organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1-Amino-4-tert-butyl­cyclo­hex­yl)acetic acid (tBu-β3,3-Ac6c) hemihydrate

aMedicinal Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India, and bX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: saravinda@iiim.ac.in,raj@iiim.ac.in

(Received 7 May 2013; accepted 9 May 2013; online 15 May 2013)

The title compound, C12H23NO2·0.5H2O, crystallized with two 2-(1-amino-4-tert-butylcyclohexyl)acetic acid mol­ecules, which are present as zwitterions, and one water mol­ecule in the asymmetric unit. The mol­ecular structure of each zwitterion is stabilized by an intra­molecular six-membered (C6 ) N—H⋯O hydrogen bond. In the crystal, the two independent zwitterions are linked head-to-head by N—H⋯O hydrogen bonds. Further O—H⋯O and N—H⋯O hydrogen bonds link the zwitterions and the water molecules, forming sandwich-like layers, with a hydrophilic filling and a hydrophobic exterior, lying parallel to the ab plane.

Related literature

For the importance of β-amino acids, see: Politi et al. (2009[Politi, A., Durdagi, S., Moutevelis-Minakakis, P., Kokotos, G., Papadopoulos, M. G. & Mavromoustakos, T. (2009). Eur. J. Med. Chem. 44, 3703-3711.]); Jiang & Yu (2007[Jiang, Z. X. & Yu, Y. B. (2007). J. Org. Chem. 72, 1464-1467.]); Hansen et al. (2011[Hansen, T., Ausbacher, D., Flaten, G. E., Havelkova, M. & Stro/m, M. B. (2011). J. Med. Chem. 54, 858-868.]). For related structures, see: Seebach et al. (1998[Seebach, D., Abele, S., Sifferlen, T., Hänggi, T., Gruner, M. S. & Seiler, P. (1998). Helv. Chim. Acta, 81, 2218-2243.]); Vasudev et al. (2008[Vasudev, P. G., Rai, R., Shamala, N. & Balaram, P. (2008). Biopolymers (Peptide Sci.), 90, 138-150.], 2009[Vasudev, P. G., Aravinda, S., Ananda, K., Shettykere, D. V., Nagarajan, K., Shamala, N. & Balaram, P. (2009). Chem. Biol. Drug. Des. 73, 83-96.]).

[Scheme 1]

Experimental

Crystal data
  • C12H23NO2·0.5H2O

  • Mr = 222.32

  • Triclinic, [P \overline 1]

  • a = 6.4164 (2) Å

  • b = 10.8091 (3) Å

  • c = 19.1335 (6) Å

  • α = 96.843 (3)°

  • β = 92.018 (3)°

  • γ = 93.901 (3)°

  • V = 1313.25 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.3 × 0.08 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.830, Tmax = 1.000

  • 22269 measured reflections

  • 5701 independent reflections

  • 3628 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.141

  • S = 1.02

  • 5701 reflections

  • 472 parameters

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 1.00 (2) 2.12 (2) 2.792 (2) 123.5 (15)
N1—H1N⋯O1Wi 1.00 (2) 2.11 (2) 2.919 (2) 137.8 (17)
O1W—H1W⋯O1 0.89 (3) 2.03 (3) 2.903 (2) 166 (3)
N1—H2N⋯O4ii 0.96 (2) 1.81 (2) 2.747 (2) 166.0 (17)
O1W—H2W⋯O3iii 0.90 (4) 2.04 (4) 2.929 (2) 169 (3)
N1—H3N⋯O3 0.97 (2) 1.86 (2) 2.7903 (19) 160.7 (17)
N2—H4N⋯O2i 1.00 (2) 1.73 (2) 2.729 (2) 170.5 (19)
N2—H5N⋯O1iii 0.99 (2) 1.818 (19) 2.779 (2) 163.1 (18)
N2—H6N⋯O3 0.93 (2) 2.10 (2) 2.836 (2) 135.4 (17)
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y-1, -z; (iii) -x+1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Disubstituted β-amino acids have been used as building blocks in potent pharmaceutical drugs and functional materials (Politi et al., 2009; Jiang & Yu, 2007). The use of disubstituted β-amino acids has been reported to give highly potent antimicrobial β-peptidomimetics with exceptional proteolytic stability and low hemolytic activity (Hansen et al., 2011). Geminally disubstituted β-amino acids have been synthesized and characterized (Seebach et al. 1998; Vasudev et al., 2008). The present report describes the molecular structure of 2-(1-amino-4-tert-butylcyclohexyl) acetic acid (tBu-β3,3-Ac6c) as shown in Fig. 1. tBu-β3,3-Ac6c is considered to be a homologue of 4-tertiarybutylgabapentin (Vasudev et al., 2009). The compound crystallized in space group P1. The molecular conformation of tBu-β3,3-Ac6c is shown in Fig. 2. The crystal structure shows a six membered (C6) NH···O intramolecular hydrogen bond between NH and the carbonyl group of tBu-β3,3-Ac6c. In the structure the cyclohexane ring adopts a chair conformation with equatorial tert-butyl and amino groups. The carboxymethyl group occupies the axial position. Fig. 3 shows the packing of molecules in the crystal. Intermolecular O···HO and NH···O hydrogen bonds stabilize the structure leading to the formation of hydrophobic and hydrophilic layers as shown in Fig. 3.

