organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,3-dimeth­­oxy-10-oxostrychni­din­ium) phthalate nonahydrate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist., Chennai 603 203, Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com, phdguna@gmail.com

(Received 26 March 2013; accepted 2 May 2013; online 11 May 2013)

The asymmetric unit of the title compound 2C23H27N2O4+·C8H4O42−·9H2O, contains a cation, an anionon a twofold axis and four and half mol­ecules of water, one of which is located on the twofold axis. In the cation, both fused pyrrolidine rings exhibit twisted conformations, while the piperidine rings adopt screw–boat and boat conformations. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds. The brucinium cations form typical undulating head-to-tail ribbon structuresalong the a-axis direction, which associate with the carb­oxy phthalate and the water mol­ecules.

Related literature

For general background to brucine derivatives, see: Smith et al. (2006[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o1553-o1555.]) and for related structures, see: Smith et al. (2005[Smith, G., Wermuth, U. D., Healy, P. C., Young, D. J. & White, J. M. (2005). Acta Cryst. E61, o2646-o2648.], 2006[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o1553-o1555.]).

[Scheme 1]

Experimental

Crystal data
  • 2C23H27N2O4+·C8H4O42−·9H2O

  • Mr = 1117.19

  • Monoclinic, C 2

  • a = 13.939 (5) Å

  • b = 12.370 (5) Å

  • c = 15.321 (5) Å

  • β = 90.646 (5)°

  • V = 2641.6 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.979

  • 12452 measured reflections

  • 5094 independent reflections

  • 3854 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.125

  • S = 1.05

  • 5094 reflections

  • 385 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 8565 Friedel pairs

  • Flack parameter: 0 (0)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O5i 0.91 1.79 2.665 (4) 159
O7—H7A⋯O3 0.82 (1) 1.98 (2) 2.776 (3) 165 (7)
O7—H7B⋯O5ii 0.82 (1) 2.10 (4) 2.836 (4) 149 (7)
O9—H9A⋯O6iii 0.82 (1) 1.98 (2) 2.775 (5) 164 (6)
O8—H8B⋯O7 0.82 (1) 1.99 (2) 2.794 (5) 165 (6)
O8—H8A⋯O9 0.82 (1) 1.97 (3) 2.753 (5) 158 (7)
O9—H9B⋯O11iv 0.82 (1) 2.01 (1) 2.824 (6) 176 (8)
O10—H10C⋯O6v 0.82 (1) 2.29 (3) 3.066 (5) 159 (9)
O10—H10D⋯O8vi 0.82 (1) 1.99 (3) 2.767 (5) 158 (8)
O11—H11A⋯O10 0.82 (1) 2.12 (2) 2.808 (4) 142 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, y-1, -z+1; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z+1]; (iv) x, y-1, z; (v) -x+1, y, -z+1; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The strychnos alkaloids, strychnine and brucine have mostly been used to resolve enantiomorphic mixtures of chiral compounds, and the number of crystal structures of both salts and adducts of strychnine (Smith et al., 2006).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Smith et al., 2005; 2006). Both fused pyrrolidine rings exhibit twisted conformations, while the piperidine rings adopt screw–boat and boat conformations. In title compound anion placed in special position - twofold axis. One of water molecules placed on twofold axis too. Other four water molecules placed in common positons.

The molecular structure of the compound is stabilized by classical intermolecular N—H···O, O—H···O hydrogen bonds - look Table 1.

Related literature top

For general background to brucine derivatives, see: Smith et al. (2006) and for related structures, see: Smith et al. (2005, 2006).

Experimental top

The title compound was obtained by dissolving brucine (0.01 mol) in ethanol–water mixture of 50 ml and potassium hydrogen phthalate (0.01 mol) in 10 ml of water. The resulting solution mixed together and stirred well for 1 h. White precipitate has formed and further recrystalized in the mixture of ethanol–water, filtered off, and then allowed to evaporate at room temperature resulting in blocks of crystals within a week.

Refinement top

The C and N bounded H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H, C—H = 0.98Å and Uiso(H) = 1.2Ueq(C) for methine H, C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene H, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H, N—H = 0.91Å and Uiso(H) = 1.5Ueq(N) for amino H. The water H atoms were located from difference Fourier map and refined with using DFIX instruction - O—H = 0.82Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom labels. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Bis(2,3-dimethoxy-10-oxostrychnidinium) phthalate nonahydrate top
Crystal data top
2C23H27N2O4+·C8H4O42·9H2OF(000) = 1192
Mr = 1117.19Dx = 1.405 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 5046 reflections
a = 13.939 (5) Åθ = 2.6–26.2°
b = 12.370 (5) ŵ = 0.11 mm1
c = 15.321 (5) ÅT = 295 K
β = 90.646 (5)°Block, colourless
V = 2641.6 (17) Å30.35 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
5094 independent reflections
Radiation source: fine–focus sealed tube3854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 26.2°, θmin = 2.6°
ω– and ϕ–scansh = 1716
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1415
Tmin = 0.963, Tmax = 0.979l = 1918
12452 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.2749P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5094 reflectionsΔρmax = 0.25 e Å3
385 parametersΔρmin = 0.22 e Å3
16 restraintsAbsolute structure: Flack (1983), 8565 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (0)
Crystal data top
2C23H27N2O4+·C8H4O42·9H2OV = 2641.6 (17) Å3
Mr = 1117.19Z = 2
Monoclinic, C2Mo Kα radiation
a = 13.939 (5) ŵ = 0.11 mm1
b = 12.370 (5) ÅT = 295 K
c = 15.321 (5) Å0.35 × 0.30 × 0.20 mm
β = 90.646 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
5094 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3854 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.979Rint = 0.038
12452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Δρmax = 0.25 e Å3
S = 1.05Δρmin = 0.22 e Å3
5094 reflectionsAbsolute structure: Flack (1983), 8565 Friedel pairs
385 parametersAbsolute structure parameter: 0 (0)
16 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4573 (3)0.4377 (3)0.6912 (2)0.0557 (9)
H1A0.48060.48450.73670.084*
H1B0.50810.39090.67270.084*
H1C0.40520.39500.71280.084*
C20.3724 (3)0.6817 (3)0.4106 (2)0.0599 (10)
H2A0.38670.75560.42500.090*
H2B0.30830.67690.38740.090*
H2C0.41690.65640.36780.090*
C30.36214 (19)0.5095 (2)0.47760 (18)0.0345 (6)
C40.31895 (19)0.4632 (2)0.40565 (17)0.0334 (6)
H40.29790.50600.35930.040*
C50.30711 (18)0.3514 (2)0.40293 (16)0.0308 (6)
C60.33922 (18)0.2877 (2)0.47136 (16)0.0306 (6)
C70.37904 (18)0.3340 (3)0.54655 (18)0.0344 (7)
H70.39840.29120.59340.041*
C80.38888 (19)0.4445 (3)0.54950 (17)0.0354 (7)
C90.37303 (18)0.0925 (3)0.48887 (17)0.0353 (7)
C100.3762 (2)0.0096 (3)0.43528 (19)0.0389 (7)
H10A0.31990.05200.44930.047*
H10B0.43170.05080.45460.047*
C110.3806 (2)0.0001 (3)0.33534 (19)0.0410 (7)
H110.44270.02710.31540.049*
C120.3027 (3)0.0866 (3)0.2121 (2)0.0615 (10)
H12A0.27650.15760.19950.074*
H12B0.36720.08370.18900.074*
C130.2424 (3)0.0029 (3)0.1685 (2)0.0512 (9)
H130.18630.02470.14030.061*
C140.2645 (2)0.1004 (3)0.16783 (18)0.0437 (7)
C150.3573 (2)0.1421 (3)0.20946 (18)0.0413 (7)
H150.41180.11050.17860.050*
C160.36884 (19)0.1182 (3)0.30714 (17)0.0349 (6)
H160.42780.15510.32590.042*
C170.28898 (19)0.1669 (2)0.36045 (16)0.0317 (6)
H170.23360.11810.35990.038*
C180.25598 (19)0.2826 (2)0.33607 (16)0.0311 (6)
C190.2720 (2)0.3128 (3)0.24005 (17)0.0379 (7)
H190.27550.39170.23530.046*
N30.18192 (18)0.2734 (2)0.19153 (15)0.0424 (6)
H30.15730.33050.16120.051*
C210.2013 (2)0.1850 (3)0.1277 (2)0.0497 (8)
H21A0.23210.21490.07670.060*
H21B0.14110.15250.10910.060*
C220.3610 (2)0.2643 (3)0.19939 (18)0.0432 (7)
H22A0.41800.29260.22810.052*
H22B0.36350.28330.13800.052*
C230.1456 (2)0.2932 (3)0.34231 (19)0.0375 (7)
H23A0.12160.25520.39290.045*
H23B0.12640.36850.34550.045*
C240.5857 (2)0.9656 (3)0.0600 (2)0.0449 (8)
C250.5393 (2)1.0673 (3)0.02828 (18)0.0390 (7)
C260.5779 (2)1.1653 (3)0.0557 (2)0.0507 (8)
H260.63051.16560.09360.061*
C270.5394 (3)1.2624 (3)0.0275 (2)0.0566 (9)
H270.56661.32740.04550.068*
N20.32705 (15)0.1775 (2)0.45108 (13)0.0315 (5)
C200.1103 (2)0.2419 (3)0.2591 (2)0.0427 (7)
H20A0.10730.16400.26510.051*
H20B0.04690.26870.24350.051*
O10.42494 (14)0.50057 (18)0.61970 (13)0.0438 (5)
O20.38030 (15)0.61733 (18)0.48644 (14)0.0448 (5)
O30.40961 (14)0.09733 (18)0.56238 (12)0.0441 (5)
O40.30645 (17)0.07057 (18)0.30469 (13)0.0496 (6)
O50.5988 (2)0.9574 (2)0.14108 (16)0.0671 (7)
O60.6140 (2)0.8986 (2)0.00662 (17)0.0745 (8)
O70.3608 (3)0.1234 (3)0.73624 (18)0.0916 (10)
O80.1780 (3)0.0956 (3)0.8059 (2)0.1011 (11)
O90.0584 (3)0.2296 (3)0.8982 (2)0.0998 (11)
O100.1784 (2)0.9654 (4)0.9528 (2)0.1013 (11)
O110.00001.0515 (4)1.00000.138 (2)
H7A0.368 (5)0.125 (6)0.6833 (7)0.208*
H7B0.385 (5)0.068 (4)0.756 (4)0.208*
H9A0.086 (4)0.275 (4)0.928 (4)0.208*
H8B0.230 (2)0.115 (5)0.788 (4)0.208*
H8A0.156 (5)0.143 (3)0.838 (3)0.208*
H9B0.044 (6)0.178 (4)0.929 (4)0.208*
H10C0.2360 (12)0.966 (8)0.965 (5)0.208*
H10D0.170 (5)0.990 (6)0.904 (2)0.208*
H11A0.0337 (18)1.0130 (4)0.9694 (17)0.208*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (2)0.060 (2)0.0419 (18)0.0067 (19)0.0164 (15)0.0125 (16)
C20.089 (3)0.0374 (19)0.053 (2)0.006 (2)0.0058 (19)0.0007 (16)
C30.0358 (14)0.0308 (16)0.0371 (15)0.0028 (13)0.0030 (12)0.0071 (12)
C40.0394 (15)0.0308 (17)0.0299 (14)0.0006 (13)0.0000 (11)0.0018 (11)
C50.0330 (13)0.0306 (15)0.0287 (14)0.0016 (13)0.0004 (11)0.0013 (11)
C60.0313 (13)0.0328 (17)0.0277 (13)0.0010 (13)0.0040 (11)0.0015 (12)
C70.0354 (14)0.0371 (18)0.0307 (15)0.0050 (13)0.0027 (11)0.0011 (11)
C80.0314 (14)0.0403 (18)0.0343 (15)0.0024 (13)0.0007 (11)0.0090 (13)
C90.0310 (14)0.0389 (18)0.0361 (15)0.0002 (14)0.0016 (11)0.0023 (13)
C100.0379 (15)0.0357 (18)0.0431 (16)0.0052 (14)0.0037 (13)0.0009 (13)
C110.0400 (15)0.0428 (18)0.0402 (16)0.0064 (15)0.0046 (13)0.0064 (14)
C120.093 (3)0.041 (2)0.050 (2)0.003 (2)0.0130 (18)0.0142 (16)
C130.066 (2)0.049 (2)0.0383 (17)0.0003 (18)0.0092 (15)0.0167 (15)
C140.0534 (18)0.048 (2)0.0301 (15)0.0033 (16)0.0000 (12)0.0068 (13)
C150.0461 (16)0.049 (2)0.0291 (15)0.0006 (15)0.0088 (12)0.0031 (13)
C160.0349 (14)0.0387 (17)0.0310 (14)0.0025 (14)0.0003 (11)0.0061 (12)
C170.0343 (13)0.0313 (16)0.0296 (14)0.0032 (13)0.0020 (11)0.0010 (11)
C180.0371 (14)0.0296 (16)0.0266 (13)0.0032 (13)0.0018 (10)0.0024 (11)
C190.0493 (16)0.0354 (16)0.0291 (14)0.0076 (14)0.0004 (12)0.0024 (12)
N30.0557 (15)0.0387 (15)0.0325 (12)0.0011 (13)0.0103 (11)0.0007 (11)
C210.063 (2)0.050 (2)0.0353 (16)0.0042 (17)0.0089 (14)0.0039 (14)
C220.0520 (17)0.050 (2)0.0275 (14)0.0095 (16)0.0071 (13)0.0009 (13)
C230.0403 (15)0.0302 (16)0.0419 (16)0.0044 (14)0.0023 (12)0.0040 (13)
C240.0468 (18)0.043 (2)0.0445 (18)0.0048 (16)0.0063 (14)0.0070 (15)
C250.0453 (15)0.0420 (18)0.0296 (14)0.0038 (15)0.0002 (11)0.0031 (13)
C260.0595 (19)0.053 (2)0.0395 (17)0.0143 (18)0.0048 (14)0.0007 (15)
C270.079 (2)0.043 (2)0.0478 (19)0.013 (2)0.0030 (16)0.0017 (15)
N20.0364 (12)0.0309 (13)0.0271 (11)0.0016 (11)0.0013 (9)0.0001 (9)
C200.0411 (16)0.0421 (19)0.0449 (17)0.0026 (15)0.0062 (13)0.0058 (13)
O10.0488 (11)0.0422 (12)0.0403 (11)0.0083 (11)0.0124 (9)0.0118 (9)
O20.0557 (13)0.0271 (12)0.0516 (13)0.0005 (10)0.0033 (10)0.0082 (9)
O30.0534 (12)0.0436 (13)0.0350 (11)0.0076 (11)0.0064 (9)0.0019 (9)
O40.0709 (15)0.0335 (12)0.0441 (12)0.0035 (11)0.0092 (10)0.0074 (9)
O50.0979 (19)0.0529 (15)0.0500 (14)0.0047 (15)0.0229 (13)0.0063 (12)
O60.100 (2)0.0614 (17)0.0619 (16)0.0274 (16)0.0006 (14)0.0066 (14)
O70.123 (2)0.107 (3)0.0452 (15)0.033 (2)0.0112 (16)0.0090 (15)
O80.130 (3)0.090 (2)0.084 (2)0.011 (2)0.0156 (19)0.005 (2)
O90.111 (3)0.095 (3)0.094 (2)0.023 (2)0.007 (2)0.0158 (19)
O100.096 (2)0.118 (3)0.090 (2)0.008 (2)0.0084 (18)0.009 (2)
O110.139 (5)0.079 (4)0.199 (7)0.0000.076 (4)0.000
Geometric parameters (Å, º) top
C1—O11.413 (4)C16—C171.513 (4)
C1—H1A0.9600C16—H160.9800
C1—H1B0.9600C17—N21.487 (3)
C1—H1C0.9600C17—C181.548 (4)
C2—O21.412 (4)C17—H170.9800
C2—H2A0.9600C18—C191.537 (4)
C2—H2B0.9600C18—C231.548 (4)
C2—H2C0.9600C19—C221.517 (4)
C3—O21.365 (4)C19—N31.532 (4)
C3—C41.375 (4)C19—H190.9800
C3—C81.410 (4)N3—C211.494 (4)
C4—C51.393 (4)N3—C201.498 (4)
C4—H40.9300N3—H30.9100
C5—C61.382 (4)C21—H21A0.9700
C5—C181.505 (4)C21—H21B0.9700
C6—C71.396 (4)C22—H22A0.9700
C6—N21.408 (4)C22—H22B0.9700
C7—C81.374 (4)C23—C201.502 (4)
C7—H70.9300C23—H23A0.9700
C8—O11.371 (3)C23—H23B0.9700
C9—O31.233 (3)C24—O61.233 (4)
C9—N21.358 (4)C24—O51.258 (4)
C9—C101.507 (4)C24—C251.493 (4)
C10—C111.538 (4)C25—C25i1.388 (6)
C10—H10A0.9700C25—C261.390 (4)
C10—H10B0.9700C26—C271.383 (5)
C11—O41.427 (4)C26—H260.9300
C11—C161.535 (4)C27—C27i1.376 (7)
C11—H110.9800C27—H270.9300
C12—O41.433 (4)C20—H20A0.9700
C12—C131.487 (5)C20—H20B0.9700
C12—H12A0.9700O7—H7A0.8201 (11)
C12—H12B0.9700O7—H7B0.8201 (11)
C13—C141.313 (5)O8—H8B0.8201 (11)
C13—H130.9300O8—H8A0.8202 (11)
C14—C211.496 (5)O9—H9A0.8201 (11)
C14—C151.526 (4)O9—H9B0.8201 (11)
C15—C221.520 (4)O10—H10C0.8201 (15)
C15—C161.532 (4)O10—H10D0.8201 (11)
C15—H150.9800O11—H11A0.8200 (11)
O1—C1—H1A109.5N2—C17—C18104.2 (2)
O1—C1—H1B109.5C16—C17—C18117.1 (2)
H1A—C1—H1B109.5N2—C17—H17109.6
O1—C1—H1C109.5C16—C17—H17109.6
H1A—C1—H1C109.5C18—C17—H17109.6
H1B—C1—H1C109.5C5—C18—C19116.2 (2)
O2—C2—H2A109.5C5—C18—C17102.8 (2)
O2—C2—H2B109.5C19—C18—C17114.2 (2)
H2A—C2—H2B109.5C5—C18—C23111.9 (2)
O2—C2—H2C109.5C19—C18—C23101.2 (2)
H2A—C2—H2C109.5C17—C18—C23110.9 (2)
H2B—C2—H2C109.5C22—C19—N3110.2 (2)
O2—C3—C4124.5 (3)C22—C19—C18115.2 (2)
O2—C3—C8115.6 (2)N3—C19—C18105.1 (2)
C4—C3—C8119.9 (3)C22—C19—H19108.7
C3—C4—C5119.2 (3)N3—C19—H19108.7
C3—C4—H4120.4C18—C19—H19108.7
C5—C4—H4120.4C21—N3—C20112.9 (2)
C6—C5—C4120.4 (2)C21—N3—C19113.4 (2)
C6—C5—C18109.9 (2)C20—N3—C19107.3 (2)
C4—C5—C18129.6 (2)C21—N3—H3107.7
C5—C6—C7120.9 (3)C20—N3—H3107.7
C5—C6—N2110.4 (2)C19—N3—H3107.7
C7—C6—N2128.7 (2)N3—C21—C14110.7 (2)
C8—C7—C6118.3 (3)N3—C21—H21A109.5
C8—C7—H7120.9C14—C21—H21A109.5
C6—C7—H7120.9N3—C21—H21B109.5
O1—C8—C7124.4 (3)C14—C21—H21B109.5
O1—C8—C3114.6 (3)H21A—C21—H21B108.1
C7—C8—C3121.0 (2)C19—C22—C15108.8 (2)
O3—C9—N2122.7 (3)C19—C22—H22A109.9
O3—C9—C10121.6 (3)C15—C22—H22A109.9
N2—C9—C10115.7 (2)C19—C22—H22B109.9
C9—C10—C11118.7 (3)C15—C22—H22B109.9
C9—C10—H10A107.6H22A—C22—H22B108.3
C11—C10—H10A107.6C20—C23—C18103.2 (2)
C9—C10—H10B107.6C20—C23—H23A111.1
C11—C10—H10B107.6C18—C23—H23A111.1
H10A—C10—H10B107.1C20—C23—H23B111.1
O4—C11—C16114.5 (2)C18—C23—H23B111.1
O4—C11—C10104.2 (2)H23A—C23—H23B109.1
C16—C11—C10110.3 (2)O6—C24—O5123.8 (3)
O4—C11—H11109.2O6—C24—C25119.5 (3)
C16—C11—H11109.2O5—C24—C25116.6 (3)
C10—C11—H11109.2C25i—C25—C26119.28 (18)
O4—C12—C13111.2 (3)C25i—C25—C24122.60 (16)
O4—C12—H12A109.4C26—C25—C24118.1 (3)
C13—C12—H12A109.4C27—C26—C25121.0 (3)
O4—C12—H12B109.4C27—C26—H26119.5
C13—C12—H12B109.4C25—C26—H26119.5
H12A—C12—H12B108.0C27i—C27—C26119.7 (2)
C14—C13—C12123.3 (3)C27i—C27—H27120.1
C14—C13—H13118.3C26—C27—H27120.1
C12—C13—H13118.3C9—N2—C6126.9 (2)
C13—C14—C21123.1 (3)C9—N2—C17119.5 (2)
C13—C14—C15121.6 (3)C6—N2—C17109.4 (2)
C21—C14—C15115.3 (3)N3—C20—C23105.2 (2)
C22—C15—C14108.9 (3)N3—C20—H20A110.7
C22—C15—C16106.7 (2)C23—C20—H20A110.7
C14—C15—C16114.9 (2)N3—C20—H20B110.7
C22—C15—H15108.7C23—C20—H20B110.7
C14—C15—H15108.7H20A—C20—H20B108.8
C16—C15—H15108.7C8—O1—C1116.2 (3)
C17—C16—C15112.4 (2)C3—O2—C2117.2 (2)
C17—C16—C11107.7 (2)C11—O4—C12115.4 (2)
C15—C16—C11118.0 (2)H7A—O7—H7B108.96 (19)
C17—C16—H16106.0H8B—O8—H8A109.0 (2)
C15—C16—H16106.0H9A—O9—H9B108.96 (19)
C11—C16—H16106.0H10C—O10—H10D109.0 (2)
N2—C17—C16106.4 (2)
O2—C3—C4—C5177.8 (3)C5—C18—C19—C2285.2 (3)
C8—C3—C4—C53.6 (4)C17—C18—C19—C2234.2 (3)
C3—C4—C5—C60.6 (4)C23—C18—C19—C22153.4 (2)
C3—C4—C5—C18174.7 (2)C5—C18—C19—N3153.4 (2)
C4—C5—C6—C73.7 (4)C17—C18—C19—N387.2 (3)
C18—C5—C6—C7172.4 (2)C23—C18—C19—N332.0 (3)
C4—C5—C6—N2175.0 (2)C22—C19—N3—C219.6 (3)
C18—C5—C6—N28.9 (3)C18—C19—N3—C21115.0 (3)
C5—C6—C7—C82.4 (4)C22—C19—N3—C20134.9 (3)
N2—C6—C7—C8176.0 (2)C18—C19—N3—C2010.3 (3)
C6—C7—C8—O1178.6 (2)C20—N3—C21—C1476.0 (3)
C6—C7—C8—C31.8 (4)C19—N3—C21—C1446.3 (3)
O2—C3—C8—O13.1 (3)C13—C14—C21—N3126.8 (3)
C4—C3—C8—O1175.6 (2)C15—C14—C21—N352.6 (3)
O2—C3—C8—C7176.4 (2)N3—C19—C22—C1562.8 (3)
C4—C3—C8—C74.9 (4)C18—C19—C22—C1555.8 (3)
O3—C9—C10—C11148.1 (3)C14—C15—C22—C1956.7 (3)
N2—C9—C10—C1132.3 (4)C16—C15—C22—C1967.9 (3)
C9—C10—C11—O4130.1 (3)C5—C18—C23—C20166.8 (2)
C9—C10—C11—C166.7 (4)C19—C18—C23—C2042.5 (3)
O4—C12—C13—C1464.8 (5)C17—C18—C23—C2079.0 (3)
C12—C13—C14—C21176.9 (3)O6—C24—C25—C25i54.8 (5)
C12—C13—C14—C152.4 (5)O5—C24—C25—C25i129.6 (4)
C13—C14—C15—C22178.9 (3)O6—C24—C25—C26124.0 (4)
C21—C14—C15—C220.4 (3)O5—C24—C25—C2651.5 (4)
C13—C14—C15—C1659.3 (4)C25i—C25—C26—C270.0 (5)
C21—C14—C15—C16120.1 (3)C24—C25—C26—C27178.8 (3)
C22—C15—C16—C1761.3 (3)C25—C26—C27—C27i1.1 (6)
C14—C15—C16—C1759.5 (3)O3—C9—N2—C622.6 (4)
C22—C15—C16—C11172.4 (3)C10—C9—N2—C6157.8 (2)
C14—C15—C16—C1166.8 (3)O3—C9—N2—C17177.0 (2)
O4—C11—C16—C1773.9 (3)C10—C9—N2—C173.4 (3)
C10—C11—C16—C1743.2 (3)C5—C6—N2—C9159.8 (2)
O4—C11—C16—C1554.6 (3)C7—C6—N2—C918.7 (4)
C10—C11—C16—C15171.7 (2)C5—C6—N2—C173.3 (3)
C15—C16—C17—N2157.6 (2)C7—C6—N2—C17175.2 (2)
C11—C16—C17—N270.8 (3)C16—C17—N2—C947.6 (3)
C15—C16—C17—C1841.6 (3)C18—C17—N2—C9172.0 (2)
C11—C16—C17—C18173.2 (2)C16—C17—N2—C6110.9 (2)
C6—C5—C18—C19142.0 (2)C18—C17—N2—C613.5 (3)
C4—C5—C18—C1942.3 (4)C21—N3—C20—C23142.2 (2)
C6—C5—C18—C1716.6 (3)C19—N3—C20—C2316.6 (3)
C4—C5—C18—C17167.7 (3)C18—C23—C20—N336.9 (3)
C6—C5—C18—C23102.5 (3)C7—C8—O1—C12.8 (4)
C4—C5—C18—C2373.2 (3)C3—C8—O1—C1176.7 (3)
N2—C17—C18—C517.5 (2)C4—C3—O2—C213.5 (4)
C16—C17—C18—C599.7 (2)C8—C3—O2—C2167.8 (3)
N2—C17—C18—C19144.3 (2)C16—C11—O4—C1266.5 (3)
C16—C17—C18—C1927.1 (3)C10—C11—O4—C12172.8 (2)
N2—C17—C18—C23102.2 (2)C13—C12—O4—C1188.0 (4)
C16—C17—C18—C23140.6 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5ii0.911.792.665 (4)159
O7—H7A···O30.82 (1)1.98 (2)2.776 (3)165 (7)
O7—H7B···O5iii0.82 (1)2.10 (4)2.836 (4)149 (7)
O9—H9A···O6iv0.82 (1)1.98 (2)2.775 (5)164 (6)
O8—H8B···O70.82 (1)1.99 (2)2.794 (5)165 (6)
O8—H8A···O90.82 (1)1.97 (3)2.753 (5)158 (7)
O9—H9B···O11v0.82 (1)2.01 (1)2.824 (6)176 (8)
O10—H10C···O6vi0.82 (1)2.29 (3)3.066 (5)159 (9)
O10—H10D···O8vii0.82 (1)1.99 (3)2.767 (5)158 (8)
O11—H11A···O100.82 (1)2.12 (2)2.808 (4)142 (3)
Symmetry codes: (ii) x1/2, y1/2, z; (iii) x+1, y1, z+1; (iv) x1/2, y1/2, z+1; (v) x, y1, z; (vi) x+1, y, z+1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C23H27N2O4+·C8H4O42·9H2O
Mr1117.19
Crystal system, space groupMonoclinic, C2
Temperature (K)295
a, b, c (Å)13.939 (5), 12.370 (5), 15.321 (5)
β (°) 90.646 (5)
V3)2641.6 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
12452, 5094, 3854
Rint0.038
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 1.05
No. of reflections5094
No. of parameters385
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.22
Absolute structureFlack (1983), 8565 Friedel pairs
Absolute structure parameter0 (0)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.911.792.665 (4)159.1
O7—H7A···O30.8201 (11)1.975 (19)2.776 (3)165 (7)
O7—H7B···O5ii0.8201 (11)2.10 (4)2.836 (4)149 (7)
O9—H9A···O6iii0.8201 (11)1.978 (19)2.775 (5)164 (6)
O8—H8B···O70.8201 (11)1.993 (16)2.794 (5)165 (6)
O8—H8A···O90.8202 (11)1.97 (3)2.753 (5)158 (7)
O9—H9B···O11iv0.8201 (11)2.005 (7)2.824 (6)176 (8)
O10—H10C···O6v0.8201 (15)2.29 (3)3.066 (5)159 (9)
O10—H10D···O8vi0.8201 (11)1.99 (3)2.767 (5)158 (8)
O11—H11A···O100.8200 (11)2.12 (2)2.808 (4)142 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1, y1, z+1; (iii) x1/2, y1/2, z+1; (iv) x, y1, z; (v) x+1, y, z+1; (vi) x, y+1, z.
 

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C., Young, D. J. & White, J. M. (2005). Acta Cryst. E61, o2646–o2648.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o1553–o1555.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds