organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o933-o934

(1S,3S,8R,9S,11R)-10,10-Di­chloro-3,7,7,11-tetra­methyl­tetra­cyclo[6.5.0.01,3.09,11]trideca­ne

aLaboratoire de Chimie des Substances Naturelles, `Unité Associé au CNRST (URAC16)', Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide, Appliquée, Faculté des Sciences, Université MohammedV-Agdal , Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: n_ourhriss@yahoo.fr

(Received 9 May 2013; accepted 15 May 2013; online 22 May 2013)

The title compound, C17H26Cl2, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus Atlantica). The asymmetric unit contains two independent mol­ecules with similar conformations. Each mol­ecule is built up from fused six- and seven-membered rings and two three-membered rings from the reaction of β-himachalene with di­chloro­carbene. In both mol­ecules, the six-membered ring has a half-chair conformation, whereas the seven-membered ring displays a boat conformation. The absolute configuration was established from anomalous dispersion effects.

Related literature

For the reactivity and biological properties of β-himachalene, see: El Haib et al. (2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoıty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Auhmani et al. (2002[Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699-707.]). For related structures, see: Oukhrib et al. (2013[Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521-o522.]); Ourhriss et al. (2013[Ourhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H26Cl2

  • Mr = 301.28

  • Monoclinic, P 21

  • a = 6.4930 (2) Å

  • b = 29.0000 (8) Å

  • c = 9.2854 (4) Å

  • β = 110.454 (1)°

  • V = 1638.18 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.45 × 0.35 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 10017 measured reflections

  • 5832 independent reflections

  • 5438 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.123

  • S = 1.09

  • 5832 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1283 Friedel pairs

  • Flack parameter: 0.05 (6)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The essential oil of the Alas cedar (Cedrus atlantica) consist mainly (50%) of a bicyclic hydrocarbon called β-himachalene. The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team (Ourhriss et al., 2013; Oukhrib et al.,2013) in order to prepare new products having biological proprieties (El Haib et al., 2011). In this work we present the crystal structure of the title compound, (1S,3S,8R,9S,11R)-10,10-dichloro-3,7,7,11-tetramethyltetracyclo-[6.5.0.01,3.09,11]tridecane.

The asymmetric unit of the title compound contains two independent molecules of similar geometry (Fig. 1). Each molecule contains a fused six- and a seven-membered rings, which is fused to two three-membered rings. The six-membered ring has a half chair conformation, as indicated by the total puckering amplitude QT = 0.492 (4) Å and spherical polar angle θ = 136.8 (5)° with ϕ = 131.0 (6)°, whereas the seven-membered ring displays a boat conformation with QT = 1.1447 (5) Å, θ = 88.47 (2)°, ϕ2 = -49.96 (2)° and ϕ3 = -147.50 (9)° (Cremer & Pople, 1975). Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(S), C3(R), C8(R), C9(S) and C11(R).

Related literature top

For the reactivity and biological properties of β-himachalene, see: El Haib et al. (2011); El Jamili et al. (2002); Auhmani et al. (2002). For related structures, see: Oukhrib et al. (2013); Ourhriss et al. (2013). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In a three-necked flask equipped with a dropping funnel, a condenser and a magnetic stirrer, maintained at 0°C, 2 g of ( 1S,3R,8R)-2,2-dichloro-3,7,7,10 tetramethyltricyclo[6.4.0.01,3]dodec-9-ene (El Jamili et al., 2002) were introduced in 50 ml of ether. Thereafter and simultaneously 7 g of sodium were added by small portions during one hour, and dropwise 65 ml of a methanol solution 2.5% of water. The reaction mixture was stirred for 12 h. After hydrolysis with 20 ml of water, the two phases were separated and the aqueous phase extracted three times with 20 ml of ether. The organic phases were combined and dried over sodium sulfate and concentrated. The residue obtained was chromatographed on a silica column with hexane as eluent to give the sesquiterpene hydrocarbon (1S,3S,8R,9S,11R)-3,7,7,11-tetramethyltricyclo-[6.5.0.01,3]tridec-9-ene) with a yield of 90%. The treatment of this sesquiterpene with two equivalents of N-bromosuccinimide (NBS) (Auhmani et al., 2002) gave the title compound with a yield of 80%. Crystals of the title compound suitable for X-ray analysis were recrystallized from pentane.

Refinement top

All H atoms were fixed geometrically and treated as riding, with C—H = 0.96-0.98 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S,3S,8R,9S,11R)-10,10-Dichloro-3,7,7,11-tetramethyltetracyclo[6.5.0.01,3.09,11]tridecane top
Crystal data top
C17H26Cl2F(000) = 648
Mr = 301.28Dx = 1.222 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5832 reflections
a = 6.4930 (2) Åθ = 2.8–27.1°
b = 29.0000 (8) ŵ = 0.38 mm1
c = 9.2854 (4) ÅT = 296 K
β = 110.454 (1)°Block, colourless
V = 1638.18 (10) Å30.45 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5438 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.1°, θmin = 2.8°
ω and ϕ scansh = 88
10017 measured reflectionsk = 3137
5832 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.9439P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5832 reflectionsΔρmax = 0.29 e Å3
343 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 1283 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C17H26Cl2V = 1638.18 (10) Å3
Mr = 301.28Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.4930 (2) ŵ = 0.38 mm1
b = 29.0000 (8) ÅT = 296 K
c = 9.2854 (4) Å0.45 × 0.35 × 0.30 mm
β = 110.454 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5438 reflections with I > 2σ(I)
10017 measured reflectionsRint = 0.021
5832 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.29 e Å3
S = 1.09Δρmin = 0.21 e Å3
5832 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1283 Friedel pairs
343 parametersAbsolute structure parameter: 0.05 (6)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1016 (5)0.68419 (11)0.5418 (3)0.0366 (7)
C20.2266 (7)0.63984 (13)0.6031 (4)0.0515 (9)
H2A0.38590.64110.64100.062*
H2B0.16420.61860.65740.062*
C30.1069 (7)0.64603 (13)0.4316 (4)0.0509 (9)
C40.2490 (8)0.65463 (17)0.3354 (5)0.0680 (12)
H4A0.39030.66650.40110.082*
H4B0.27440.62560.29260.082*
C50.1471 (9)0.68839 (19)0.2059 (5)0.0743 (14)
H5A0.04790.67180.11840.089*
H5B0.26240.70160.17500.089*
C60.0183 (7)0.72809 (16)0.2487 (4)0.0630 (12)
H6A0.03600.74850.16080.076*
H6B0.10890.71470.26480.076*
C70.1415 (6)0.75762 (13)0.3903 (4)0.0450 (8)
C80.2305 (4)0.72854 (10)0.5441 (3)0.0328 (6)
H80.38100.71930.55680.039*
C90.2458 (5)0.75976 (11)0.6788 (4)0.0378 (7)
H90.26300.79220.65600.045*
C100.3447 (5)0.74965 (13)0.8464 (4)0.0444 (8)
C110.0997 (5)0.75392 (13)0.7759 (4)0.0453 (8)
C120.0366 (6)0.71010 (14)0.7494 (4)0.0513 (9)
H12A0.16870.71600.77260.062*
H12B0.04680.68640.81940.062*
C130.1015 (5)0.69226 (13)0.5844 (4)0.0482 (8)
H13A0.18250.66360.57450.058*
H13B0.19660.71450.51430.058*
C140.0967 (9)0.61736 (16)0.3506 (5)0.0789 (15)
H14A0.18050.61360.41700.118*
H14B0.05340.58760.32560.118*
H14C0.18490.63270.25790.118*
C150.3343 (8)0.78312 (17)0.3693 (5)0.0680 (12)
H15A0.40740.80130.45910.102*
H15B0.28110.80300.28120.102*
H15C0.43570.76120.35420.102*
C160.0308 (7)0.79471 (16)0.3940 (5)0.0671 (12)
H16A0.15480.77980.40760.101*
H16B0.07840.81150.29900.101*
H16C0.03500.81560.47770.101*
C170.0109 (8)0.79623 (18)0.8130 (6)0.0725 (13)
H17A0.16680.79430.75990.109*
H17B0.04480.82350.78060.109*
H17C0.01930.79770.92170.109*
C180.6936 (5)0.51198 (11)0.7358 (3)0.0344 (6)
C190.7763 (8)0.55385 (14)0.6770 (5)0.0581 (10)
H19A0.89490.54960.63740.070*
H19B0.66980.57730.62440.070*
C200.8290 (7)0.54825 (14)0.8469 (5)0.0576 (10)
C211.0606 (7)0.53519 (19)0.9420 (5)0.0744 (14)
H21A1.14190.56290.98560.089*
H21B1.13010.52130.87550.089*
C221.0754 (8)0.5018 (2)1.0714 (5)0.0780 (15)
H22A1.07330.51921.16000.094*
H22B1.21480.48561.10050.094*
C230.8863 (8)0.46573 (17)1.0287 (4)0.0668 (12)
H23A0.91280.44531.11600.080*
H23B0.75050.48211.01530.080*
C240.8494 (6)0.43614 (13)0.8876 (4)0.0461 (8)
C250.7986 (4)0.46457 (11)0.7330 (3)0.0303 (6)
H250.93940.47010.71930.036*
C260.6606 (5)0.43506 (11)0.5985 (3)0.0342 (6)
H260.68440.40200.62020.041*
C270.5955 (6)0.44536 (12)0.4307 (4)0.0420 (7)
C280.4215 (5)0.44596 (12)0.5037 (4)0.0397 (7)
C290.3360 (5)0.49256 (14)0.5310 (4)0.0480 (8)
H29A0.17890.49040.50920.058*
H29B0.35980.51490.46050.058*
C300.4486 (5)0.50968 (12)0.6966 (4)0.0432 (8)
H30A0.39310.54000.70770.052*
H30B0.41470.48890.76720.052*
C310.7208 (9)0.58031 (16)0.9285 (6)0.0798 (15)
H31A0.77040.57281.03590.120*
H31B0.56410.57680.88510.120*
H31C0.75940.61160.91600.120*
C321.0426 (8)0.40470 (18)0.9033 (5)0.0735 (14)
H32A1.01180.38670.81130.110*
H32B1.06630.38450.98950.110*
H32C1.17190.42300.91890.110*
C330.6514 (8)0.40410 (17)0.8819 (5)0.0726 (13)
H33A0.61750.38390.79470.109*
H33B0.52530.42270.87310.109*
H33C0.69050.38610.97430.109*
C340.2538 (7)0.40760 (16)0.4689 (5)0.0673 (12)
H34A0.15520.41290.52380.101*
H34B0.32750.37870.50030.101*
H34C0.17210.40690.36050.101*
Cl10.47292 (16)0.69665 (3)0.91612 (10)0.0568 (3)
Cl20.49526 (19)0.79455 (4)0.96635 (12)0.0720 (3)
Cl30.67805 (15)0.49544 (3)0.36075 (10)0.0534 (2)
Cl40.59779 (19)0.39852 (4)0.30805 (12)0.0682 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0416 (15)0.0354 (16)0.0306 (14)0.0034 (12)0.0097 (13)0.0025 (12)
C20.070 (2)0.0372 (18)0.0417 (18)0.0024 (17)0.0129 (17)0.0019 (16)
C30.073 (2)0.0385 (19)0.0401 (17)0.0065 (16)0.0186 (17)0.0079 (15)
C40.078 (3)0.071 (3)0.059 (3)0.002 (2)0.030 (2)0.024 (2)
C50.095 (3)0.096 (4)0.043 (2)0.028 (3)0.037 (2)0.016 (2)
C60.071 (2)0.079 (3)0.0291 (17)0.020 (2)0.0051 (17)0.0116 (19)
C70.0495 (18)0.046 (2)0.0351 (16)0.0086 (14)0.0098 (14)0.0099 (15)
C80.0271 (12)0.0390 (17)0.0299 (14)0.0022 (11)0.0068 (11)0.0042 (13)
C90.0392 (15)0.0334 (17)0.0387 (16)0.0045 (12)0.0110 (13)0.0014 (13)
C100.0448 (16)0.0470 (19)0.0360 (17)0.0013 (15)0.0071 (14)0.0069 (15)
C110.0448 (17)0.055 (2)0.0373 (17)0.0108 (15)0.0153 (14)0.0027 (16)
C120.0442 (18)0.069 (3)0.0476 (19)0.0008 (16)0.0243 (16)0.0038 (18)
C130.0411 (16)0.052 (2)0.0459 (18)0.0127 (15)0.0085 (14)0.0053 (16)
C140.113 (4)0.059 (3)0.055 (2)0.033 (3)0.016 (3)0.011 (2)
C150.074 (3)0.070 (3)0.066 (3)0.020 (2)0.033 (2)0.015 (2)
C160.060 (2)0.064 (3)0.066 (3)0.011 (2)0.008 (2)0.026 (2)
C170.071 (3)0.082 (3)0.070 (3)0.030 (2)0.031 (2)0.008 (3)
C180.0427 (15)0.0332 (15)0.0276 (13)0.0043 (12)0.0127 (12)0.0020 (12)
C190.085 (3)0.043 (2)0.047 (2)0.0151 (19)0.023 (2)0.0003 (17)
C200.075 (3)0.047 (2)0.0443 (19)0.0106 (18)0.0136 (19)0.0099 (17)
C210.058 (2)0.098 (4)0.059 (3)0.032 (2)0.011 (2)0.033 (3)
C220.071 (3)0.106 (4)0.043 (2)0.018 (3)0.002 (2)0.018 (3)
C230.087 (3)0.081 (3)0.0308 (17)0.030 (2)0.0176 (19)0.0110 (19)
C240.0533 (19)0.048 (2)0.0360 (17)0.0193 (16)0.0143 (15)0.0081 (15)
C250.0284 (13)0.0369 (16)0.0276 (13)0.0041 (11)0.0123 (11)0.0012 (12)
C260.0371 (15)0.0317 (16)0.0357 (16)0.0029 (12)0.0151 (13)0.0006 (13)
C270.0438 (17)0.0473 (19)0.0337 (16)0.0016 (13)0.0121 (14)0.0058 (14)
C280.0363 (15)0.0465 (19)0.0356 (17)0.0070 (13)0.0116 (14)0.0016 (14)
C290.0315 (14)0.062 (2)0.0490 (18)0.0073 (15)0.0125 (14)0.0024 (18)
C300.0402 (16)0.0425 (18)0.0471 (18)0.0129 (14)0.0154 (14)0.0002 (15)
C310.113 (4)0.060 (3)0.059 (3)0.011 (3)0.020 (3)0.026 (2)
C320.083 (3)0.077 (3)0.061 (2)0.042 (3)0.026 (2)0.024 (2)
C330.099 (3)0.066 (3)0.062 (3)0.003 (2)0.040 (3)0.023 (2)
C340.052 (2)0.076 (3)0.062 (2)0.029 (2)0.0056 (19)0.003 (2)
Cl10.0599 (5)0.0659 (6)0.0385 (4)0.0183 (4)0.0095 (4)0.0086 (4)
Cl20.0732 (6)0.0774 (7)0.0529 (6)0.0071 (6)0.0064 (5)0.0284 (5)
Cl30.0543 (5)0.0693 (6)0.0364 (4)0.0085 (4)0.0157 (4)0.0074 (4)
Cl40.0801 (7)0.0748 (7)0.0458 (5)0.0036 (5)0.0170 (5)0.0248 (5)
Geometric parameters (Å, º) top
C1—C31.515 (5)C18—C301.504 (4)
C1—C21.521 (5)C18—C191.505 (5)
C1—C131.522 (5)C18—C201.520 (5)
C1—C81.530 (4)C18—C251.539 (4)
C2—C31.518 (5)C19—C201.502 (6)
C2—H2A0.9700C19—H19A0.9700
C2—H2B0.9700C19—H19B0.9700
C3—C41.512 (6)C20—C211.502 (6)
C3—C141.520 (6)C20—C311.518 (6)
C4—C51.512 (7)C21—C221.520 (7)
C4—H4A0.9700C21—H21A0.9700
C4—H4B0.9700C21—H21B0.9700
C5—C61.554 (7)C22—C231.556 (8)
C5—H5A0.9700C22—H22A0.9700
C5—H5B0.9700C22—H22B0.9700
C6—C71.539 (5)C23—C241.513 (6)
C6—H6A0.9700C23—H23A0.9700
C6—H6B0.9700C23—H23B0.9700
C7—C151.524 (5)C24—C321.516 (5)
C7—C161.561 (6)C24—C331.572 (6)
C7—C81.583 (4)C24—C251.587 (4)
C8—C91.519 (4)C25—C261.521 (4)
C8—H80.9800C25—H250.9800
C9—C101.491 (5)C26—C271.495 (5)
C9—C111.530 (5)C26—C281.527 (4)
C9—H90.9800C26—H260.9800
C10—C111.498 (4)C27—C281.507 (5)
C10—Cl11.760 (4)C27—Cl31.750 (4)
C10—Cl21.769 (3)C27—Cl41.776 (4)
C11—C121.519 (5)C28—C341.511 (5)
C11—C171.521 (5)C28—C291.515 (5)
C12—C131.530 (5)C29—C301.536 (5)
C12—H12A0.9700C29—H29A0.9700
C12—H12B0.9700C29—H29B0.9700
C13—H13A0.9700C30—H30A0.9700
C13—H13B0.9700C30—H30B0.9700
C14—H14A0.9600C31—H31A0.9600
C14—H14B0.9600C31—H31B0.9600
C14—H14C0.9600C31—H31C0.9600
C15—H15A0.9600C32—H32A0.9600
C15—H15B0.9600C32—H32B0.9600
C15—H15C0.9600C32—H32C0.9600
C16—H16A0.9600C33—H33A0.9600
C16—H16B0.9600C33—H33B0.9600
C16—H16C0.9600C33—H33C0.9600
C17—H17A0.9600C34—H34A0.9600
C17—H17B0.9600C34—H34B0.9600
C17—H17C0.9600C34—H34C0.9600
C3—C1—C260.0 (2)C30—C18—C19115.4 (3)
C3—C1—C13120.9 (3)C30—C18—C20120.4 (3)
C2—C1—C13115.5 (3)C19—C18—C2059.5 (2)
C3—C1—C8118.8 (3)C30—C18—C25113.2 (3)
C2—C1—C8119.2 (3)C19—C18—C25119.9 (3)
C13—C1—C8112.7 (3)C20—C18—C25118.4 (3)
C3—C2—C159.8 (2)C20—C19—C1860.7 (2)
C3—C2—H2A117.8C20—C19—H19A117.7
C1—C2—H2A117.8C18—C19—H19A117.7
C3—C2—H2B117.8C20—C19—H19B117.7
C1—C2—H2B117.8C18—C19—H19B117.7
H2A—C2—H2B114.9H19A—C19—H19B114.8
C4—C3—C1116.1 (3)C21—C20—C19117.3 (4)
C4—C3—C2116.4 (4)C21—C20—C31113.9 (4)
C1—C3—C260.2 (2)C19—C20—C31118.9 (4)
C4—C3—C14113.7 (4)C21—C20—C18116.6 (3)
C1—C3—C14120.9 (4)C19—C20—C1859.8 (2)
C2—C3—C14119.5 (4)C31—C20—C18120.3 (4)
C5—C4—C3112.9 (4)C20—C21—C22113.5 (4)
C5—C4—H4A109.0C20—C21—H21A108.9
C3—C4—H4A109.0C22—C21—H21A108.9
C5—C4—H4B109.0C20—C21—H21B108.9
C3—C4—H4B109.0C22—C21—H21B108.9
H4A—C4—H4B107.8H21A—C21—H21B107.7
C4—C5—C6113.6 (3)C21—C22—C23113.6 (3)
C4—C5—H5A108.8C21—C22—H22A108.8
C6—C5—H5A108.8C23—C22—H22A108.8
C4—C5—H5B108.8C21—C22—H22B108.8
C6—C5—H5B108.8C23—C22—H22B108.8
H5A—C5—H5B107.7H22A—C22—H22B107.7
C7—C6—C5117.7 (4)C24—C23—C22118.3 (4)
C7—C6—H6A107.9C24—C23—H23A107.7
C5—C6—H6A107.9C22—C23—H23A107.7
C7—C6—H6B107.9C24—C23—H23B107.7
C5—C6—H6B107.9C22—C23—H23B107.7
H6A—C6—H6B107.2H23A—C23—H23B107.1
C15—C7—C6111.4 (3)C23—C24—C32112.5 (3)
C15—C7—C16107.2 (3)C23—C24—C33104.2 (4)
C6—C7—C16103.9 (3)C32—C24—C33106.7 (4)
C15—C7—C8108.5 (3)C23—C24—C25114.1 (3)
C6—C7—C8113.0 (3)C32—C24—C25107.6 (3)
C16—C7—C8112.7 (3)C33—C24—C25111.5 (3)
C9—C8—C1113.0 (3)C26—C25—C18112.3 (2)
C9—C8—C7108.9 (3)C26—C25—C24109.1 (3)
C1—C8—C7114.2 (2)C18—C25—C24113.7 (2)
C9—C8—H8106.8C26—C25—H25107.1
C1—C8—H8106.8C18—C25—H25107.1
C7—C8—H8106.8C24—C25—H25107.1
C10—C9—C8128.5 (3)C27—C26—C25127.9 (3)
C10—C9—C1159.5 (2)C27—C26—C2859.8 (2)
C8—C9—C11122.9 (3)C25—C26—C28123.1 (3)
C10—C9—H9112.0C27—C26—H26112.1
C8—C9—H9112.0C25—C26—H26112.1
C11—C9—H9112.0C28—C26—H26112.1
C9—C10—C1161.6 (2)C26—C27—C2861.1 (2)
C9—C10—Cl1122.1 (3)C26—C27—Cl3122.7 (2)
C11—C10—Cl1121.8 (3)C28—C27—Cl3122.2 (3)
C9—C10—Cl2117.0 (3)C26—C27—Cl4116.9 (3)
C11—C10—Cl2118.9 (3)C28—C27—Cl4118.2 (2)
Cl1—C10—Cl2108.94 (17)Cl3—C27—Cl4108.95 (19)
C10—C11—C12118.1 (3)C27—C28—C34119.5 (3)
C10—C11—C17118.8 (3)C27—C28—C29117.5 (3)
C12—C11—C17114.7 (3)C34—C28—C29114.4 (3)
C10—C11—C959.0 (2)C27—C28—C2659.1 (2)
C12—C11—C9116.3 (3)C34—C28—C26118.9 (3)
C17—C11—C9118.9 (4)C29—C28—C26116.5 (3)
C11—C12—C13112.7 (3)C28—C29—C30112.4 (3)
C11—C12—H12A109.0C28—C29—H29A109.1
C13—C12—H12A109.0C30—C29—H29A109.1
C11—C12—H12B109.0C28—C29—H29B109.1
C13—C12—H12B109.0C30—C29—H29B109.1
H12A—C12—H12B107.8H29A—C29—H29B107.9
C1—C13—C12110.6 (3)C18—C30—C29110.5 (3)
C1—C13—H13A109.5C18—C30—H30A109.6
C12—C13—H13A109.5C29—C30—H30A109.6
C1—C13—H13B109.5C18—C30—H30B109.6
C12—C13—H13B109.5C29—C30—H30B109.6
H13A—C13—H13B108.1H30A—C30—H30B108.1
C3—C14—H14A109.5C20—C31—H31A109.5
C3—C14—H14B109.5C20—C31—H31B109.5
H14A—C14—H14B109.5H31A—C31—H31B109.5
C3—C14—H14C109.5C20—C31—H31C109.5
H14A—C14—H14C109.5H31A—C31—H31C109.5
H14B—C14—H14C109.5H31B—C31—H31C109.5
C7—C15—H15A109.5C24—C32—H32A109.5
C7—C15—H15B109.5C24—C32—H32B109.5
H15A—C15—H15B109.5H32A—C32—H32B109.5
C7—C15—H15C109.5C24—C32—H32C109.5
H15A—C15—H15C109.5H32A—C32—H32C109.5
H15B—C15—H15C109.5H32B—C32—H32C109.5
C7—C16—H16A109.5C24—C33—H33A109.5
C7—C16—H16B109.5C24—C33—H33B109.5
H16A—C16—H16B109.5H33A—C33—H33B109.5
C7—C16—H16C109.5C24—C33—H33C109.5
H16A—C16—H16C109.5H33A—C33—H33C109.5
H16B—C16—H16C109.5H33B—C33—H33C109.5
C11—C17—H17A109.5C28—C34—H34A109.5
C11—C17—H17B109.5C28—C34—H34B109.5
H17A—C17—H17B109.5H34A—C34—H34B109.5
C11—C17—H17C109.5C28—C34—H34C109.5
H17A—C17—H17C109.5H34A—C34—H34C109.5
H17B—C17—H17C109.5H34B—C34—H34C109.5

Experimental details

Crystal data
Chemical formulaC17H26Cl2
Mr301.28
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.4930 (2), 29.0000 (8), 9.2854 (4)
β (°) 110.454 (1)
V3)1638.18 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.45 × 0.35 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10017, 5832, 5438
Rint0.021
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.123, 1.09
No. of reflections5832
No. of parameters343
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21
Absolute structureFlack & Bernardinelli (2000), 1283 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAuhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699–707.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoıty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOurhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o933-o934
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds