organic compounds
5,5′-(Ethyne-1,2-diyl)diisophthalic acid dimethyl sulfoxide tetrasolvate
aInstitute of Physical Chemistry, Technical University Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg/Sachsen, Germany, and bInstitute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: florian.mertens@chemie.tu-freiberg.de
In the title compound, C18H10O8·4C2H6OS, the mid-point of the triple bond of the main molecule is located on a special position, i.e. about an inversion center. The carboxyl groups are twisted slightly out of the planes of the aromatic rings to which they are attached, making dihedral angles of 24.89 (1) and 7.40 (2)°. The cystal packing features strong O—H⋯O hydrogen bonds, weaker C—H⋯O interactions and O⋯S contacts [3.0981 (11) Å] and displays channel-like voids extending along the a-axis direction which contain the dimethyl sulfoxide solvent molecules.
Related literature
For the synthesis of the principal compound, see: Hausdorf et al. (2009); Zhou et al. (2007). For its use as linker molecule in the formation of porous metal–organic framework structures, see: Hausdorf et al. (2009); Hu et al. (2009); Zheng et al. (2013). For metal–organic frameworks, see: Münch et al. (2011); Chen et al. (2005); Coles et al. (2002). For a similar hydrogen-bonded aggregate, see: Hauptvogel et al. (2011). For O—H⋯O hydrogen bonds, see: Bernstein et al. (1995); Katzsch et al. (2011). For C—H⋯O contacts, see: Desiraju & Steiner (1999); Katzsch & Weber (2012); Fischer et al. (2011). For O⋯S contacts, see: Lu et al. (2011). For π–π interactions, see: Hunter & Sanders (1990).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813013068/rk2402sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813013068/rk2402Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813013068/rk2402Isup3.cml
The titled compound was synthesized via a Sonogashira–Hagihara cross coupling reaction of dimethyl 5-ethynylisophthalate and dimethyl 5-iodoisophthalate. For the synthetic procedure, see: Hausdorf et al. (2009), Zhou et al. (2007). Colourless single crystals suitable for X-ray diffraction were grown by slow evaporation from a dimethyl sulfoxide/mesitylene (2:1) solution.
The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.84Å and Uiso(H) = 1.5Ueq(O) for hydroxyl H atoms, C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms, and C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Perspective view of the title compound, including atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. | |
Fig. 2. Selected intermolecular interactions within the layer structure of the solvate. | |
Fig. 3. Solvent channels along the crystallographic a–axis in the packing structure. |
C18H10O8·4C2H6OS | F(000) = 700 |
Mr = 666.81 | Dx = 1.461 Mg m−3 |
Monoclinic, P21/n | Melting point > 623 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1406 (2) Å | Cell parameters from 9934 reflections |
b = 8.7328 (2) Å | θ = 2.5–49.6° |
c = 21.4351 (5) Å | µ = 0.38 mm−1 |
β = 95.970 (1)° | T = 100 K |
V = 1515.56 (6) Å3 | Block, colourless |
Z = 2 | 0.60 × 0.42 × 0.36 mm |
Bruker APEXII CCD diffractometer | 2666 independent reflections |
Radiation source: fine-focus sealed tube | 2567 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω– and ϕ–scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→9 |
Tmin = 0.807, Tmax = 0.877 | k = −10→10 |
20635 measured reflections | l = −25→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0228P)2 + 1.1796P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2666 reflections | Δρmax = 0.32 e Å−3 |
197 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0065 (7) |
C18H10O8·4C2H6OS | V = 1515.56 (6) Å3 |
Mr = 666.81 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.1406 (2) Å | µ = 0.38 mm−1 |
b = 8.7328 (2) Å | T = 100 K |
c = 21.4351 (5) Å | 0.60 × 0.42 × 0.36 mm |
β = 95.970 (1)° |
Bruker APEXII CCD diffractometer | 2666 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2567 reflections with I > 2σ(I) |
Tmin = 0.807, Tmax = 0.877 | Rint = 0.021 |
20635 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.32 e Å−3 |
2666 reflections | Δρmin = −0.28 e Å−3 |
197 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.01957 (11) | 0.64073 (11) | 1.04506 (4) | 0.0150 (2) | |
H1 | −0.0882 | 0.5906 | 1.0635 | 0.023* | |
O2 | −0.23612 (11) | 0.67476 (11) | 0.97291 (5) | 0.0171 (2) | |
O3 | −0.21203 (11) | 1.12870 (12) | 0.83853 (4) | 0.0175 (2) | |
H3 | −0.2524 | 1.1864 | 0.8095 | 0.026* | |
O4 | 0.02782 (12) | 1.18846 (11) | 0.80107 (5) | 0.0188 (2) | |
C1 | 0.43140 (17) | 0.98735 (16) | 0.98804 (6) | 0.0140 (3) | |
C2 | 0.26574 (16) | 0.95657 (15) | 0.96125 (6) | 0.0126 (3) | |
C3 | 0.17287 (16) | 0.84319 (15) | 0.98761 (6) | 0.0124 (3) | |
H3A | 0.2215 | 0.7840 | 1.0219 | 0.015* | |
C4 | 0.01012 (16) | 0.81681 (15) | 0.96390 (6) | 0.0120 (3) | |
C5 | −0.06279 (16) | 0.90560 (15) | 0.91469 (6) | 0.0122 (3) | |
H5 | −0.1751 | 0.8894 | 0.8993 | 0.015* | |
C6 | 0.02860 (16) | 1.01785 (15) | 0.88804 (6) | 0.0123 (3) | |
C7 | 0.19281 (16) | 1.04245 (15) | 0.91065 (6) | 0.0128 (3) | |
H7 | 0.2556 | 1.1178 | 0.8917 | 0.015* | |
C8 | −0.09463 (16) | 0.70282 (15) | 0.99368 (6) | 0.0127 (3) | |
C9 | −0.04995 (16) | 1.12030 (15) | 0.83737 (6) | 0.0136 (3) | |
O1G | 0.78072 (12) | 0.50559 (12) | 0.11049 (5) | 0.0203 (2) | |
S1G | 0.61418 (4) | 0.44680 (4) | 0.081415 (15) | 0.01417 (10) | |
C1G | 0.55281 (17) | 0.31280 (16) | 0.13740 (7) | 0.0179 (3) | |
H1G1 | 0.6343 | 0.2300 | 0.1430 | 0.027* | |
H1G2 | 0.4446 | 0.2701 | 0.1224 | 0.027* | |
H1G3 | 0.5459 | 0.3647 | 0.1776 | 0.027* | |
C2G | 0.47196 (17) | 0.59699 (16) | 0.09296 (7) | 0.0187 (3) | |
H2G1 | 0.4814 | 0.6252 | 0.1374 | 0.028* | |
H2G2 | 0.3592 | 0.5620 | 0.0799 | 0.028* | |
H2G3 | 0.4971 | 0.6862 | 0.0679 | 0.028* | |
O1H | 0.10288 (12) | 0.21753 (11) | 0.25639 (5) | 0.0197 (2) | |
S1H | −0.00487 (4) | 0.32301 (4) | 0.212754 (15) | 0.01365 (10) | |
C1H | −0.09563 (18) | 0.45741 (18) | 0.26201 (7) | 0.0212 (3) | |
H1H1 | −0.1821 | 0.4065 | 0.2829 | 0.032* | |
H1H2 | −0.1439 | 0.5424 | 0.2365 | 0.032* | |
H1H3 | −0.0105 | 0.4969 | 0.2936 | 0.032* | |
C2H | 0.13616 (17) | 0.45062 (17) | 0.18084 (7) | 0.0181 (3) | |
H2H1 | 0.2159 | 0.4890 | 0.2146 | 0.027* | |
H2H2 | 0.0750 | 0.5368 | 0.1604 | 0.027* | |
H2H3 | 0.1949 | 0.3960 | 0.1500 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0133 (5) | 0.0160 (5) | 0.0157 (5) | −0.0021 (4) | 0.0013 (4) | 0.0042 (4) |
O2 | 0.0125 (5) | 0.0181 (5) | 0.0201 (5) | −0.0040 (4) | −0.0010 (4) | 0.0017 (4) |
O3 | 0.0128 (5) | 0.0213 (5) | 0.0175 (5) | 0.0016 (4) | −0.0024 (4) | 0.0052 (4) |
O4 | 0.0194 (5) | 0.0200 (5) | 0.0172 (5) | 0.0009 (4) | 0.0030 (4) | 0.0055 (4) |
C1 | 0.0133 (6) | 0.0144 (7) | 0.0148 (6) | 0.0008 (5) | 0.0034 (5) | 0.0024 (5) |
C2 | 0.0102 (6) | 0.0144 (6) | 0.0136 (6) | 0.0012 (5) | 0.0028 (5) | −0.0030 (5) |
C3 | 0.0125 (6) | 0.0129 (6) | 0.0119 (6) | 0.0025 (5) | 0.0014 (5) | −0.0007 (5) |
C4 | 0.0125 (6) | 0.0114 (6) | 0.0124 (6) | 0.0006 (5) | 0.0026 (5) | −0.0036 (5) |
C5 | 0.0107 (6) | 0.0138 (6) | 0.0119 (6) | 0.0000 (5) | 0.0004 (5) | −0.0039 (5) |
C6 | 0.0134 (6) | 0.0128 (6) | 0.0110 (6) | 0.0017 (5) | 0.0019 (5) | −0.0032 (5) |
C7 | 0.0129 (6) | 0.0129 (6) | 0.0132 (6) | −0.0004 (5) | 0.0047 (5) | −0.0018 (5) |
C8 | 0.0138 (7) | 0.0109 (6) | 0.0135 (6) | 0.0015 (5) | 0.0023 (5) | −0.0027 (5) |
C9 | 0.0150 (7) | 0.0128 (6) | 0.0126 (6) | 0.0000 (5) | −0.0005 (5) | −0.0033 (5) |
O1G | 0.0126 (5) | 0.0287 (6) | 0.0191 (5) | −0.0055 (4) | −0.0007 (4) | 0.0071 (4) |
S1G | 0.01290 (18) | 0.01668 (18) | 0.01294 (17) | −0.00069 (13) | 0.00131 (12) | 0.00166 (12) |
C1G | 0.0165 (7) | 0.0184 (7) | 0.0188 (7) | −0.0021 (6) | 0.0020 (5) | 0.0053 (6) |
C2G | 0.0170 (7) | 0.0164 (7) | 0.0220 (7) | 0.0015 (6) | −0.0001 (5) | 0.0003 (6) |
O1H | 0.0208 (5) | 0.0154 (5) | 0.0210 (5) | −0.0003 (4) | −0.0066 (4) | 0.0022 (4) |
S1H | 0.01273 (17) | 0.01452 (18) | 0.01321 (17) | −0.00085 (13) | −0.00095 (12) | −0.00052 (12) |
C1H | 0.0205 (7) | 0.0250 (8) | 0.0188 (7) | 0.0030 (6) | 0.0054 (6) | −0.0024 (6) |
C2H | 0.0152 (7) | 0.0205 (7) | 0.0187 (7) | −0.0021 (6) | 0.0028 (5) | 0.0009 (6) |
O1—C8 | 1.3192 (16) | O1G—S1G | 1.5213 (10) |
O1—H1 | 0.8400 | S1G—C2G | 1.7837 (14) |
O2—C8 | 1.2158 (16) | S1G—C1G | 1.7843 (14) |
O3—C9 | 1.3243 (16) | C1G—H1G1 | 0.9800 |
O3—H3 | 0.8400 | C1G—H1G2 | 0.9800 |
O4—C9 | 1.2096 (17) | C1G—H1G3 | 0.9800 |
C1—C1i | 1.200 (3) | C2G—H2G1 | 0.9800 |
C1—C2 | 1.4351 (19) | C2G—H2G2 | 0.9800 |
C2—C7 | 1.3990 (19) | C2G—H2G3 | 0.9800 |
C2—C3 | 1.3999 (19) | O1H—S1H | 1.5239 (10) |
C3—C4 | 1.3880 (18) | S1H—C2H | 1.7864 (14) |
C3—H3A | 0.9500 | S1H—C1H | 1.7890 (14) |
C4—C5 | 1.3913 (19) | C1H—H1H1 | 0.9800 |
C4—C8 | 1.4963 (18) | C1H—H1H2 | 0.9800 |
C5—C6 | 1.3890 (19) | C1H—H1H3 | 0.9800 |
C5—H5 | 0.9500 | C2H—H2H1 | 0.9800 |
C6—C7 | 1.3904 (19) | C2H—H2H2 | 0.9800 |
C6—C9 | 1.4982 (18) | C2H—H2H3 | 0.9800 |
C7—H7 | 0.9500 | ||
C8—O1—H1 | 109.5 | C2G—S1G—C1G | 99.07 (7) |
C9—O3—H3 | 109.5 | S1G—C1G—H1G1 | 109.5 |
C1i—C1—C2 | 178.29 (18) | S1G—C1G—H1G2 | 109.5 |
C7—C2—C3 | 119.25 (12) | H1G1—C1G—H1G2 | 109.5 |
C7—C2—C1 | 121.00 (12) | S1G—C1G—H1G3 | 109.5 |
C3—C2—C1 | 119.70 (12) | H1G1—C1G—H1G3 | 109.5 |
C4—C3—C2 | 120.31 (12) | H1G2—C1G—H1G3 | 109.5 |
C4—C3—H3A | 119.8 | S1G—C2G—H2G1 | 109.5 |
C2—C3—H3A | 119.8 | S1G—C2G—H2G2 | 109.5 |
C3—C4—C5 | 120.05 (12) | H2G1—C2G—H2G2 | 109.5 |
C3—C4—C8 | 121.26 (12) | S1G—C2G—H2G3 | 109.5 |
C5—C4—C8 | 118.49 (12) | H2G1—C2G—H2G3 | 109.5 |
C6—C5—C4 | 120.04 (12) | H2G2—C2G—H2G3 | 109.5 |
C6—C5—H5 | 120.0 | O1H—S1H—C2H | 105.09 (6) |
C4—C5—H5 | 120.0 | O1H—S1H—C1H | 106.32 (6) |
C5—C6—C7 | 120.15 (12) | C2H—S1H—C1H | 97.93 (7) |
C5—C6—C9 | 120.87 (12) | S1H—C1H—H1H1 | 109.5 |
C7—C6—C9 | 118.87 (12) | S1H—C1H—H1H2 | 109.5 |
C6—C7—C2 | 120.16 (12) | H1H1—C1H—H1H2 | 109.5 |
C6—C7—H7 | 119.9 | S1H—C1H—H1H3 | 109.5 |
C2—C7—H7 | 119.9 | H1H1—C1H—H1H3 | 109.5 |
O2—C8—O1 | 124.18 (12) | H1H2—C1H—H1H3 | 109.5 |
O2—C8—C4 | 122.56 (12) | S1H—C2H—H2H1 | 109.5 |
O1—C8—C4 | 113.23 (11) | S1H—C2H—H2H2 | 109.5 |
O4—C9—O3 | 125.03 (12) | H2H1—C2H—H2H2 | 109.5 |
O4—C9—C6 | 123.21 (12) | S1H—C2H—H2H3 | 109.5 |
O3—C9—C6 | 111.74 (11) | H2H1—C2H—H2H3 | 109.5 |
O1G—S1G—C2G | 104.99 (6) | H2H2—C2H—H2H3 | 109.5 |
O1G—S1G—C1G | 104.22 (6) | ||
C7—C2—C3—C4 | −0.23 (19) | C3—C2—C7—C6 | 1.70 (19) |
C1—C2—C3—C4 | 177.18 (12) | C1—C2—C7—C6 | −175.67 (12) |
C2—C3—C4—C5 | −1.53 (19) | C3—C4—C8—O2 | −178.09 (12) |
C2—C3—C4—C8 | −176.32 (12) | C5—C4—C8—O2 | 7.04 (19) |
C3—C4—C5—C6 | 1.83 (19) | C3—C4—C8—O1 | 3.81 (17) |
C8—C4—C5—C6 | 176.76 (11) | C5—C4—C8—O1 | −171.06 (11) |
C4—C5—C6—C7 | −0.36 (19) | C5—C6—C9—O4 | −158.78 (13) |
C4—C5—C6—C9 | −176.70 (12) | C7—C6—C9—O4 | 24.84 (19) |
C5—C6—C7—C2 | −1.41 (19) | C5—C6—C9—O3 | 22.60 (17) |
C9—C6—C7—C2 | 175.00 (12) | C7—C6—C9—O3 | −153.78 (12) |
Symmetry code: (i) −x+1, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1Gii | 0.84 | 1.71 | 2.5451 (13) | 171 |
O3—H3···O1Hiii | 0.84 | 1.76 | 2.5732 (13) | 161 |
C1G—H1G2···O2iv | 0.98 | 2.56 | 3.3138 (17) | 134 |
C1G—H1G3···O4v | 0.98 | 2.71 | 3.5351 (17) | 143 |
C2G—H2G1···O1Hvi | 0.98 | 2.57 | 3.5093 (18) | 160 |
C2G—H2G2···O2iv | 0.98 | 2.52 | 3.2783 (17) | 135 |
C1H—H1H1···O4vii | 0.98 | 2.57 | 3.5006 (18) | 159 |
C1H—H1H2···O4viii | 0.98 | 2.69 | 3.4427 (18) | 134 |
C2H—H2H1···O1Hvi | 0.98 | 2.52 | 3.3409 (17) | 141 |
C2H—H2H2···O1ix | 0.98 | 2.67 | 3.4738 (17) | 139 |
C2H—H2H2···O1Gx | 0.98 | 2.54 | 3.1574 (17) | 121 |
C2H—H2H2···O4viii | 0.98 | 2.70 | 3.4604 (18) | 135 |
Symmetry codes: (ii) x−1, y, z+1; (iii) x−1/2, −y+3/2, z+1/2; (iv) −x, −y+1, −z+1; (v) x+1/2, −y+3/2, z−1/2; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x−1/2, −y+3/2, z−1/2; (viii) −x, −y+2, −z+1; (ix) x, y, z−1; (x) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C18H10O8·4C2H6OS |
Mr | 666.81 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 8.1406 (2), 8.7328 (2), 21.4351 (5) |
β (°) | 95.970 (1) |
V (Å3) | 1515.56 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.60 × 0.42 × 0.36 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.807, 0.877 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20635, 2666, 2567 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.059, 1.04 |
No. of reflections | 2666 |
No. of parameters | 197 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.28 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1Gi | 0.84 | 1.71 | 2.5451 (13) | 171.3 |
O3—H3···O1Hii | 0.84 | 1.76 | 2.5732 (13) | 161.2 |
C1G—H1G2···O2iii | 0.98 | 2.56 | 3.3138 (17) | 133.6 |
C1G—H1G3···O4iv | 0.98 | 2.71 | 3.5351 (17) | 142.6 |
C2G—H2G1···O1Hv | 0.98 | 2.57 | 3.5093 (18) | 159.7 |
C2G—H2G2···O2iii | 0.98 | 2.52 | 3.2783 (17) | 134.6 |
C1H—H1H1···O4vi | 0.98 | 2.57 | 3.5006 (18) | 158.6 |
C1H—H1H2···O4vii | 0.98 | 2.69 | 3.4427 (18) | 134.1 |
C2H—H2H1···O1Hv | 0.98 | 2.52 | 3.3409 (17) | 141.2 |
C2H—H2H2···O1viii | 0.98 | 2.67 | 3.4738 (17) | 139.3 |
C2H—H2H2···O1Gix | 0.98 | 2.54 | 3.1574 (17) | 121.3 |
C2H—H2H2···O4vii | 0.98 | 2.70 | 3.4604 (18) | 134.9 |
Symmetry codes: (i) x−1, y, z+1; (ii) x−1/2, −y+3/2, z+1/2; (iii) −x, −y+1, −z+1; (iv) x+1/2, −y+3/2, z−1/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) x−1/2, −y+3/2, z−1/2; (vii) −x, −y+2, −z+1; (viii) x, y, z−1; (ix) x−1, y, z. |
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft (Priority Program 1362 "Porous Metal–Organic Frameworks") is gratefully acknowledged by A·M. F·K. thanks the European Union (European regional development fund) and the Ministry of Science and Art of Saxony (Cluster of Excellence "Structure Design of Novel High–Performance Materials via Atomic Design and Defect Engineering [ADDE]").
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1563. CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, B., Ockwig, N. W., Millward, A. R., Contreras, D. S. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4745–4749. Web of Science CSD CrossRef CAS Google Scholar
Coles, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626–o628. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Fischer, C., Gruber, T., Seichter, W. & Weber, E. (2011). Org. Biomol. Chem. 9, 4347–4352. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hauptvogel, I., Seichter, W. & Weber, E. (2011). Supramol. Chem. 23, 398–406. Web of Science CSD CrossRef CAS Google Scholar
Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107–1113. Web of Science CSD CrossRef Google Scholar
Hu, Y., Xiang, X., Zhang, W., Wang, L., Bai, J. & Chen, B. (2009). Chem. Commun. 48, 7551–7553. Web of Science CSD CrossRef Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Katzsch, F., Eissmann, D. & Weber, E. (2011). Struct. Chem. 23, 245–255. Web of Science CSD CrossRef Google Scholar
Katzsch, F. & Weber, E. (2012). Acta Cryst. E68, o2354–o2355. CSD CrossRef CAS IUCr Journals Google Scholar
Lu, J., Lu, Y., Yang, S. & Zhu, W. (2011). Struct. Chem. 22, 757–763. Web of Science CrossRef CAS Google Scholar
Münch, A. S., Seidel, J., Obst, A., Weber, E. & Mertens, F. O. R. L. (2011). Chem. Eur. J. 17, 10958–10964. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, B., Luo, J., Wang, F., Peng, Y., Li, G., Huo, Q. & Liu, Y. (2013). Cryst. Growth Des. 13, 1033–1044. Web of Science CSD CrossRef CAS Google Scholar
Zhou, H., Dang, H., Yi, J.-H., Nanci, A., Rochefort, A. & Wuest, J.-D. (2007). J. Am. Chem. Soc. 129, 13774–13775. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the last years tetracarboxylic acid linker molecules of which 3,3',5,5'-biphenyltetracarboxylic acid is the prototype have proven highly effective both in the construction of porous metal–organic (MOF) (Chen et al., 2005; Münch et al., 2011) and hydrogen bond supported frameworks (Coles et al., 2002) as well as in the formation of hydrogen bond assembled layer structures (Zhou et al., 2007). Insertion of an ethynylene unit into the molecular backbone such as in the title compound, 5,5'–(ethynylene)diisophthalic acid, was undertaken in order to expand lattice porosity and also to introduce an additional interaction site for improved solid–gas adsorption behaviour (Hausdorf et al., 2009; Zheng et al., 2013). This has been confirmed showing high acetylene uptake of a corresponding MOF-framework (Hu et al., 2009). But as a rigid tetrafunctional carboxylic acid, the title compound should also capable of forming complex hydrogen bonded aggregate structures in the solid state (Hauptvogel et al., 2011) of which the present solvate with dimethyl sulfoxide finishes another evident proof. The title compound crystallizes in the monoclinic space group P21/n with half a molecule of 5,5'-(ethynylene)diisophthalic acid and two dimethyl sulfoxide molecules in the asymmetric part of the unit cell. The tolane fragment devites from ideal linear geometry (C2—C1≡C1i = 178.29 (18)°) and the carboxyl groups are slightly twisted out of the aromatic ring plane - dihedral angles 24.89 (1)° (O4═C9—O3) and 7.40 (2)° (O2═C8—O1)]. The principal molecules are vertically oriented to each other in a layer structure connected by two consecutively arranged solvent molecules via strong O—H···O hydrogen bonds (Bernstein et al., 1995; Katzsch et al., 2011) [d(O1···O1Gi) = 2.55Å, d(O3···O1Hii) = 2.57Å], O···S contacts [d(O1G···S1H) = 3.10Å] (Lu et al., 2011) as well as weak C—H···O interactions [d(C1G···O2iii) = 3.31Å, d(C2G···O2iii)= 3.28Å and d(C2G···O1Hv) = 3.51Å] (Desiraju & Steiner, 1999; Katzsch & Weber, 2012; Fischer et al., 2011). Superimposed tapes are held together by π-π interactions between the aromatic rings (Hunter & Sanders, 1990) and the interacting solvent molecules being included in channels along the crystallopgraphic a–axis. Symmetry code: (i) -x+1, -y+2, -z+2.