Related literature top

For the importance of β-amino acids, see: Politi et al. (2009); Jiang & Yu (2007); Hansen et al. (2011). For related structures, see: Seebach et al. (1998); Vasudev et al. (2008, 2009).

Experimental top

To a solution of 4-tert-cyclohexanone (7.70 g, 50 mmol), malonic acid (5.20 g, 50 mmol) in 100 ml of ethanol was added 11.55 g (150 mmol) of ammonium acetate. The reaction mixture was refluxed for 24 h. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and ethyl alcohol was evaporated under vacuum. The residue was triturated with acetone (3 x 50 ml) and dried to yield a white solid (Yield 6.5 g, 61%). M.P. 265–267°C. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol/water (8:2) mixture.

Refinement top

H atoms were located in a difference Fourier map and both their coordinrates and Uiso were refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a-axis. Hydrogen bonds are shown in dotted lines.
[Figure 3] Fig. 3. The space filling model showing the alternative hydrophobic and hydrophilic layers in crystal lattice.
2-(1-Amino-4-tert-butylcyclohexyl)acetic acid hemihydrate top
Crystal data top
C12H23NO2·0.5H2OZ = 4
Mr = 222.32F(000) = 492
Triclinic, P1Dx = 1.124 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4164 (2) ÅCell parameters from 8184 reflections
b = 10.8091 (3) Åθ = 3.4–27.0°
c = 19.1335 (6) ŵ = 0.08 mm1
α = 96.843 (3)°T = 293 K
β = 92.018 (3)°Needle, color less
γ = 93.901 (3)°0.3 × 0.08 × 0.08 mm
V = 1313.25 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5701 independent reflections
Radiation source: fine-focus sealed tube3628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.1049 pixels mm-1θmax = 27.0°, θmin = 3.4°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.830, Tmax = 1.000l = 2424
22269 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0691P)2]
where P = (Fo2 + 2Fc2)/3
5701 reflections(Δ/σ)max < 0.001
472 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H23NO2·0.5H2Oγ = 93.901 (3)°
Mr = 222.32V = 1313.25 (7) Å3
Triclinic, P1Z = 4
a = 6.4164 (2) ÅMo Kα radiation
b = 10.8091 (3) ŵ = 0.08 mm1
c = 19.1335 (6) ÅT = 293 K
α = 96.843 (3)°0.3 × 0.08 × 0.08 mm
β = 92.018 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5701 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3628 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.048
22269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.141All H-atom parameters refined
S = 1.02Δρmax = 0.21 e Å3
5701 reflectionsΔρmin = 0.17 e Å3
472 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H7B20.105 (2)0.1438 (16)0.1669 (8)0.024 (4)*
H2N0.023 (3)0.403 (2)0.0878 (10)0.054 (6)*
H1D0.244 (3)0.3888 (17)0.2864 (9)0.037 (5)*
H8B20.085 (2)0.2797 (16)0.1450 (9)0.028 (4)*
H5B10.436 (3)0.0776 (16)0.2082 (8)0.031 (4)*
H2B10.250 (3)0.4631 (17)0.1574 (9)0.033 (5)*
H4B20.002 (3)0.1735 (18)0.1900 (9)0.041 (5)*
H3B20.022 (3)0.3159 (17)0.2047 (8)0.030 (4)*
H1B10.434 (3)0.4057 (17)0.1126 (10)0.044 (5)*
H2A10.448 (3)0.2078 (18)0.0782 (11)0.052 (6)*
H4A20.329 (3)0.3383 (17)0.2085 (10)0.036 (5)*
H6G10.313 (3)0.2261 (17)0.3029 (9)0.035 (5)*
H2D0.074 (3)0.0963 (19)0.2916 (10)0.049 (5)*
H3N0.143 (3)0.3572 (18)0.0340 (11)0.048 (6)*
H4N0.117 (3)0.047 (2)0.0832 (10)0.057 (6)*
H1G10.587 (3)0.281 (2)0.2142 (10)0.053 (6)*
H6B10.213 (3)0.0148 (19)0.2038 (10)0.051 (6)*
H1A10.445 (3)0.1392 (18)0.1528 (10)0.050 (5)*
H3G20.313 (3)0.1358 (19)0.2638 (10)0.048 (5)*
H1N0.034 (3)0.271 (2)0.0632 (12)0.072 (7)*
H3A10.488 (3)0.2635 (18)0.1485 (10)0.049 (5)*
H6N0.209 (3)0.164 (2)0.0561 (11)0.055 (6)*
H7G20.234 (3)0.2967 (19)0.2592 (10)0.054 (6)*
H8G20.005 (3)0.3538 (19)0.2648 (10)0.051 (6)*
H2G10.557 (3)0.422 (2)0.2258 (10)0.053 (6)*
H5G10.279 (3)0.0874 (19)0.3186 (11)0.051 (6)*
H5N0.366 (3)0.0632 (19)0.0826 (10)0.053 (6)*
H4G20.125 (3)0.187 (2)0.3059 (12)0.059 (6)*
H1W0.271 (5)0.177 (3)0.0290 (17)0.111 (11)*
H2W0.394 (6)0.291 (3)0.0225 (17)0.123 (12)*
H110.018 (4)0.413 (3)0.3834 (14)0.085 (9)*
H100.021 (4)0.368 (3)0.4636 (17)0.104 (9)*
H40.400 (5)0.273 (3)0.4587 (19)0.112 (10)*
H80.709 (5)0.173 (3)0.3235 (18)0.108 (12)*
H90.702 (4)0.168 (3)0.4047 (16)0.094 (8)*
H170.048 (4)0.147 (3)0.4749 (16)0.097 (9)*
H130.349 (4)0.318 (3)0.3683 (16)0.098 (10)*
H70.537 (6)0.094 (4)0.359 (2)0.144 (15)*
H180.173 (5)0.118 (3)0.4312 (16)0.118 (11)*
H150.348 (5)0.260 (3)0.443 (2)0.122 (11)*
H30.657 (5)0.401 (3)0.4112 (18)0.111 (10)*
H10.719 (8)0.425 (5)0.328 (3)0.21 (2)*
H120.184 (5)0.338 (3)0.4072 (16)0.117 (12)*
H20.511 (6)0.477 (4)0.358 (2)0.145 (17)*
H160.049 (5)0.039 (3)0.4076 (16)0.113 (11)*
H140.376 (6)0.163 (4)0.379 (2)0.157 (17)*
H50.257 (7)0.196 (4)0.412 (2)0.17 (2)*
H60.221 (7)0.341 (4)0.408 (2)0.152 (19)*
N10.0633 (2)0.33395 (15)0.07518 (8)0.0329 (4)
C1B0.2122 (2)0.28252 (15)0.13598 (8)0.0287 (4)
C1A0.3477 (3)0.17329 (16)0.11343 (10)0.0324 (4)
C1'0.2390 (3)0.06639 (16)0.08696 (8)0.0322 (4)
O10.35298 (19)0.02596 (12)0.07388 (7)0.0465 (4)
O20.04386 (18)0.07591 (12)0.07914 (7)0.0472 (4)
C1B10.3463 (3)0.38803 (18)0.15219 (10)0.0363 (4)
C1G10.4799 (3)0.3539 (2)0.22047 (10)0.0417 (5)
C1D0.3481 (3)0.31899 (19)0.28349 (9)0.0410 (5)
C1B20.0815 (3)0.24555 (19)0.19973 (9)0.0355 (4)
C1G20.2166 (3)0.2123 (2)0.26764 (10)0.0417 (5)
C10.6058 (8)0.4031 (4)0.3647 (2)0.1059 (13)
C20.3211 (7)0.2808 (6)0.41463 (15)0.1039 (13)
C30.6186 (6)0.1766 (4)0.36012 (18)0.0875 (10)
C40.4739 (3)0.2945 (2)0.35522 (10)0.0556 (6)
N20.2266 (3)0.10896 (15)0.08954 (8)0.0334 (4)
C2B0.2019 (3)0.18188 (15)0.16194 (8)0.0295 (4)
C2A0.3351 (3)0.29428 (16)0.16156 (9)0.0317 (4)
O30.2980 (2)0.34430 (12)0.04517 (6)0.0453 (4)
O40.1620 (2)0.48186 (12)0.13336 (7)0.0512 (4)
C2'0.2591 (3)0.38243 (16)0.10927 (9)0.0325 (4)
C2B10.2811 (3)0.09492 (18)0.21438 (9)0.0373 (4)
C2G10.2287 (3)0.1492 (2)0.29083 (10)0.0411 (5)
C2D0.0054 (3)0.18123 (19)0.30538 (9)0.0402 (5)
C2G20.0794 (3)0.2736 (2)0.25466 (9)0.0405 (5)
C2B20.0309 (3)0.21945 (19)0.17772 (9)0.0352 (4)
C50.0283 (6)0.3446 (3)0.41124 (15)0.0771 (8)
C60.3038 (5)0.2413 (5)0.39376 (16)0.0922 (12)
C70.0084 (6)0.1213 (4)0.42883 (15)0.0823 (9)
C80.0661 (3)0.2238 (2)0.38415 (10)0.0533 (6)
O1W0.2635 (3)0.25362 (19)0.01566 (8)0.0595 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0354 (8)0.0291 (9)0.0332 (8)0.0036 (7)0.0030 (7)0.0048 (6)
C1B0.0292 (8)0.0266 (9)0.0296 (9)0.0006 (7)0.0028 (7)0.0026 (7)
C1A0.0287 (9)0.0290 (10)0.0385 (10)0.0006 (8)0.0020 (8)0.0027 (7)
C1'0.0357 (10)0.0291 (10)0.0306 (9)0.0013 (8)0.0030 (7)0.0005 (7)
O10.0416 (7)0.0380 (8)0.0615 (9)0.0044 (6)0.0016 (6)0.0181 (6)
O20.0335 (7)0.0330 (8)0.0750 (10)0.0027 (6)0.0116 (6)0.0102 (6)
C1B10.0413 (10)0.0315 (11)0.0366 (10)0.0075 (9)0.0005 (8)0.0033 (8)
C1G10.0412 (11)0.0421 (12)0.0431 (11)0.0108 (10)0.0048 (8)0.0081 (9)
C1D0.0435 (11)0.0432 (12)0.0355 (10)0.0062 (10)0.0031 (8)0.0085 (8)
C1B20.0318 (9)0.0381 (11)0.0363 (10)0.0037 (9)0.0007 (7)0.0025 (8)
C1G20.0415 (11)0.0471 (13)0.0344 (10)0.0043 (10)0.0020 (8)0.0044 (8)
C10.140 (3)0.105 (3)0.076 (2)0.028 (3)0.051 (2)0.027 (2)
C20.106 (3)0.169 (4)0.0339 (15)0.008 (3)0.0028 (15)0.0161 (19)
C30.086 (2)0.102 (3)0.0660 (19)0.032 (2)0.0347 (17)0.0090 (17)
C40.0604 (13)0.0670 (15)0.0389 (11)0.0024 (12)0.0102 (10)0.0126 (10)
N20.0395 (9)0.0294 (9)0.0308 (8)0.0045 (8)0.0030 (6)0.0022 (6)
C2B0.0356 (9)0.0257 (9)0.0266 (8)0.0006 (7)0.0006 (7)0.0025 (7)
C2A0.0346 (10)0.0288 (10)0.0320 (10)0.0012 (8)0.0059 (7)0.0037 (7)
O30.0559 (8)0.0475 (8)0.0324 (7)0.0048 (7)0.0018 (6)0.0090 (6)
O40.0638 (9)0.0327 (8)0.0546 (8)0.0154 (7)0.0026 (7)0.0056 (6)
C2'0.0303 (9)0.0301 (10)0.0388 (10)0.0049 (8)0.0042 (7)0.0083 (8)
C2B10.0415 (11)0.0330 (11)0.0373 (10)0.0047 (9)0.0010 (8)0.0097 (8)
C2G10.0448 (11)0.0447 (12)0.0347 (10)0.0058 (10)0.0024 (8)0.0134 (9)
C2D0.0419 (11)0.0464 (12)0.0324 (10)0.0047 (9)0.0008 (8)0.0042 (8)
C2G20.0345 (10)0.0478 (13)0.0369 (10)0.0060 (10)0.0005 (8)0.0009 (8)
C2B20.0329 (9)0.0375 (11)0.0350 (10)0.0012 (9)0.0038 (7)0.0031 (8)
C50.094 (2)0.083 (2)0.0490 (16)0.0087 (18)0.0020 (15)0.0152 (14)
C60.0590 (17)0.163 (4)0.0507 (17)0.003 (2)0.0195 (13)0.011 (2)
C70.105 (3)0.107 (3)0.0371 (14)0.008 (2)0.0058 (14)0.0227 (15)
C80.0503 (12)0.0753 (16)0.0332 (10)0.0041 (11)0.0039 (9)0.0040 (10)
O1W0.0497 (10)0.0632 (11)0.0667 (10)0.0001 (8)0.0156 (7)0.0203 (8)
Geometric parameters (Å, º) top
N1—C1B1.507 (2)N2—H4N1.00 (2)
N1—H2N0.96 (2)N2—H6N0.93 (2)
N1—H3N0.97 (2)N2—H5N0.99 (2)
N1—H1N0.99 (2)C2B—C2B11.531 (2)
C1B—C1B11.529 (2)C2B—C2B21.531 (2)
C1B—C1A1.531 (2)C2B—C2A1.532 (2)
C1B—C1B21.534 (2)C2A—C2'1.531 (2)
C1A—C1'1.517 (2)C2A—H4A20.962 (18)
C1A—H2A11.01 (2)C2A—H3A11.03 (2)
C1A—H1A10.98 (2)O3—C2'1.257 (2)
C1'—O11.252 (2)O4—C2'1.236 (2)
C1'—O21.252 (2)C2B1—C2G11.527 (3)
C1B1—C1G11.530 (3)C2B1—H5B10.997 (17)
C1B1—H2B11.004 (18)C2B1—H6B11.00 (2)
C1B1—H1B10.968 (19)C2G1—C2D1.526 (3)
C1G1—C1D1.522 (3)C2G1—H6G11.032 (18)
C1G1—H1G11.03 (2)C2G1—H5G10.95 (2)
C1G1—H2G10.93 (2)C2D—C2G21.537 (3)
C1D—C1G21.527 (3)C2D—C81.551 (3)
C1D—C41.553 (3)C2D—H2D1.06 (2)
C1D—H1D0.981 (18)C2G2—C2B21.531 (2)
C1B2—C1G21.528 (3)C2G2—H7G21.00 (2)
C1B2—H4B21.01 (2)C2G2—H8G21.02 (2)
C1B2—H3B20.992 (17)C2B2—H7B20.977 (17)
C1G2—H3G21.01 (2)C2B2—H8B21.009 (17)
C1G2—H4G20.98 (2)C5—C81.520 (4)
C1—C41.518 (4)C5—H111.00 (3)
C1—H30.94 (3)C5—H101.04 (3)
C1—H11.04 (5)C5—H121.00 (3)
C1—H20.96 (4)C6—C81.526 (3)
C2—C41.527 (4)C6—H131.04 (3)
C2—H40.96 (4)C6—H150.96 (4)
C2—H51.04 (5)C6—H141.01 (4)
C2—H60.88 (4)C7—C81.539 (4)
C3—C41.515 (4)C7—H170.94 (3)
C3—H80.93 (3)C7—H181.06 (3)
C3—H90.98 (3)C7—H161.03 (3)
C3—H71.06 (4)O1W—H1W0.90 (3)
N2—C2B1.508 (2)O1W—H2W0.90 (4)
C1B—N1—H2N109.8 (12)C2B—N2—H6N108.7 (13)
C1B—N1—H3N109.1 (11)H4N—N2—H6N108.0 (17)
H2N—N1—H3N112.0 (16)C2B—N2—H5N110.6 (11)
C1B—N1—H1N111.5 (13)H4N—N2—H5N108.7 (16)
H2N—N1—H1N106.4 (17)H6N—N2—H5N110.4 (17)
H3N—N1—H1N108.0 (17)N2—C2B—C2B1107.29 (13)
N1—C1B—C1B1107.24 (14)N2—C2B—C2B2108.19 (14)
N1—C1B—C1A108.17 (13)C2B1—C2B—C2B2109.69 (14)
C1B1—C1B—C1A110.82 (14)N2—C2B—C2A107.30 (14)
N1—C1B—C1B2107.71 (14)C2B1—C2B—C2A111.09 (14)
C1B1—C1B—C1B2109.03 (14)C2B2—C2B—C2A113.05 (14)
C1A—C1B—C1B2113.62 (14)C2'—C2A—C2B112.01 (13)
C1'—C1A—C1B118.24 (14)C2'—C2A—H4A2110.0 (10)
C1'—C1A—H2A1110.8 (11)C2B—C2A—H4A2108.2 (10)
C1B—C1A—H2A1108.4 (11)C2'—C2A—H3A1109.0 (11)
C1'—C1A—H1A1108.7 (11)C2B—C2A—H3A1109.5 (11)
C1B—C1A—H1A1108.7 (11)H4A2—C2A—H3A1108.1 (14)
H2A1—C1A—H1A1100.6 (15)O4—C2'—O3126.20 (16)
O1—C1'—O2124.32 (16)O4—C2'—C2A117.73 (16)
O1—C1'—C1A116.98 (15)O3—C2'—C2A116.04 (15)
O2—C1'—C1A118.70 (15)C2G1—C2B1—C2B112.51 (15)
C1B—C1B1—C1G1112.15 (15)C2G1—C2B1—H5B1108.3 (9)
C1B—C1B1—H2B1107.8 (10)C2B—C2B1—H5B1110.5 (10)
C1G1—C1B1—H2B1108.6 (10)C2G1—C2B1—H6B1109.5 (11)
C1B—C1B1—H1B1107.4 (11)C2B—C2B1—H6B1107.1 (11)
C1G1—C1B1—H1B1110.6 (11)H5B1—C2B1—H6B1108.9 (15)
H2B1—C1B1—H1B1110.2 (15)C2B1—C2G1—C2D112.37 (16)
C1D—C1G1—C1B1112.19 (16)C2B1—C2G1—H6G1108.9 (10)
C1D—C1G1—H1G1110.3 (11)C2D—C2G1—H6G1111.6 (10)
C1B1—C1G1—H1G1109.0 (11)C2B1—C2G1—H5G1105.8 (12)
C1D—C1G1—H2G1112.6 (12)C2D—C2G1—H5G1111.0 (12)
C1B1—C1G1—H2G1106.3 (13)H6G1—C2G1—H5G1106.8 (15)
H1G1—C1G1—H2G1106.2 (16)C2G1—C2D—C2G2108.11 (15)
C1G1—C1D—C1G2108.70 (16)C2G1—C2D—C8113.58 (15)
C1G1—C1D—C4114.32 (17)C2G2—C2D—C8114.75 (16)
C1G2—C1D—C4114.12 (17)C2G1—C2D—H2D104.7 (10)
C1G1—C1D—H1D107.8 (10)C2G2—C2D—H2D108.2 (10)
C1G2—C1D—H1D103.7 (10)C8—C2D—H2D106.9 (10)
C4—C1D—H1D107.4 (10)C2B2—C2G2—C2D111.36 (16)
C1G2—C1B2—C1B112.20 (15)C2B2—C2G2—H7G2106.5 (11)
C1G2—C1B2—H4B2110.7 (10)C2D—C2G2—H7G2113.4 (12)
C1B—C1B2—H4B2109.2 (10)C2B2—C2G2—H8G2108.8 (11)
C1G2—C1B2—H3B2110.2 (10)C2D—C2G2—H8G2109.1 (11)
C1B—C1B2—H3B2108.5 (9)H7G2—C2G2—H8G2107.6 (16)
H4B2—C1B2—H3B2105.8 (14)C2B—C2B2—C2G2112.75 (14)
C1D—C1G2—C1B2112.06 (16)C2B—C2B2—H7B2106.6 (9)
C1D—C1G2—H3G2109.0 (11)C2G2—C2B2—H7B2109.6 (9)
C1B2—C1G2—H3G2109.7 (11)C2B—C2B2—H8B2111.1 (9)
C1D—C1G2—H4G2112.5 (12)C2G2—C2B2—H8B2110.5 (9)
C1B2—C1G2—H4G2108.1 (12)H7B2—C2B2—H8B2106.0 (13)
H3G2—C1G2—H4G2105.2 (16)C8—C5—H11110.8 (15)
C4—C1—H3112 (2)C8—C5—H10107.8 (16)
C4—C1—H1119 (3)H11—C5—H10110 (2)
H3—C1—H1112 (3)C8—C5—H12112.9 (19)
C4—C1—H2106 (2)H11—C5—H12106 (2)
H3—C1—H2103 (3)H10—C5—H12110 (2)
H1—C1—H2103 (4)C8—C6—H13106.1 (16)
C4—C2—H4108.2 (19)C8—C6—H15111 (2)
C4—C2—H5106 (2)H13—C6—H15108 (3)
H4—C2—H5106 (3)C8—C6—H14113 (2)
C4—C2—H6111 (3)H13—C6—H14115 (3)
H4—C2—H6116 (3)H15—C6—H14103 (3)
H5—C2—H6109 (4)C8—C7—H17106.2 (17)
C4—C3—H8115 (2)C8—C7—H18109.3 (18)
C4—C3—H9108.7 (16)H17—C7—H18107 (2)
H8—C3—H9109 (3)C8—C7—H16107.5 (18)
C4—C3—H7113 (2)H17—C7—H16111 (2)
H8—C3—H7103 (3)H18—C7—H16115 (3)
H9—C3—H7108 (3)C5—C8—C6109.5 (3)
C3—C4—C1108.1 (3)C5—C8—C7108.8 (2)
C3—C4—C2108.9 (3)C6—C8—C7107.3 (3)
C1—C4—C2109.0 (3)C5—C8—C2D112.25 (19)
C3—C4—C1D111.70 (19)C6—C8—C2D109.20 (19)
C1—C4—C1D110.1 (2)C7—C8—C2D109.7 (2)
C2—C4—C1D109.0 (2)H1W—O1W—H2W106 (3)
C2B—N2—H4N110.4 (12)
N1—C1B—C1A—C1'55.6 (2)N2—C2B—C2A—C2'62.84 (18)
C1B1—C1B—C1A—C1'172.92 (15)C2B1—C2B—C2A—C2'179.82 (14)
C1B2—C1B—C1A—C1'63.9 (2)C2B2—C2B—C2A—C2'56.36 (19)
C1B—C1A—C1'—O1174.79 (15)C2B—C2A—C2'—O4104.87 (18)
C1B—C1A—C1'—O25.7 (2)C2B—C2A—C2'—O373.4 (2)
N1—C1B—C1B1—C1G1170.80 (15)N2—C2B—C2B1—C2G1169.63 (16)
C1A—C1B—C1B1—C1G171.3 (2)C2B2—C2B—C2B1—C2G152.3 (2)
C1B2—C1B—C1B1—C1G154.4 (2)C2A—C2B—C2B1—C2G173.4 (2)
C1B—C1B1—C1G1—C1D57.2 (2)C2B—C2B1—C2G1—C2D56.6 (2)
C1B1—C1G1—C1D—C1G256.2 (2)C2B1—C2G1—C2D—C2G257.4 (2)
C1B1—C1G1—C1D—C4175.04 (17)C2B1—C2G1—C2D—C8174.07 (17)
N1—C1B—C1B2—C1G2170.54 (15)C2G1—C2D—C2G2—C2B257.3 (2)
C1B1—C1B—C1B2—C1G254.5 (2)C8—C2D—C2G2—C2B2174.78 (17)
C1A—C1B—C1B2—C1G269.7 (2)N2—C2B—C2B2—C2G2169.76 (15)
C1G1—C1D—C1G2—C1B256.1 (2)C2B1—C2B—C2B2—C2G253.0 (2)
C4—C1D—C1G2—C1B2175.00 (16)C2A—C2B—C2B2—C2G271.6 (2)
C1B—C1B2—C1G2—C1D57.0 (2)C2D—C2G2—C2B2—C2B57.2 (2)
C1G1—C1D—C4—C368.5 (3)C2G1—C2D—C8—C563.8 (3)
C1G2—C1D—C4—C357.6 (3)C2G2—C2D—C8—C561.3 (3)
C1G1—C1D—C4—C151.7 (3)C2G1—C2D—C8—C6174.6 (3)
C1G2—C1D—C4—C1177.7 (3)C2G2—C2D—C8—C660.3 (3)
C1G1—C1D—C4—C2171.2 (3)C2G1—C2D—C8—C757.3 (3)
C1G2—C1D—C4—C262.8 (3)C2G2—C2D—C8—C7177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O21.00 (2)2.12 (2)2.792 (2)123.5 (15)
N1—H1N···O1Wi1.00 (2)2.11 (2)2.919 (2)137.8 (17)
O1W—H1W···O10.89 (3)2.03 (3)2.903 (2)166 (3)
N1—H2N···O4ii0.96 (2)1.81 (2)2.747 (2)166.0 (17)
O1W—H2W···O3iii0.90 (4)2.04 (4)2.929 (2)169 (3)
N1—H3N···O30.97 (2)1.86 (2)2.7903 (19)160.7 (17)
N2—H4N···O2i1.00 (2)1.73 (2)2.729 (2)170.5 (19)
N2—H5N···O1iii0.99 (2)1.818 (19)2.779 (2)163.1 (18)
N2—H6N···O30.93 (2)2.10 (2)2.836 (2)135.4 (17)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H23NO2·0.5H2O
Mr222.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4164 (2), 10.8091 (3), 19.1335 (6)
α, β, γ (°)96.843 (3), 92.018 (3), 93.901 (3)
V3)1313.25 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.08 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.830, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22269, 5701, 3628
Rint0.048
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.141, 1.02
No. of reflections5701
No. of parameters472
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O21.00 (2)2.12 (2)2.792 (2)123.5 (15)
N1—H1N···O1Wi1.00 (2)2.11 (2)2.919 (2)137.8 (17)
O1W—H1W···O10.89 (3)2.03 (3)2.903 (2)166 (3)
N1—H2N···O4ii0.96 (2)1.81 (2)2.747 (2)166.0 (17)
O1W—H2W···O3iii0.90 (4)2.04 (4)2.929 (2)169 (3)
N1—H3N···O30.97 (2)1.86 (2)2.7903 (19)160.7 (17)
N2—H4N···O2i1.00 (2)1.73 (2)2.729 (2)170.5 (19)
N2—H5N···O1iii0.99 (2)1.818 (19)2.779 (2)163.1 (18)
N2—H6N···O30.93 (2)2.10 (2)2.836 (2)135.4 (17)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x+1, y, z.
 

Footnotes

IIIM communication number IIIM/1552/2013.

Acknowledgements

RR acknowledges the Council of Scientific and Industrial Research (CSIR), India, for financial assistance under MLP5009. RK wishes to acknowledge the Department of Science and Technology, India, for sanctioning the single-crystal X-ray diffractometer as a National Facility under project No. SR/S2 /CMP/47.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHansen, T., Ausbacher, D., Flaten, G. E., Havelkova, M. & Stro/m, M. B. (2011). J. Med. Chem. 54, 858–868.  Google Scholar
First citationJiang, Z. X. & Yu, Y. B. (2007). J. Org. Chem. 72, 1464–1467.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPoliti, A., Durdagi, S., Moutevelis-Minakakis, P., Kokotos, G., Papadopoulos, M. G. & Mavromoustakos, T. (2009). Eur. J. Med. Chem. 44, 3703–3711.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeebach, D., Abele, S., Sifferlen, T., Hänggi, T., Gruner, M. S. & Seiler, P. (1998). Helv. Chim. Acta, 81, 2218–2243.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasudev, P. G., Aravinda, S., Ananda, K., Shettykere, D. V., Nagarajan, K., Shamala, N. & Balaram, P. (2009). Chem. Biol. Drug. Des. 73, 83–96.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVasudev, P. G., Rai, R., Shamala, N. & Balaram, P. (2008). Biopolymers (Peptide Sci.), 90, 138–150.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds