organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o908-o909

5,5′-(Ethyne-1,2-di­yl)diisophthalic acid di­methyl sulfoxide tetra­solvate

aInstitute of Physical Chemistry, Technical University Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg/Sachsen, Germany, and bInstitute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: florian.mertens@chemie.tu-freiberg.de

(Received 18 April 2013; accepted 13 May 2013; online 18 May 2013)

In the title compound, C18H10O8·4C2H6OS, the mid-point of the triple bond of the main mol­ecule is located on a special position, i.e. about an inversion center. The carboxyl groups are twisted slightly out of the planes of the aromatic rings to which they are attached, making dihedral angles of 24.89 (1) and 7.40 (2)°. The cystal packing features strong O—H⋯O hydrogen bonds, weaker C—H⋯O inter­actions and O⋯S contacts [3.0981 (11) Å] and displays channel-like voids extending along the a-axis direction which contain the dimethyl sulfoxide solvent mol­ecules.

Related literature

For the synthesis of the principal compound, see: Hausdorf et al. (2009[Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107-1113.]); Zhou et al. (2007[Zhou, H., Dang, H., Yi, J.-H., Nanci, A., Rochefort, A. & Wuest, J.-D. (2007). J. Am. Chem. Soc. 129, 13774-13775.]). For its use as linker mol­ecule in the formation of porous metal–organic framework structures, see: Hausdorf et al. (2009[Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107-1113.]); Hu et al. (2009[Hu, Y., Xiang, X., Zhang, W., Wang, L., Bai, J. & Chen, B. (2009). Chem. Commun. 48, 7551-7553.]); Zheng et al. (2013[Zheng, B., Luo, J., Wang, F., Peng, Y., Li, G., Huo, Q. & Liu, Y. (2013). Cryst. Growth Des. 13, 1033-1044.]). For metal–organic frameworks, see: Münch et al. (2011[Münch, A. S., Seidel, J., Obst, A., Weber, E. & Mertens, F. O. R. L. (2011). Chem. Eur. J. 17, 10958-10964.]); Chen et al. (2005[Chen, B., Ockwig, N. W., Millward, A. R., Contreras, D. S. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4745-4749.]); Coles et al. (2002[Coles, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626-o628.]). For a similar hydrogen-bonded aggregate, see: Hauptvogel et al. (2011[Hauptvogel, I., Seichter, W. & Weber, E. (2011). Supramol. Chem. 23, 398-406.]). For O—H⋯O hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1563.]); Katzsch et al. (2011[Katzsch, F., Eissmann, D. & Weber, E. (2011). Struct. Chem. 23, 245-255.]). For C—H⋯O contacts, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]); Katzsch & Weber (2012[Katzsch, F. & Weber, E. (2012). Acta Cryst. E68, o2354-o2355.]); Fischer et al. (2011[Fischer, C., Gruber, T., Seichter, W. & Weber, E. (2011). Org. Biomol. Chem. 9, 4347-4352.]). For O⋯S contacts, see: Lu et al. (2011[Lu, J., Lu, Y., Yang, S. & Zhu, W. (2011). Struct. Chem. 22, 757-763.]). For ππ inter­actions, see: Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]).

[Scheme 1]

Experimental

Crystal data
  • C18H10O8·4C2H6OS

  • Mr = 666.81

  • Monoclinic, P 21 /n

  • a = 8.1406 (2) Å

  • b = 8.7328 (2) Å

  • c = 21.4351 (5) Å

  • β = 95.970 (1)°

  • V = 1515.56 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 K

  • 0.60 × 0.42 × 0.36 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.807, Tmax = 0.877

  • 20635 measured reflections

  • 2666 independent reflections

  • 2567 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.04

  • 2666 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1Gi 0.84 1.71 2.5451 (13) 171
O3—H3⋯O1Hii 0.84 1.76 2.5732 (13) 161
C1G—H1G2⋯O2iii 0.98 2.56 3.3138 (17) 134
C1G—H1G3⋯O4iv 0.98 2.71 3.5351 (17) 143
C2G—H2G1⋯O1Hv 0.98 2.57 3.5093 (18) 160
C2G—H2G2⋯O2iii 0.98 2.52 3.2783 (17) 135
C1H—H1H1⋯O4vi 0.98 2.57 3.5006 (18) 159
C1H—H1H2⋯O4vii 0.98 2.69 3.4427 (18) 134
C2H—H2H1⋯O1Hv 0.98 2.52 3.3409 (17) 141
C2H—H2H2⋯O1viii 0.98 2.67 3.4738 (17) 139
C2H—H2H2⋯O1Gix 0.98 2.54 3.1574 (17) 121
C2H—H2H2⋯O4vii 0.98 2.70 3.4604 (18) 135
Symmetry codes: (i) x-1, y, z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) -x, -y+2, -z+1; (viii) x, y, z-1; (ix) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the last years tetracarboxylic acid linker molecules of which 3,3',5,5'-biphenyltetracarboxylic acid is the prototype have proven highly effective both in the construction of porous metal–organic (MOF) (Chen et al., 2005; Münch et al., 2011) and hydrogen bond supported frameworks (Coles et al., 2002) as well as in the formation of hydrogen bond assembled layer structures (Zhou et al., 2007). Insertion of an ethynylene unit into the molecular backbone such as in the title compound, 5,5'–(ethynylene)diisophthalic acid, was undertaken in order to expand lattice porosity and also to introduce an additional interaction site for improved solid–gas adsorption behaviour (Hausdorf et al., 2009; Zheng et al., 2013). This has been confirmed showing high acetylene uptake of a corresponding MOF-framework (Hu et al., 2009). But as a rigid tetrafunctional carboxylic acid, the title compound should also capable of forming complex hydrogen bonded aggregate structures in the solid state (Hauptvogel et al., 2011) of which the present solvate with dimethyl sulfoxide finishes another evident proof. The title compound crystallizes in the monoclinic space group P21/n with half a molecule of 5,5'-(ethynylene)diisophthalic acid and two dimethyl sulfoxide molecules in the asymmetric part of the unit cell. The tolane fragment devites from ideal linear geometry (C2—C1C1i = 178.29 (18)°) and the carboxyl groups are slightly twisted out of the aromatic ring plane - dihedral angles 24.89 (1)° (O4C9—O3) and 7.40 (2)° (O2C8—O1)]. The principal molecules are vertically oriented to each other in a layer structure connected by two consecutively arranged solvent molecules via strong O—H···O hydrogen bonds (Bernstein et al., 1995; Katzsch et al., 2011) [d(O1···O1Gi) = 2.55Å, d(O3···O1Hii) = 2.57Å], O···S contacts [d(O1G···S1H) = 3.10Å] (Lu et al., 2011) as well as weak C—H···O interactions [d(C1G···O2iii) = 3.31Å, d(C2G···O2iii)= 3.28Å and d(C2G···O1Hv) = 3.51Å] (Desiraju & Steiner, 1999; Katzsch & Weber, 2012; Fischer et al., 2011). Superimposed tapes are held together by π-π interactions between the aromatic rings (Hunter & Sanders, 1990) and the interacting solvent molecules being included in channels along the crystallopgraphic a–axis. Symmetry code: (i) -x+1, -y+2, -z+2.

Related literature top

For the synthesis of principal compound, see: Hausdorf et al. (2009); Zhou et al. (2007). For its use as linker molecule in the formation of porous metal–organic framework structures, see: Hausdorf et al. (2009); Hu et al. (2009); Zheng et al. (2013). For metal–organic frameworks, see: Münch et al. (2011); Chen et al. (2005); Coles et al. (2002). For a similar hydrogen-bonded aggregate, see: Hauptvogel et al. (2011). For O—H···O hydrogen bonds, see: Bernstein et al. (1995); Katzsch et al. (2011). For C—H···O contacts, see: Desiraju & Steiner (1999); Katzsch & Weber (2012); Fischer et al. (2011). For O···S contacts, see: Lu et al. (2011). For ππ interactions, see: Hunter & Sanders (1990).

Experimental top

The titled compound was synthesized via a Sonogashira–Hagihara cross coupling reaction of dimethyl 5-ethynylisophthalate and dimethyl 5-iodoisophthalate. For the synthetic procedure, see: Hausdorf et al. (2009), Zhou et al. (2007). Colourless single crystals suitable for X-ray diffraction were grown by slow evaporation from a dimethyl sulfoxide/mesitylene (2:1) solution.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.84Å and Uiso(H) = 1.5Ueq(O) for hydroxyl H atoms, C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms, and C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, including atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Selected intermolecular interactions within the layer structure of the solvate.
[Figure 3] Fig. 3. Solvent channels along the crystallographic a–axis in the packing structure.
5,5'-(Ethyne-1,2-diyl)diisophthalic acid dimethyl sulfoxide tetrasolvate top
Crystal data top
C18H10O8·4C2H6OSF(000) = 700
Mr = 666.81Dx = 1.461 Mg m3
Monoclinic, P21/nMelting point > 623 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.1406 (2) ÅCell parameters from 9934 reflections
b = 8.7328 (2) Åθ = 2.5–49.6°
c = 21.4351 (5) ŵ = 0.38 mm1
β = 95.970 (1)°T = 100 K
V = 1515.56 (6) Å3Block, colourless
Z = 20.60 × 0.42 × 0.36 mm
Data collection top
Bruker APEXII CCD
diffractometer
2666 independent reflections
Radiation source: fine-focus sealed tube2567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω– and ϕ–scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.807, Tmax = 0.877k = 1010
20635 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0228P)2 + 1.1796P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2666 reflectionsΔρmax = 0.32 e Å3
197 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (7)
Crystal data top
C18H10O8·4C2H6OSV = 1515.56 (6) Å3
Mr = 666.81Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.1406 (2) ŵ = 0.38 mm1
b = 8.7328 (2) ÅT = 100 K
c = 21.4351 (5) Å0.60 × 0.42 × 0.36 mm
β = 95.970 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2666 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2567 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.877Rint = 0.021
20635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
2666 reflectionsΔρmin = 0.28 e Å3
197 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01957 (11)0.64073 (11)1.04506 (4)0.0150 (2)
H10.08820.59061.06350.023*
O20.23612 (11)0.67476 (11)0.97291 (5)0.0171 (2)
O30.21203 (11)1.12870 (12)0.83853 (4)0.0175 (2)
H30.25241.18640.80950.026*
O40.02782 (12)1.18846 (11)0.80107 (5)0.0188 (2)
C10.43140 (17)0.98735 (16)0.98804 (6)0.0140 (3)
C20.26574 (16)0.95657 (15)0.96125 (6)0.0126 (3)
C30.17287 (16)0.84319 (15)0.98761 (6)0.0124 (3)
H3A0.22150.78401.02190.015*
C40.01012 (16)0.81681 (15)0.96390 (6)0.0120 (3)
C50.06279 (16)0.90560 (15)0.91469 (6)0.0122 (3)
H50.17510.88940.89930.015*
C60.02860 (16)1.01785 (15)0.88804 (6)0.0123 (3)
C70.19281 (16)1.04245 (15)0.91065 (6)0.0128 (3)
H70.25561.11780.89170.015*
C80.09463 (16)0.70282 (15)0.99368 (6)0.0127 (3)
C90.04995 (16)1.12030 (15)0.83737 (6)0.0136 (3)
O1G0.78072 (12)0.50559 (12)0.11049 (5)0.0203 (2)
S1G0.61418 (4)0.44680 (4)0.081415 (15)0.01417 (10)
C1G0.55281 (17)0.31280 (16)0.13740 (7)0.0179 (3)
H1G10.63430.23000.14300.027*
H1G20.44460.27010.12240.027*
H1G30.54590.36470.17760.027*
C2G0.47196 (17)0.59699 (16)0.09296 (7)0.0187 (3)
H2G10.48140.62520.13740.028*
H2G20.35920.56200.07990.028*
H2G30.49710.68620.06790.028*
O1H0.10288 (12)0.21753 (11)0.25639 (5)0.0197 (2)
S1H0.00487 (4)0.32301 (4)0.212754 (15)0.01365 (10)
C1H0.09563 (18)0.45741 (18)0.26201 (7)0.0212 (3)
H1H10.18210.40650.28290.032*
H1H20.14390.54240.23650.032*
H1H30.01050.49690.29360.032*
C2H0.13616 (17)0.45062 (17)0.18084 (7)0.0181 (3)
H2H10.21590.48900.21460.027*
H2H20.07500.53680.16040.027*
H2H30.19490.39600.15000.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0133 (5)0.0160 (5)0.0157 (5)0.0021 (4)0.0013 (4)0.0042 (4)
O20.0125 (5)0.0181 (5)0.0201 (5)0.0040 (4)0.0010 (4)0.0017 (4)
O30.0128 (5)0.0213 (5)0.0175 (5)0.0016 (4)0.0024 (4)0.0052 (4)
O40.0194 (5)0.0200 (5)0.0172 (5)0.0009 (4)0.0030 (4)0.0055 (4)
C10.0133 (6)0.0144 (7)0.0148 (6)0.0008 (5)0.0034 (5)0.0024 (5)
C20.0102 (6)0.0144 (6)0.0136 (6)0.0012 (5)0.0028 (5)0.0030 (5)
C30.0125 (6)0.0129 (6)0.0119 (6)0.0025 (5)0.0014 (5)0.0007 (5)
C40.0125 (6)0.0114 (6)0.0124 (6)0.0006 (5)0.0026 (5)0.0036 (5)
C50.0107 (6)0.0138 (6)0.0119 (6)0.0000 (5)0.0004 (5)0.0039 (5)
C60.0134 (6)0.0128 (6)0.0110 (6)0.0017 (5)0.0019 (5)0.0032 (5)
C70.0129 (6)0.0129 (6)0.0132 (6)0.0004 (5)0.0047 (5)0.0018 (5)
C80.0138 (7)0.0109 (6)0.0135 (6)0.0015 (5)0.0023 (5)0.0027 (5)
C90.0150 (7)0.0128 (6)0.0126 (6)0.0000 (5)0.0005 (5)0.0033 (5)
O1G0.0126 (5)0.0287 (6)0.0191 (5)0.0055 (4)0.0007 (4)0.0071 (4)
S1G0.01290 (18)0.01668 (18)0.01294 (17)0.00069 (13)0.00131 (12)0.00166 (12)
C1G0.0165 (7)0.0184 (7)0.0188 (7)0.0021 (6)0.0020 (5)0.0053 (6)
C2G0.0170 (7)0.0164 (7)0.0220 (7)0.0015 (6)0.0001 (5)0.0003 (6)
O1H0.0208 (5)0.0154 (5)0.0210 (5)0.0003 (4)0.0066 (4)0.0022 (4)
S1H0.01273 (17)0.01452 (18)0.01321 (17)0.00085 (13)0.00095 (12)0.00052 (12)
C1H0.0205 (7)0.0250 (8)0.0188 (7)0.0030 (6)0.0054 (6)0.0024 (6)
C2H0.0152 (7)0.0205 (7)0.0187 (7)0.0021 (6)0.0028 (5)0.0009 (6)
Geometric parameters (Å, º) top
O1—C81.3192 (16)O1G—S1G1.5213 (10)
O1—H10.8400S1G—C2G1.7837 (14)
O2—C81.2158 (16)S1G—C1G1.7843 (14)
O3—C91.3243 (16)C1G—H1G10.9800
O3—H30.8400C1G—H1G20.9800
O4—C91.2096 (17)C1G—H1G30.9800
C1—C1i1.200 (3)C2G—H2G10.9800
C1—C21.4351 (19)C2G—H2G20.9800
C2—C71.3990 (19)C2G—H2G30.9800
C2—C31.3999 (19)O1H—S1H1.5239 (10)
C3—C41.3880 (18)S1H—C2H1.7864 (14)
C3—H3A0.9500S1H—C1H1.7890 (14)
C4—C51.3913 (19)C1H—H1H10.9800
C4—C81.4963 (18)C1H—H1H20.9800
C5—C61.3890 (19)C1H—H1H30.9800
C5—H50.9500C2H—H2H10.9800
C6—C71.3904 (19)C2H—H2H20.9800
C6—C91.4982 (18)C2H—H2H30.9800
C7—H70.9500
C8—O1—H1109.5C2G—S1G—C1G99.07 (7)
C9—O3—H3109.5S1G—C1G—H1G1109.5
C1i—C1—C2178.29 (18)S1G—C1G—H1G2109.5
C7—C2—C3119.25 (12)H1G1—C1G—H1G2109.5
C7—C2—C1121.00 (12)S1G—C1G—H1G3109.5
C3—C2—C1119.70 (12)H1G1—C1G—H1G3109.5
C4—C3—C2120.31 (12)H1G2—C1G—H1G3109.5
C4—C3—H3A119.8S1G—C2G—H2G1109.5
C2—C3—H3A119.8S1G—C2G—H2G2109.5
C3—C4—C5120.05 (12)H2G1—C2G—H2G2109.5
C3—C4—C8121.26 (12)S1G—C2G—H2G3109.5
C5—C4—C8118.49 (12)H2G1—C2G—H2G3109.5
C6—C5—C4120.04 (12)H2G2—C2G—H2G3109.5
C6—C5—H5120.0O1H—S1H—C2H105.09 (6)
C4—C5—H5120.0O1H—S1H—C1H106.32 (6)
C5—C6—C7120.15 (12)C2H—S1H—C1H97.93 (7)
C5—C6—C9120.87 (12)S1H—C1H—H1H1109.5
C7—C6—C9118.87 (12)S1H—C1H—H1H2109.5
C6—C7—C2120.16 (12)H1H1—C1H—H1H2109.5
C6—C7—H7119.9S1H—C1H—H1H3109.5
C2—C7—H7119.9H1H1—C1H—H1H3109.5
O2—C8—O1124.18 (12)H1H2—C1H—H1H3109.5
O2—C8—C4122.56 (12)S1H—C2H—H2H1109.5
O1—C8—C4113.23 (11)S1H—C2H—H2H2109.5
O4—C9—O3125.03 (12)H2H1—C2H—H2H2109.5
O4—C9—C6123.21 (12)S1H—C2H—H2H3109.5
O3—C9—C6111.74 (11)H2H1—C2H—H2H3109.5
O1G—S1G—C2G104.99 (6)H2H2—C2H—H2H3109.5
O1G—S1G—C1G104.22 (6)
C7—C2—C3—C40.23 (19)C3—C2—C7—C61.70 (19)
C1—C2—C3—C4177.18 (12)C1—C2—C7—C6175.67 (12)
C2—C3—C4—C51.53 (19)C3—C4—C8—O2178.09 (12)
C2—C3—C4—C8176.32 (12)C5—C4—C8—O27.04 (19)
C3—C4—C5—C61.83 (19)C3—C4—C8—O13.81 (17)
C8—C4—C5—C6176.76 (11)C5—C4—C8—O1171.06 (11)
C4—C5—C6—C70.36 (19)C5—C6—C9—O4158.78 (13)
C4—C5—C6—C9176.70 (12)C7—C6—C9—O424.84 (19)
C5—C6—C7—C21.41 (19)C5—C6—C9—O322.60 (17)
C9—C6—C7—C2175.00 (12)C7—C6—C9—O3153.78 (12)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Gii0.841.712.5451 (13)171
O3—H3···O1Hiii0.841.762.5732 (13)161
C1G—H1G2···O2iv0.982.563.3138 (17)134
C1G—H1G3···O4v0.982.713.5351 (17)143
C2G—H2G1···O1Hvi0.982.573.5093 (18)160
C2G—H2G2···O2iv0.982.523.2783 (17)135
C1H—H1H1···O4vii0.982.573.5006 (18)159
C1H—H1H2···O4viii0.982.693.4427 (18)134
C2H—H2H1···O1Hvi0.982.523.3409 (17)141
C2H—H2H2···O1ix0.982.673.4738 (17)139
C2H—H2H2···O1Gx0.982.543.1574 (17)121
C2H—H2H2···O4viii0.982.703.4604 (18)135
Symmetry codes: (ii) x1, y, z+1; (iii) x1/2, y+3/2, z+1/2; (iv) x, y+1, z+1; (v) x+1/2, y+3/2, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+3/2, z1/2; (viii) x, y+2, z+1; (ix) x, y, z1; (x) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H10O8·4C2H6OS
Mr666.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.1406 (2), 8.7328 (2), 21.4351 (5)
β (°) 95.970 (1)
V3)1515.56 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.60 × 0.42 × 0.36
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.807, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
20635, 2666, 2567
Rint0.021
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.04
No. of reflections2666
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Gi0.841.712.5451 (13)171.3
O3—H3···O1Hii0.841.762.5732 (13)161.2
C1G—H1G2···O2iii0.982.563.3138 (17)133.6
C1G—H1G3···O4iv0.982.713.5351 (17)142.6
C2G—H2G1···O1Hv0.982.573.5093 (18)159.7
C2G—H2G2···O2iii0.982.523.2783 (17)134.6
C1H—H1H1···O4vi0.982.573.5006 (18)158.6
C1H—H1H2···O4vii0.982.693.4427 (18)134.1
C2H—H2H1···O1Hv0.982.523.3409 (17)141.2
C2H—H2H2···O1viii0.982.673.4738 (17)139.3
C2H—H2H2···O1Gix0.982.543.1574 (17)121.3
C2H—H2H2···O4vii0.982.703.4604 (18)134.9
Symmetry codes: (i) x1, y, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x+1/2, y+3/2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x1/2, y+3/2, z1/2; (vii) x, y+2, z+1; (viii) x, y, z1; (ix) x1, y, z.
 

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (Priority Program 1362 "Porous Metal–Organic Frameworks") is gratefully acknowledged by A·M. F·K. thanks the European Union (European regional development fund) and the Ministry of Science and Art of Saxony (Cluster of Excellence "Structure Design of Novel High–Performance Materials via Atomic Design and Defect Engineering [ADDE]").

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1563.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, B., Ockwig, N. W., Millward, A. R., Contreras, D. S. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4745–4749.  Web of Science CSD CrossRef CAS Google Scholar
First citationColes, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626–o628.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationFischer, C., Gruber, T., Seichter, W. & Weber, E. (2011). Org. Biomol. Chem. 9, 4347–4352.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHauptvogel, I., Seichter, W. & Weber, E. (2011). Supramol. Chem. 23, 398–406.  Web of Science CSD CrossRef CAS Google Scholar
First citationHausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107–1113.  Web of Science CSD CrossRef Google Scholar
First citationHu, Y., Xiang, X., Zhang, W., Wang, L., Bai, J. & Chen, B. (2009). Chem. Commun. 48, 7551–7553.  Web of Science CSD CrossRef Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationKatzsch, F., Eissmann, D. & Weber, E. (2011). Struct. Chem. 23, 245–255.  Web of Science CSD CrossRef Google Scholar
First citationKatzsch, F. & Weber, E. (2012). Acta Cryst. E68, o2354–o2355.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLu, J., Lu, Y., Yang, S. & Zhu, W. (2011). Struct. Chem. 22, 757–763.  Web of Science CrossRef CAS Google Scholar
First citationMünch, A. S., Seidel, J., Obst, A., Weber, E. & Mertens, F. O. R. L. (2011). Chem. Eur. J. 17, 10958–10964.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, B., Luo, J., Wang, F., Peng, Y., Li, G., Huo, Q. & Liu, Y. (2013). Cryst. Growth Des. 13, 1033–1044.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, H., Dang, H., Yi, J.-H., Nanci, A., Rochefort, A. & Wuest, J.-D. (2007). J. Am. Chem. Soc. 129, 13774–13775.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o908-o909
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds