—H3A0.9700N—C191.479 (6)
C3—H3B0.9700N—C181.505 (6)
C4—C51.547 (6)N—H0B0.9100
C4—H4A0.9700C18—H18A0.9600
C4—H4B0.9700C18—H18B0.9600
C5—C71.533 (7)C18—H18C0.9600
C5—C151.554 (6)C19—H19A0.9600
C5—C61.556 (6)C19—H19B0.9600
C6—C101.544 (6)C19—H19C0.9600
C6—H6A0.9800C20—C221.486 (9)
C7—C81.390 (7)C20—C211.557 (9)
C7—C111.436 (7)C20—H20A0.9800
C8—C141.365 (7)C21—H21A0.9600
C8—C91.494 (7)C21—H21B0.9600
C9—C101.524 (7)C21—H21C0.9600
C9—H9A0.9700C22—H22A0.9600
C9—H9B0.9700C22—H22B0.9600
C10—H10A0.9700C22—H22C0.9600
C10—H10B0.9700O—C241.358 (13)
C11—C121.361 (7)O—H0A0.8200
C11—H11A0.9300C23—C241.382 (13)
C12—C131.404 (8)C23—H23A0.9600
C12—H12A0.9300C23—H23B0.9600
C13—C141.365 (7)C23—H23C0.9600
C13—C201.534 (7)C24—H24B0.9700
C14—H14A0.9300C24—H24A0.9700
C15—H15A0.9600
C16—C1—C2112.2 (4)C5—C15—H15B109.5
C16—C1—C17110.1 (4)H15A—C15—H15B109.5
C2—C1—C17106.4 (4)C5—C15—H15C109.5
C16—C1—C6114.5 (4)H15A—C15—H15C109.5
C2—C1—C6107.3 (3)H15B—C15—H15C109.5
C17—C1—C6105.8 (3)C1—C16—H16A109.5
C3—C2—C1113.8 (4)C1—C16—H16B109.5
C3—C2—H2A108.8H16A—C16—H16B109.5
C1—C2—H2A108.8C1—C16—H16C109.5
C3—C2—H2B108.8H16A—C16—H16C109.5
C1—C2—H2B108.8H16B—C16—H16C109.5
H2A—C2—H2B107.7N—C17—C1113.7 (4)
C2—C3—C4110.5 (4)N—C17—H17A108.8
C2—C3—H3A109.5C1—C17—H17A108.8
C4—C3—H3A109.5N—C17—H17B108.8
C2—C3—H3B109.5C1—C17—H17B108.8
C4—C3—H3B109.5H17A—C17—H17B107.7
H3A—C3—H3B108.1C19—N—C17114.3 (4)
C3—C4—C5111.6 (4)C19—N—C18109.9 (4)
C3—C4—H4A109.3C17—N—C18110.8 (4)
C5—C4—H4A109.3C19—N—H0B107.1
C3—C4—H4B109.3C17—N—H0B107.1
C5—C4—H4B109.3C18—N—H0B107.1
H4A—C4—H4B108.0N—C18—H18A109.5
C7—C5—C4111.3 (4)N—C18—H18B109.5
C7—C5—C15105.1 (4)H18A—C18—H18B109.5
C4—C5—C15110.1 (4)N—C18—H18C109.5
C7—C5—C6107.3 (4)H18A—C18—H18C109.5
C4—C5—C6107.1 (4)H18B—C18—H18C109.5
C15—C5—C6115.9 (4)N—C19—H19A109.5
C10—C6—C5109.6 (4)N—C19—H19B109.5
C10—C6—C1114.3 (4)H19A—C19—H19B109.5
C5—C6—C1115.0 (4)N—C19—H19C109.5
C10—C6—H6A105.7H19A—C19—H19C109.5
C5—C6—H6A105.7H19B—C19—H19C109.5
C1—C6—H6A105.7C22—C20—C13114.9 (5)
C8—C7—C11116.1 (5)C22—C20—C21114.0 (6)
C8—C7—C5124.4 (4)C13—C20—C21109.6 (5)
C11—C7—C5119.5 (4)C22—C20—H20A105.8
C14—C8—C7120.6 (5)C13—C20—H20A105.8
C14—C8—C9118.7 (5)C21—C20—H20A105.8
C7—C8—C9120.7 (4)C20—C21—H21A109.5
C8—C9—C10114.2 (5)C20—C21—H21B109.5
C8—C9—H9A108.7H21A—C21—H21B109.5
C10—C9—H9A108.7C20—C21—H21C109.5
C8—C9—H9B108.7H21A—C21—H21C109.5
C10—C9—H9B108.7H21B—C21—H21C109.5
H9A—C9—H9B107.6C20—C22—H22A109.5
C9—C10—C6108.0 (4)C20—C22—H22B109.5
C9—C10—H10A110.1H22A—C22—H22B109.5
C6—C10—H10A110.1C20—C22—H22C109.5
C9—C10—H10B110.1H22A—C22—H22C109.5
C6—C10—H10B110.1H22B—C22—H22C109.5
H10A—C10—H10B108.4C24—O—H0A109.5
C12—C11—C7121.5 (5)C24—C23—H23A109.5
C12—C11—H11A119.3C24—C23—H23B109.5
C7—C11—H11A119.3H23A—C23—H23B109.5
C11—C12—C13121.3 (5)C24—C23—H23C109.5
C11—C12—H12A119.3H23A—C23—H23C109.5
C13—C12—H12A119.3H23B—C23—H23C109.5
C14—C13—C12116.3 (5)O—C24—C23106.1 (17)
C14—C13—C20121.4 (5)O—C24—H24B110.5
C12—C13—C20122.3 (5)C23—C24—H24B110.5
C8—C14—C13124.2 (5)O—C24—H24A110.5
C8—C14—H14A117.9C23—C24—H24A110.5
C13—C14—H14A117.9H24B—C24—H24A108.7
C5—C15—H15A109.5
C16—C1—C2—C374.3 (5)C5—C7—C8—C14175.0 (5)
C17—C1—C2—C3165.2 (4)C11—C7—C8—C9179.8 (5)
C6—C1—C2—C352.3 (5)C5—C7—C8—C93.7 (8)
C1—C2—C3—C458.2 (6)C14—C8—C9—C10162.8 (5)
C2—C3—C4—C560.7 (6)C7—C8—C9—C1016.0 (7)
C3—C4—C5—C7175.3 (4)C8—C9—C10—C647.1 (6)
C3—C4—C5—C1568.6 (5)C5—C6—C10—C968.4 (5)
C3—C4—C5—C658.2 (5)C1—C6—C10—C9160.8 (4)
C7—C5—C6—C1054.1 (5)C8—C7—C11—C120.0 (7)
C4—C5—C6—C10173.8 (4)C5—C7—C11—C12176.7 (4)
C15—C5—C6—C1063.0 (5)C7—C11—C12—C131.0 (8)
C7—C5—C6—C1175.4 (4)C11—C12—C13—C140.5 (7)
C4—C5—C6—C155.8 (5)C11—C12—C13—C20179.8 (5)
C15—C5—C6—C167.5 (5)C7—C8—C14—C132.1 (8)
C16—C1—C6—C1055.3 (5)C9—C8—C14—C13179.1 (5)
C2—C1—C6—C10179.4 (4)C12—C13—C14—C81.0 (8)
C17—C1—C6—C1066.1 (5)C20—C13—C14—C8178.3 (5)
C16—C1—C6—C572.8 (5)C16—C1—C17—N57.9 (5)
C2—C1—C6—C552.5 (5)C2—C1—C17—N64.0 (5)
C17—C1—C6—C5165.8 (4)C6—C1—C17—N178.0 (4)
C4—C5—C7—C8139.8 (5)C1—C17—N—C19113.0 (5)
C15—C5—C7—C8101.1 (6)C1—C17—N—C18122.1 (4)
C6—C5—C7—C822.8 (6)C14—C13—C20—C22110.1 (7)
C4—C5—C7—C1143.9 (6)C12—C13—C20—C2269.2 (8)
C15—C5—C7—C1175.3 (5)C14—C13—C20—C21120.0 (6)
C6—C5—C7—C11160.8 (4)C12—C13—C20—C2160.8 (8)
C11—C7—C8—C141.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0B···Cl0.912.273.097 (4)152
O—H0A···Cl0.822.273.092 (9)178
C18—H18B···Cli0.962.783.694 (6)160
C18—H18C···Clii0.962.843.693 (6)149
C2—H2B···Cl0.972.863.775 (5)158
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H36N+·Cl·C2H6O
Mr396.04
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.0560 (12), 10.963 (2), 18.554 (4)
β (°) 98.62 (3)
V3)1217.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.951, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4924, 4476, 2605
Rint0.026
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.190, 0.99
No. of reflections4476
No. of parameters250
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20
Absolute structureFlack (1983), 2102 Friedel pairs
Absolute structure parameter0.02 (13)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0B···Cl0.912.273.097 (4)151.7
O—H0A···Cl0.822.273.092 (9)177.9
C18—H18B···Cli0.962.783.694 (6)160.2
C18—H18C···Clii0.962.843.693 (6)148.9
C2—H2B···Cl0.972.863.775 (5)157.7
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

This research was supported financially by grants from the National Forestry Bureau 948 (2012–4–13).

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoodson, B., Ehrhardt, A., Simon, N. G., Nuss, J., Johnson, K., Giedlin, M., Yamamoto, R., Moos, W. H. & Krebber, A. (1999). Antimicrob. Agents Chemother. 43, 1429–1434.  Web of Science PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450–o3451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512–515.  Web of Science CrossRef CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkerson, W. W., Galbraith, W., Delucca, I. & Harris, R. R. (1993). Bioorg. Med. Chem. Lett. 3, 2087–2092.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds