organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-4-(4-meth­­oxy­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclo­hepta­[b]pyridine

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Physics, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60240 Tokat, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: icelik@cumhuriyet.edu.tr

(Received 18 April 2013; accepted 20 May 2013; online 25 May 2013)

In the title compound, C23H22BrNO, the cyclo­heptane ring adopts a chair conformation. The pyridine ring makes dihedral angles of 58.63 (15) and 8.27 (16)° with the benzene rings. The dihedral angle between the benzene rings is 56.68 (17)°. The crystal packing features C—Br⋯π inter­actions [Br⋯centroid distances= 3.813 (2) and 3.839 (2) Å; C—Br⋯centroid = 126.25 (10) and 138.31 (10)°, respectively, forming a three dimensional supramolecular architecture.

Related literature

For the biological and pharmacological properties of pyridine-based heterocycles, see: Aida et al. (2009[Aida, W., Ohtsuki, T., Li, X. & Ishibashi, M. (2009). Tetrahedron, 65, 369-373.]); Ceylan & Gezegen (2008[Ceylan, N. M. & Gezegen, H. (2008). Turk. J. Chem. 32, 55-61.]); Cundy et al. (1997[Cundy, D. J., Holan, G., Otaegui, M. & Simpson, G. W. (1997). Bioorg. Med. Chem. Lett. 7, 669-674.]); El-borai et al. (2012[El-borai, M. A., Rizk, H. F., Abd-Aal, M. F. & El-Deeb, I. Y. (2012). Eur. J. Med. Chem. 48, 92-96.]); Gezegen et al. (2010[Gezegen, H., Dingil, A. & Ceylan, M. (2010). J. Heterocycl. Chem. 47, 1017-1024.]); Girgis et al. (2007[Girgis, A. S., Mishriky, N., Ellithey, M., Hosni, H. M. & Farag, H. (2007). Bioorg. Med. Chem. 15, 2403-2413.]); Hatanaka et al. (2005[Hatanaka, M., Takahashi, K., Nakamura, S. & Mashino, T. (2005). Bioorg. Med. Chem. 13, 6763-6770.]); Khidre et al. (2011[Khidre, R. E., Abu-Hashem, A. A. & El-Shazly, M. (2011). Eur. J. Med. Chem. 46, 5057-5064.]); Laine-Cessac et al. (1997[Laine-Cessac, P., Cailleux, A. & Allain, P. (1997). Biochem. Pharmacol. 54, 863-870.]); Menegatti et al. (2006[Menegatti, R., Silva, G. M. S., Zapata-Sudo, G., Raimundo, J. M., Sudo, R. T., Barreiro, E. J. & Fraga, C. A. M. (2006). Bioorg. Med. Chem. 14, 632-640.]); Musiol et al. (2007[Musiol, R., Jampilek, J., Kralova, K., Richardson, D. R., Kalinowski, D., Podeszwa, B., Finster, J., Niedbala, H., Palka, A. & Polanski, J. (2007). Bioorg. Med. Chem. 105, 1280-1288.]); Rajanarendar et al. (2012[Rajanarendar, E., Raju, S., Reddy, M. N., Krishna, S. R., Kiran, L. H., Reddy, A. R. N. & Reddy, Y. N. (2012). Eur. J. Med. Chem. 50, 274-279.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22BrNO

  • Mr = 408.32

  • Monoclinic, P 21 /c

  • a = 10.409 (5) Å

  • b = 10.054 (5) Å

  • c = 18.428 (5) Å

  • β = 94.850 (5)°

  • V = 1921.6 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 296 K

  • 0.58 × 0.42 × 0.26 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.355, Tmax = 0.572

  • 28207 measured reflections

  • 3986 independent reflections

  • 3083 reflections with I > 2σ(I)

  • Rint = 0.178

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.119

  • S = 1.12

  • 3986 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine based heterocycles are found in structure of many natural and biologically important compounds (Aida et al., 2009; Laine-Cessac et al., 1997; Musiol et al., 2007). Also they are known to exhibit numerous biological and pharmacological properties such as antimicrobial (El-borai et al., 2012), antifungal (Khidre et al., 2011), antiviral (Cundy et al., 1997), anticancer (Rajanarendar et al., 2012), antioxidant (Hatanaka et al., 2005), anti-inflammatory (Girgis et al., 2007) and analgesic (Menegatti et al., 2006) activities. In this paper we report synthesis of 2-(4-bromophenyl)-4-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine with high yield and its crystal structure.

The molecular structure of the title compound (I) is shown in Fig. 1. The cycloheptane ring (C4–C10) of (I) adopts a chair conformation [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.422 (4) Å and ϕ(2) = 311.3 (5)°]. The pyridine ring (N1/C1–C5) makes dihedral angles of 58.63 (15) and 8.27 (16)° with the two benzene rings (C11–C16 and C18–C23), respectively, which have a dihedral angle of 56.68 (17)° between them.

The crystal packing is stabilized by C—Br···π interactions (C21—Br1···Cg1i: Br···A = 3.813 (2) Å, D—H···A = 126.25 (10)°; C21—Br1···Cg2ii: Br···A = 3.839 (2) Å, D—H···A = 138.31 (10)°; Cg1 and Cg2 are the centroids of the N1/C1–C5 and C11–C16 rings, respectively; symmetry codes: (i) x, 1/2-y, 1/2 + z; (ii) -x, -y, 1-z). Fig. 2 represents the molecular packing viewed down the b axis.

Related literature top

For the biological and pharmacological properties of pyridine-based heterocycles, see: Aida et al. (2009); Ceylan & Gezegen (2008); Cundy et al. (1997); El-borai et al. (2012); Gezegen et al. (2010); Girgis et al. (2007); Hatanaka et al. (2005); Khidre et al. (2011); Laine-Cessac et al. (1997); Menegatti et al. (2006); Musiol et al. (2007); Rajanarendar et al. (2012). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

2-(4-Bromophenyl)-4-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine was synthesized from the 1,5-diketone derivative (Ceylan & Gezegen, 2008) according to the literature method (Gezegen et al., 2010). To a solution of 2-[3-(4-bromophenyl)-1-(4-methoxyphenyl)-3-oxopropyl]cycloheptanone (1 mmol) in EtOH-AcOH (20 ml 1:1 v/v) was added NH4Ac (4 mmol) and the mixture refluxed for 6 h. After completion of the reaction, the solvent was removed under vacuum and the residue was extracted with CH2Cl2 (2 × 25 ml). The organic layer was dried over Na2SO4 and evaporated. The crude product was purified by column chromatography (on a silica gel) eluting with hexane/CHCl3 (3:1 v/v). The obtained brown product was crystallized from EtOH to give pure 2-(4-bromophenyl)-4-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine in 95% yield; m. p. = 396–398 K.

Refinement top

H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). Crystals of the title compound were of limited quality. Even though it was possible to select a specimen suitable for X-ray diffraction experiment, the data obtained were rather poor and the value of Rint remained high (17.8%).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis.
2-(4-Bromophenyl)-4-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine top
Crystal data top
C23H22BrNOF(000) = 840
Mr = 408.32Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3507 reflections
a = 10.409 (5) Åθ = 2.0–29.7°
b = 10.054 (5) ŵ = 2.15 mm1
c = 18.428 (5) ÅT = 296 K
β = 94.850 (5)°Prism, yellow
V = 1921.6 (14) Å30.58 × 0.42 × 0.26 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3986 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3083 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.178
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 1313
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.355, Tmax = 0.572l = 2323
28207 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.6943P]
where P = (Fo2 + 2Fc2)/3
3986 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C23H22BrNOV = 1921.6 (14) Å3
Mr = 408.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.409 (5) ŵ = 2.15 mm1
b = 10.054 (5) ÅT = 296 K
c = 18.428 (5) Å0.58 × 0.42 × 0.26 mm
β = 94.850 (5)°
Data collection top
Stoe IPDS 2
diffractometer
3986 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3083 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 0.572Rint = 0.178
28207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.12Δρmax = 0.67 e Å3
3986 reflectionsΔρmin = 0.42 e Å3
235 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22100 (4)0.14765 (5)0.68332 (2)0.0767 (1)
O10.3941 (2)0.0596 (2)0.06337 (14)0.0741 (9)
N10.3068 (2)0.0105 (3)0.32719 (14)0.0564 (9)
C10.1937 (3)0.0478 (3)0.35239 (16)0.0532 (10)
C20.0825 (3)0.0575 (3)0.30651 (17)0.0562 (10)
C30.0829 (3)0.0282 (3)0.23272 (17)0.0544 (10)
C40.2004 (3)0.0098 (3)0.20640 (17)0.0553 (10)
C50.3082 (3)0.0176 (3)0.25619 (17)0.0568 (10)
C60.4390 (3)0.0579 (4)0.2335 (2)0.0700 (12)
C70.4441 (4)0.1991 (4)0.2031 (2)0.0798 (16)
C80.3898 (4)0.2128 (5)0.1245 (2)0.0865 (17)
C90.2484 (4)0.1809 (4)0.1093 (2)0.0839 (16)
C100.2126 (4)0.0375 (4)0.12674 (19)0.0721 (14)
C110.0402 (3)0.0400 (3)0.18588 (16)0.0551 (10)
C120.1082 (3)0.1580 (3)0.18180 (18)0.0595 (11)
C130.2265 (3)0.1698 (3)0.14134 (18)0.0601 (11)
C140.2783 (3)0.0606 (3)0.10434 (17)0.0586 (11)
C150.2119 (4)0.0577 (4)0.1079 (2)0.0728 (12)
C160.0948 (4)0.0675 (4)0.1480 (2)0.0691 (11)
C170.4694 (4)0.1773 (4)0.0621 (2)0.0760 (14)
C180.1993 (3)0.0751 (3)0.43212 (16)0.0505 (9)
C190.3097 (3)0.0476 (4)0.47628 (18)0.0647 (11)
C200.3172 (3)0.0689 (4)0.55055 (19)0.0641 (11)
C210.2123 (3)0.1207 (3)0.58153 (17)0.0562 (10)
C220.1016 (3)0.1529 (4)0.53894 (18)0.0658 (11)
C230.0957 (3)0.1291 (3)0.46491 (18)0.0624 (11)
H20.006200.084000.325100.0670*
H6A0.501700.050600.275300.0830*
H6B0.463900.004000.196900.0830*
H7A0.533200.228600.207000.0960*
H7B0.396600.257600.233000.0960*
H8A0.438300.154800.094800.1040*
H8B0.403900.303400.108900.1040*
H9A0.199100.240600.137700.1000*
H9B0.223300.198000.058200.1000*
H10A0.277600.021400.109800.0870*
H10B0.131200.016100.099600.0870*
H120.073700.231800.206900.0710*
H130.270300.250500.139300.0720*
H150.246400.131700.083000.0870*
H160.051300.148400.149700.0830*
H17A0.547900.163700.031800.1140*
H17B0.421800.249200.042900.1140*
H17C0.489300.198600.110600.1140*
H190.381200.013600.455500.0780*
H200.392300.048400.579300.0770*
H220.031700.190200.559800.0790*
H230.020400.149800.436300.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0721 (2)0.1010 (3)0.0569 (2)0.0059 (2)0.0055 (2)0.0121 (2)
O10.0727 (15)0.0659 (15)0.0804 (16)0.0092 (12)0.0131 (12)0.0115 (12)
N10.0601 (16)0.0502 (14)0.0594 (15)0.0013 (12)0.0077 (12)0.0005 (12)
C10.0608 (18)0.0430 (16)0.0564 (16)0.0004 (14)0.0080 (14)0.0016 (13)
C20.0578 (17)0.0502 (18)0.0613 (17)0.0005 (14)0.0096 (14)0.0026 (14)
C30.0634 (18)0.0427 (16)0.0570 (17)0.0029 (14)0.0039 (14)0.0017 (13)
C40.0655 (19)0.0487 (17)0.0528 (16)0.0003 (14)0.0115 (14)0.0005 (13)
C50.0653 (18)0.0504 (18)0.0557 (17)0.0000 (15)0.0119 (14)0.0012 (14)
C60.065 (2)0.081 (2)0.065 (2)0.0042 (19)0.0118 (16)0.0063 (18)
C70.083 (3)0.082 (3)0.076 (2)0.019 (2)0.017 (2)0.005 (2)
C80.094 (3)0.085 (3)0.083 (3)0.008 (2)0.022 (2)0.024 (2)
C90.089 (3)0.090 (3)0.074 (2)0.008 (2)0.015 (2)0.023 (2)
C100.073 (2)0.085 (3)0.0592 (19)0.001 (2)0.0102 (16)0.0013 (18)
C110.0635 (18)0.0493 (18)0.0532 (16)0.0004 (15)0.0089 (14)0.0016 (13)
C120.0670 (19)0.0494 (18)0.0622 (18)0.0037 (15)0.0066 (15)0.0081 (14)
C130.0662 (19)0.0509 (19)0.0631 (18)0.0062 (15)0.0049 (15)0.0036 (14)
C140.0626 (19)0.0565 (19)0.0565 (17)0.0017 (16)0.0031 (14)0.0044 (14)
C150.081 (2)0.052 (2)0.082 (2)0.0008 (18)0.0129 (19)0.0192 (17)
C160.081 (2)0.0498 (19)0.075 (2)0.0078 (17)0.0021 (18)0.0101 (16)
C170.075 (2)0.080 (3)0.072 (2)0.013 (2)0.0000 (18)0.0022 (19)
C180.0569 (17)0.0397 (15)0.0550 (16)0.0012 (13)0.0060 (13)0.0014 (13)
C190.0603 (19)0.071 (2)0.0634 (19)0.0084 (17)0.0082 (15)0.0124 (16)
C200.0579 (18)0.070 (2)0.0637 (19)0.0051 (17)0.0006 (15)0.0079 (17)
C210.0610 (18)0.0501 (18)0.0580 (17)0.0058 (14)0.0075 (14)0.0049 (13)
C220.0625 (19)0.077 (2)0.0589 (18)0.0100 (18)0.0112 (15)0.0016 (17)
C230.0607 (18)0.069 (2)0.0574 (17)0.0082 (16)0.0049 (14)0.0040 (15)
Geometric parameters (Å, º) top
Br1—C211.890 (3)C20—C211.377 (5)
O1—C141.367 (4)C21—C221.377 (5)
O1—C171.419 (5)C22—C231.381 (5)
N1—C11.355 (4)C2—H20.9300
N1—C51.340 (4)C6—H6A0.9700
C1—C21.378 (4)C6—H6B0.9700
C1—C181.491 (4)C7—H7A0.9700
C2—C31.392 (4)C7—H7B0.9700
C3—C41.406 (4)C8—H8A0.9700
C3—C111.488 (4)C8—H8B0.9700
C4—C51.390 (4)C9—H9A0.9700
C4—C101.510 (5)C9—H9B0.9700
C5—C61.513 (5)C10—H10A0.9700
C6—C71.529 (6)C10—H10B0.9700
C7—C81.516 (5)C12—H120.9300
C8—C91.509 (6)C13—H130.9300
C9—C101.530 (6)C15—H150.9300
C11—C121.380 (4)C16—H160.9300
C11—C161.383 (5)C17—H17A0.9600
C12—C131.390 (5)C17—H17B0.9600
C13—C141.378 (4)C17—H17C0.9600
C14—C151.374 (5)C19—H190.9300
C15—C161.375 (6)C20—H200.9300
C18—C191.379 (5)C22—H220.9300
C18—C231.390 (4)C23—H230.9300
C19—C201.381 (5)
C14—O1—C17117.6 (3)C7—C6—H6B109.00
C1—N1—C5118.3 (2)H6A—C6—H6B108.00
N1—C1—C2121.2 (3)C6—C7—H7A109.00
N1—C1—C18115.2 (3)C6—C7—H7B109.00
C2—C1—C18123.5 (3)C8—C7—H7A109.00
C1—C2—C3120.9 (3)C8—C7—H7B109.00
C2—C3—C4118.0 (3)H7A—C7—H7B108.00
C2—C3—C11118.5 (3)C7—C8—H8A108.00
C4—C3—C11123.6 (3)C7—C8—H8B108.00
C3—C4—C5117.7 (3)C9—C8—H8A108.00
C3—C4—C10122.2 (3)C9—C8—H8B108.00
C5—C4—C10120.1 (3)H8A—C8—H8B107.00
N1—C5—C4123.9 (3)C8—C9—H9A109.00
N1—C5—C6114.3 (3)C8—C9—H9B109.00
C4—C5—C6121.9 (3)C10—C9—H9A109.00
C5—C6—C7114.2 (3)C10—C9—H9B109.00
C6—C7—C8114.4 (3)H9A—C9—H9B108.00
C7—C8—C9115.9 (3)C4—C10—H10A109.00
C8—C9—C10114.4 (4)C4—C10—H10B109.00
C4—C10—C9114.8 (3)C9—C10—H10A109.00
C3—C11—C12120.8 (3)C9—C10—H10B109.00
C3—C11—C16121.9 (3)H10A—C10—H10B108.00
C12—C11—C16117.2 (3)C11—C12—H12119.00
C11—C12—C13122.0 (3)C13—C12—H12119.00
C12—C13—C14119.3 (3)C12—C13—H13120.00
O1—C14—C13124.7 (3)C14—C13—H13120.00
O1—C14—C15115.9 (3)C14—C15—H15120.00
C13—C14—C15119.5 (3)C16—C15—H15120.00
C14—C15—C16120.5 (4)C11—C16—H16119.00
C11—C16—C15121.6 (4)C15—C16—H16119.00
C1—C18—C19120.4 (3)O1—C17—H17A109.00
C1—C18—C23122.2 (3)O1—C17—H17B109.00
C19—C18—C23117.4 (3)O1—C17—H17C109.00
C18—C19—C20121.9 (3)H17A—C17—H17B109.00
C19—C20—C21119.3 (3)H17A—C17—H17C110.00
Br1—C21—C20119.5 (2)H17B—C17—H17C110.00
Br1—C21—C22120.0 (2)C18—C19—H19119.00
C20—C21—C22120.5 (3)C20—C19—H19119.00
C21—C22—C23119.2 (3)C19—C20—H20120.00
C18—C23—C22121.7 (3)C21—C20—H20120.00
C1—C2—H2120.00C21—C22—H22120.00
C3—C2—H2120.00C23—C22—H22120.00
C5—C6—H6A109.00C18—C23—H23119.00
C5—C6—H6B109.00C22—C23—H23119.00
C7—C6—H6A109.00
C17—O1—C14—C133.6 (5)C3—C4—C5—N10.9 (5)
C17—O1—C14—C15176.1 (3)C4—C5—C6—C762.8 (4)
C5—N1—C1—C20.3 (5)N1—C5—C6—C7117.9 (3)
C1—N1—C5—C6179.9 (3)C5—C6—C7—C879.4 (4)
C1—N1—C5—C40.5 (5)C6—C7—C8—C962.9 (5)
C5—N1—C1—C18179.0 (3)C7—C8—C9—C1061.7 (5)
C2—C1—C18—C19171.9 (3)C8—C9—C10—C479.3 (4)
N1—C1—C18—C197.4 (4)C3—C11—C16—C15176.5 (3)
N1—C1—C18—C23172.3 (3)C12—C11—C16—C150.0 (5)
N1—C1—C2—C30.5 (5)C3—C11—C12—C13176.8 (3)
C2—C1—C18—C238.4 (5)C16—C11—C12—C130.2 (5)
C18—C1—C2—C3178.7 (3)C11—C12—C13—C140.3 (5)
C1—C2—C3—C40.8 (4)C12—C13—C14—C150.2 (5)
C1—C2—C3—C11179.8 (3)C12—C13—C14—O1179.4 (3)
C11—C3—C4—C102.3 (5)O1—C14—C15—C16179.6 (3)
C11—C3—C4—C5179.7 (3)C13—C14—C15—C160.0 (5)
C4—C3—C11—C12122.9 (3)C14—C15—C16—C110.1 (6)
C2—C3—C11—C1256.5 (4)C1—C18—C19—C20178.5 (3)
C2—C3—C11—C16119.9 (4)C23—C18—C19—C201.8 (5)
C2—C3—C4—C51.0 (4)C1—C18—C23—C22179.4 (3)
C4—C3—C11—C1660.7 (4)C19—C18—C23—C220.9 (5)
C2—C3—C4—C10177.1 (3)C18—C19—C20—C210.9 (6)
C10—C4—C5—N1177.3 (3)C19—C20—C21—Br1179.1 (3)
C5—C4—C10—C965.7 (4)C19—C20—C21—C221.0 (5)
C10—C4—C5—C62.0 (5)Br1—C21—C22—C23178.2 (3)
C3—C4—C10—C9116.2 (4)C20—C21—C22—C231.8 (5)
C3—C4—C5—C6179.8 (3)C21—C22—C23—C180.9 (5)

Experimental details

Crystal data
Chemical formulaC23H22BrNO
Mr408.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.409 (5), 10.054 (5), 18.428 (5)
β (°) 94.850 (5)
V3)1921.6 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.58 × 0.42 × 0.26
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.355, 0.572
No. of measured, independent and
observed [I > 2σ(I)] reflections
28207, 3986, 3083
Rint0.178
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.119, 1.12
No. of reflections3986
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.42

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAida, W., Ohtsuki, T., Li, X. & Ishibashi, M. (2009). Tetrahedron, 65, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationCeylan, N. M. & Gezegen, H. (2008). Turk. J. Chem. 32, 55–61.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCundy, D. J., Holan, G., Otaegui, M. & Simpson, G. W. (1997). Bioorg. Med. Chem. Lett. 7, 669–674.  CrossRef CAS Web of Science Google Scholar
First citationEl-borai, M. A., Rizk, H. F., Abd-Aal, M. F. & El-Deeb, I. Y. (2012). Eur. J. Med. Chem. 48, 92–96.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGezegen, H., Dingil, A. & Ceylan, M. (2010). J. Heterocycl. Chem. 47, 1017–1024.  Web of Science CrossRef CAS Google Scholar
First citationGirgis, A. S., Mishriky, N., Ellithey, M., Hosni, H. M. & Farag, H. (2007). Bioorg. Med. Chem. 15, 2403–2413.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHatanaka, M., Takahashi, K., Nakamura, S. & Mashino, T. (2005). Bioorg. Med. Chem. 13, 6763–6770.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhidre, R. E., Abu-Hashem, A. A. & El-Shazly, M. (2011). Eur. J. Med. Chem. 46, 5057–5064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLaine-Cessac, P., Cailleux, A. & Allain, P. (1997). Biochem. Pharmacol. 54, 863–870.  CAS PubMed Web of Science Google Scholar
First citationMenegatti, R., Silva, G. M. S., Zapata-Sudo, G., Raimundo, J. M., Sudo, R. T., Barreiro, E. J. & Fraga, C. A. M. (2006). Bioorg. Med. Chem. 14, 632–640.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusiol, R., Jampilek, J., Kralova, K., Richardson, D. R., Kalinowski, D., Podeszwa, B., Finster, J., Niedbala, H., Palka, A. & Polanski, J. (2007). Bioorg. Med. Chem. 105, 1280–1288.  Web of Science CrossRef Google Scholar
First citationRajanarendar, E., Raju, S., Reddy, M. N., Krishna, S. R., Kiran, L. H., Reddy, A. R. N. & Reddy, Y. N. (2012). Eur. J. Med. Chem. 50, 274–279.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds