organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o850-o851

1-{(E)-[(2-Fluoro-5-nitro­phen­yl)imino]­meth­yl}naphthalen-2-ol

aDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, dChemistry Department, Faculty of Sccience, Mini University, 61519 El-Minia, Egypt, and eAnalytical Sciences, Manchester Metropolitan University, Manchester, M1 5GD, England
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 30 April 2013; accepted 3 May 2013; online 11 May 2013)

The title mol­ecule, C17H11FN2O3, is nearly planar [maximum deviation = 0.197 (1) Å] and the mol­ecular conformation is stabilized by an N—H⋯O hydrogen bond forming an S(6) ring motif. The H atom of the intra­molecular hydrogen bond was found to be disordered over two sites and thus both the hy­droxy and keto tautomers are simultaneously present in the solid. Refinement of the occupancy of this site suggests that the hy­droxy form is the major component [occupancy refined to 0.59 (3):0.41 (3)]. Bond lengths are also largely consistent with dominance of the hy­droxy form. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to (101). ππ stacking inter­actions [centroid–centroid distances = 3.5649 (9) and 3.7579 (9) Å] inter-connect these layers.

Related literature

For the broad range of biological applications of Schiff bases, see, for example: Cozzi (2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]); Chandra & Sangeetika (2004[Chandra, S. & Sangeetika, J. (2004). J. Indian Chem. Soc. 81, 203-206.]); Sari et al. (2003[Sari, N., Arslan, S., Logoglu, E. & Sakiyan, I. (2003). Gazi Univ. J. Sci. 16, 283-288.]); Verma et al. (2004[Verma, M., Pandeya, S. N., Singh, K. N. & Stabler, J. P. (2004). Acta Pharm. 54, 49-56.]). For the significance of fluorine atoms in drug structures, see: Blair et al. (2000[Blair, J. B., Kurrasch-Orbaugh, D., Marona-Lewicka, D., Cumbay, M. G., Watts, V. J., Barker, E. L. & Nichols, D. E. (2000). J. Med. Chem. 43, 4701-4710.]); Kirk et al. (1979[Kirk, K. L., Cantacuzene, D., Nimitkitpaisan, Y., McCulloh, D., Padgett, W. L., Daly, J. W. & Creveling, C. R. (1979). J. Med. Chem. 22, 1493-1497.]); LeBars et al. (1987[LeBars, D., Luthra, S. K., Pike, V. W. & LuDuc, C. (1987). Appl. Radiat. Isot. 38, 1073-1077.]). For a related structure, see: Akkurt et al. (2012[Akkurt, M., Kennedy, A. R., Mohamed, S. K., Abdelhamid, A. A. & Miller, G. J. (2012). Acta Cryst. E68, o3168.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11FN2O3

  • Mr = 310.28

  • Monoclinic, P 21 /c

  • a = 14.2226 (6) Å

  • b = 13.0856 (5) Å

  • c = 7.3801 (3) Å

  • β = 94.151 (4)°

  • V = 1369.92 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 123 K

  • 0.5 × 0.2 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.973, Tmax = 0.994

  • 15943 measured reflections

  • 4043 independent reflections

  • 3166 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.135

  • S = 1.07

  • 4043 reflections

  • 215 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (1) 1.68 (2) 2.4969 (16) 152 (4)
C3—H3⋯O3i 0.95 2.48 3.222 (2) 135
C14—H14⋯O1ii 0.95 2.35 3.1724 (19) 145
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have been widely studied due to their importance in industrial and biological applications. They serve for example as, antibacterial, antifungal, anticancer (Sari et al., 2003, Verma et al., 2004) and herbicidal agents (Cozzi, 2004; Chandra & Sangeetika, 2004). It is well known that the introduction of fluorine atom into an organic molecule causes dramatic changes in its biological profile (Blair et al., 2000), mainly due to the high electronegativity of fluorine. Incorporating fluorine increases fat solubility, improving the drug's partitioning into membranes and hence increasing bioavailability (LeBars et al., 1987). Fluorination can also aid hydrophobic interactions between the drug and binding sites on receptors or enzymes (Kirk et al., 1979). Further to our study in synthesis of fluorinated bioactive compounds we herein report the synthesis and crystal structure of the title compound.

As seen in Fig. 1, the title molecule (I) is nearly planar with maximum deviations of 0.197 (1) Å for O3, -0.157 (1) Å for C9 and 0.145 (2) Å for C6. The napthalene ring system (C1–C10) makes a dihedral angle of 5.04 (6) ° with the the benzene ring (C12–C17) of the 1-fluoro-4-nitrobenzene group. The C1–C11–N1–C12, F1–C13–C12–N1, O1–C2–C1–C11, O2–N2–C16—C17 and O3–N2–C16 C15 torsion angles are -179.56 (13), -179.39 (13), 2.4 (2), -8.9 (2) and -9.7 (2) °, respectively. All bond lengths and angles are similar to those of a related structure previously reported (Akkurt et al., 2012).

An N—H···O hydrogen bond stabilizes the molecular conformation of (I) forming an S(6) ring motif (Bernstein et al., 1995; Fig. 1). In the crystal structure, C—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules to each other, forming two dimensional layers parallel to (101) (Fig. 3). In addition, these layers connect to each other by π-π stacking interactions [Cg1···Cg3iii = 3.5649 (9) Å and Cg3···Cg3iv = 3.7579 (9) Å; where symmetry codes (iii) = x, 1/2 - y, 1/2 + z and (iv) = 1 - x, 1 - y, 1 - z; Cg1 and Cg3 are the centroids of the C1–C5/C10 and C12–C17 benzene rings, respectively].

Related literature top

For the broad range of biological applications of Schiff bases, see, for example: Cozzi (2004); Chandra & Sangeetika (2004); Sari et al. (2003); Verma et al. (2004). For the significance of fluorine atoms in drug structures, see: Blair et al. (2000); Kirk et al. (1979); LeBars et al. (1987). For a related structure, see: Akkurt et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was obtained unintentionally in a good yield from a three components reaction by heating of 1 mmol (172 mg) 2-hydroxynaphthalene-1-carbaldehyde, 1 mmol (156 mg) 2-fluoro-5-nitroaniline and 1 mmol (188 mg) 5-phenylcyclohexane-1,3-dione in ethanol for 8 h at 350 K. The solvent was evaporated under vacuum and the resulting solid was crystallized from a mixture of ethanol and few drops of acetone. Yellow rods of product (M.p. 471 K) were collected (73% yield) of sufficient quality for X-ray diffraction.

Refinement top

Difference synthesis suggested a disordered model for H1 was appropriate. Refinement over two sites with thermal displacement ellipsoids constrained to be equal and with both O1—H1 and N1—H2 distances restrained to 0.88 (1) A gave a model with 0.59 (3):0.41 (3) site occupancy in favour of the OH form. The C-bound H atoms were placed in geometrically optimized positions and constrained to ride on their parent atoms with C—H = 0.95 (aromatic) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Only the major component (OH tautomer) of the disordered OH and NH tautomers is shown. The intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The hydrogen bonding of the title compound viewed along the c axis. The minor component (NH tautomer) of disorder and H atoms not involved in hydrogen bonding are omitted for clarity. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. The molecular packing of the title compound viewed along the b axis, showing the two dimensional layers parallel to (101). Hydrogen bonds are drawn as dashed lines.
1-{(E)-[(2-Fluoro-5-nitrophenyl)imino]methyl}naphthalen-2-ol top
Crystal data top
C17H11FN2O3F(000) = 640
Mr = 310.28Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5692 reflections
a = 14.2226 (6) Åθ = 3.2–30.7°
b = 13.0856 (5) ŵ = 0.11 mm1
c = 7.3801 (3) ÅT = 123 K
β = 94.151 (4)°Cut rod, yellow
V = 1369.92 (10) Å30.5 × 0.2 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4043 independent reflections
Radiation source: Enhance (Mo) X-ray Source3166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.0727 pixels mm-1θmax = 30.8°, θmin = 3.2°
ω scansh = 1920
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1818
Tmin = 0.973, Tmax = 0.994l = 1010
15943 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.7073P]
where P = (Fo2 + 2Fc2)/3
4043 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H11FN2O3V = 1369.92 (10) Å3
Mr = 310.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2226 (6) ŵ = 0.11 mm1
b = 13.0856 (5) ÅT = 123 K
c = 7.3801 (3) Å0.5 × 0.2 × 0.05 mm
β = 94.151 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4043 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3166 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.994Rint = 0.036
15943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0522 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
4043 reflectionsΔρmin = 0.27 e Å3
215 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.46913 (7)0.33478 (7)0.24068 (14)0.0300 (3)
O10.35134 (8)0.12068 (8)0.35743 (15)0.0236 (3)
O20.21721 (11)0.66754 (10)0.5527 (3)0.0535 (6)
O30.33368 (11)0.75984 (10)0.4783 (2)0.0488 (5)
N10.31672 (9)0.30387 (9)0.41994 (17)0.0185 (3)
N20.29390 (11)0.67768 (10)0.4896 (2)0.0313 (4)
C10.21630 (10)0.17180 (10)0.51171 (19)0.0171 (3)
C20.27574 (10)0.09654 (11)0.44206 (19)0.0191 (4)
C30.25569 (11)0.00890 (11)0.4642 (2)0.0228 (4)
C40.18177 (11)0.03893 (11)0.5579 (2)0.0240 (4)
C50.11990 (11)0.03344 (11)0.6319 (2)0.0215 (4)
C60.04339 (12)0.00082 (13)0.7289 (2)0.0280 (5)
C70.01858 (11)0.06974 (13)0.7933 (2)0.0279 (5)
C80.00642 (11)0.17414 (13)0.7622 (2)0.0258 (4)
C90.06885 (10)0.20868 (12)0.6710 (2)0.0221 (4)
C100.13476 (10)0.13968 (11)0.60456 (19)0.0176 (3)
C110.24075 (10)0.27705 (11)0.49616 (18)0.0177 (3)
C120.34637 (10)0.40451 (10)0.39717 (19)0.0181 (3)
C130.42636 (10)0.41877 (11)0.3009 (2)0.0212 (4)
C140.46365 (11)0.51311 (13)0.2649 (2)0.0251 (4)
C150.42032 (11)0.59926 (12)0.3290 (2)0.0247 (4)
C160.34099 (11)0.58627 (11)0.4245 (2)0.0226 (4)
C170.30302 (10)0.49186 (11)0.4606 (2)0.0200 (4)
H10.357 (3)0.1877 (8)0.365 (5)0.0350*0.59 (3)
H30.294400.058800.413000.0270*
H40.170900.109800.574600.0290*
H60.034700.070100.749800.0340*
H70.069600.046700.858800.0330*
H80.050300.221800.804200.0310*
H90.076500.280000.652600.0260*
H110.201200.328000.541900.0210*
H140.517900.518900.197700.0300*
H150.444400.665600.307900.0300*
H170.248500.486500.527100.0240*
H20.350 (3)0.253 (3)0.380 (6)0.0280*0.41 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0281 (5)0.0236 (5)0.0402 (6)0.0041 (4)0.0155 (4)0.0009 (4)
O10.0250 (5)0.0173 (5)0.0298 (6)0.0025 (4)0.0100 (4)0.0002 (4)
O20.0504 (9)0.0238 (7)0.0908 (12)0.0049 (6)0.0365 (9)0.0039 (7)
O30.0531 (9)0.0143 (6)0.0801 (11)0.0041 (6)0.0128 (8)0.0018 (6)
N10.0198 (6)0.0141 (6)0.0220 (6)0.0010 (4)0.0038 (5)0.0016 (4)
N20.0368 (8)0.0152 (6)0.0423 (8)0.0018 (6)0.0056 (7)0.0009 (6)
C10.0186 (6)0.0139 (6)0.0187 (6)0.0012 (5)0.0011 (5)0.0005 (5)
C20.0217 (7)0.0161 (6)0.0193 (6)0.0021 (5)0.0007 (5)0.0000 (5)
C30.0282 (8)0.0148 (7)0.0253 (7)0.0024 (5)0.0012 (6)0.0027 (5)
C40.0292 (8)0.0141 (6)0.0282 (8)0.0028 (6)0.0015 (6)0.0004 (6)
C50.0227 (7)0.0177 (7)0.0236 (7)0.0033 (5)0.0012 (6)0.0026 (5)
C60.0282 (8)0.0256 (8)0.0303 (8)0.0075 (6)0.0023 (6)0.0062 (6)
C70.0231 (7)0.0336 (9)0.0274 (8)0.0065 (6)0.0051 (6)0.0055 (7)
C80.0209 (7)0.0309 (8)0.0259 (7)0.0003 (6)0.0048 (6)0.0006 (6)
C90.0220 (7)0.0199 (7)0.0246 (7)0.0004 (6)0.0040 (6)0.0003 (6)
C100.0186 (6)0.0166 (6)0.0175 (6)0.0021 (5)0.0005 (5)0.0009 (5)
C110.0179 (6)0.0165 (6)0.0186 (6)0.0012 (5)0.0016 (5)0.0009 (5)
C120.0179 (6)0.0150 (6)0.0213 (6)0.0006 (5)0.0002 (5)0.0023 (5)
C130.0204 (7)0.0200 (7)0.0234 (7)0.0015 (5)0.0040 (6)0.0001 (5)
C140.0196 (7)0.0282 (8)0.0280 (8)0.0043 (6)0.0047 (6)0.0049 (6)
C150.0240 (7)0.0194 (7)0.0305 (8)0.0062 (6)0.0002 (6)0.0061 (6)
C160.0249 (7)0.0149 (7)0.0279 (7)0.0005 (5)0.0006 (6)0.0007 (5)
C170.0205 (7)0.0159 (6)0.0239 (7)0.0008 (5)0.0036 (5)0.0020 (5)
Geometric parameters (Å, º) top
F1—C131.3471 (17)C8—C91.381 (2)
O1—C21.3203 (18)C9—C101.415 (2)
O2—N21.224 (2)C12—C171.396 (2)
O3—N21.2206 (19)C12—C131.397 (2)
O1—H10.882 (12)C13—C141.377 (2)
N1—C121.3967 (18)C14—C151.384 (2)
N1—C111.3019 (19)C15—C161.383 (2)
N2—C161.469 (2)C16—C171.382 (2)
N1—H20.88 (4)C3—H30.9500
C1—C111.427 (2)C4—H40.9500
C1—C21.418 (2)C6—H60.9500
C1—C101.451 (2)C7—H70.9500
C2—C31.421 (2)C8—H80.9500
C3—C41.358 (2)C9—H90.9500
C4—C51.428 (2)C11—H110.9500
C5—C101.423 (2)C14—H140.9500
C5—C61.411 (2)C15—H150.9500
C6—C71.370 (2)C17—H170.9500
C7—C81.398 (2)
C2—O1—H1106 (3)F1—C13—C12117.56 (12)
C11—N1—C12124.99 (13)F1—C13—C14118.58 (13)
O2—N2—C16118.44 (13)C12—C13—C14123.86 (13)
O3—N2—C16118.06 (15)C13—C14—C15118.48 (14)
O2—N2—O3123.49 (15)C14—C15—C16118.27 (14)
C11—N1—H2115 (3)N2—C16—C15118.34 (13)
C12—N1—H2120 (3)N2—C16—C17118.12 (14)
C10—C1—C11121.68 (12)C15—C16—C17123.54 (14)
C2—C1—C11119.07 (13)C12—C17—C16118.64 (13)
C2—C1—C10119.19 (12)C2—C3—H3120.00
C1—C2—C3120.18 (13)C4—C3—H3120.00
O1—C2—C3117.64 (13)C3—C4—H4119.00
O1—C2—C1122.17 (13)C5—C4—H4119.00
C2—C3—C4120.59 (14)C5—C6—H6119.00
C3—C4—C5121.62 (13)C7—C6—H6119.00
C4—C5—C6120.84 (14)C6—C7—H7120.00
C4—C5—C10119.46 (13)C8—C7—H7120.00
C6—C5—C10119.70 (14)C7—C8—H8120.00
C5—C6—C7121.06 (15)C9—C8—H8120.00
C6—C7—C8119.74 (15)C8—C9—H9119.00
C7—C8—C9120.61 (15)C10—C9—H9119.00
C8—C9—C10121.10 (14)N1—C11—H11120.00
C1—C10—C5118.81 (13)C1—C11—H11120.00
C5—C10—C9117.75 (13)C13—C14—H14121.00
C1—C10—C9123.44 (13)C15—C14—H14121.00
N1—C11—C1120.63 (13)C14—C15—H15121.00
N1—C12—C17125.97 (13)C16—C15—H15121.00
N1—C12—C13116.83 (12)C12—C17—H17121.00
C13—C12—C17117.20 (13)C16—C17—H17121.00
C11—N1—C12—C173.8 (2)C10—C5—C6—C71.8 (2)
C12—N1—C11—C1179.56 (13)C6—C5—C10—C1177.21 (13)
C11—N1—C12—C13175.67 (14)C4—C5—C6—C7177.11 (14)
O3—N2—C16—C159.7 (2)C4—C5—C10—C9176.47 (14)
O3—N2—C16—C17170.89 (15)C6—C5—C10—C92.4 (2)
O2—N2—C16—C15170.52 (17)C5—C6—C7—C80.3 (2)
O2—N2—C16—C178.9 (2)C6—C7—C8—C91.6 (2)
C10—C1—C2—C30.4 (2)C7—C8—C9—C100.9 (2)
C2—C1—C11—N10.3 (2)C8—C9—C10—C1178.49 (14)
C10—C1—C2—O1179.51 (13)C8—C9—C10—C51.1 (2)
C11—C1—C10—C96.1 (2)N1—C12—C13—C14179.10 (14)
C2—C1—C10—C53.5 (2)C17—C12—C13—F1179.39 (13)
C11—C1—C2—O12.4 (2)C17—C12—C13—C140.5 (2)
C11—C1—C2—C3176.71 (13)N1—C12—C13—F11.1 (2)
C11—C1—C10—C5173.49 (13)N1—C12—C17—C16179.28 (14)
C10—C1—C11—N1176.69 (13)C13—C12—C17—C160.2 (2)
C2—C1—C10—C9176.87 (14)F1—C13—C14—C15179.15 (13)
C1—C2—C3—C42.5 (2)C12—C13—C14—C150.7 (2)
O1—C2—C3—C4176.68 (14)C13—C14—C15—C160.7 (2)
C2—C3—C4—C52.2 (2)C14—C15—C16—N2178.86 (14)
C3—C4—C5—C101.1 (2)C14—C15—C16—C170.5 (2)
C3—C4—C5—C6179.98 (15)N2—C16—C17—C12179.10 (13)
C4—C5—C10—C13.9 (2)C15—C16—C17—C120.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (1)1.68 (2)2.4969 (16)152 (4)
C3—H3···O3i0.952.483.222 (2)135
C14—H14···O1ii0.952.353.1724 (19)145
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H11FN2O3
Mr310.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)14.2226 (6), 13.0856 (5), 7.3801 (3)
β (°) 94.151 (4)
V3)1369.92 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.5 × 0.2 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.973, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
15943, 4043, 3166
Rint0.036
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 1.07
No. of reflections4043
No. of parameters215
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.882 (12)1.68 (2)2.4969 (16)152 (4)
C3—H3···O3i0.952.483.222 (2)135
C14—H14···O1ii0.952.353.1724 (19)145
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The University of Strathclyde, Erciyes University and Manchester Metropolitan University are gratefully acknowledged for supporting this study.

References

First citationAkkurt, M., Kennedy, A. R., Mohamed, S. K., Abdelhamid, A. A. & Miller, G. J. (2012). Acta Cryst. E68, o3168.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlair, J. B., Kurrasch-Orbaugh, D., Marona-Lewicka, D., Cumbay, M. G., Watts, V. J., Barker, E. L. & Nichols, D. E. (2000). J. Med. Chem. 43, 4701–4710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChandra, S. & Sangeetika, J. (2004). J. Indian Chem. Soc. 81, 203–206.  CAS Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKirk, K. L., Cantacuzene, D., Nimitkitpaisan, Y., McCulloh, D., Padgett, W. L., Daly, J. W. & Creveling, C. R. (1979). J. Med. Chem. 22, 1493–1497.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLeBars, D., Luthra, S. K., Pike, V. W. & LuDuc, C. (1987). Appl. Radiat. Isot. 38, 1073–1077.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSari, N., Arslan, S., Logoglu, E. & Sakiyan, I. (2003). Gazi Univ. J. Sci. 16, 283–288.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerma, M., Pandeya, S. N., Singh, K. N. & Stabler, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o850-o851
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds