organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o823-o824

Methyl (3S,10b'S)-5-chloro-9′-fluoro-1-methyl-2-oxo-5′-phenyl-10b'H-spiro­[indoline-3,1′-pyrazolo­[3,2-a]iso­quinoline]-2′-carboxyl­ate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 26 March 2013; accepted 27 April 2013; online 4 May 2013)

In the title compound, C27H19ClFN3O3, the pyrazole ring has a twist conformation and the six-membered ring to which it is fused has a screw-boat conformation. The mean plane of the pyrazole ring is inclined to the 2-methyl­indoline ring by 85.03 (9) and by 28.17 (8)° to the mean plane of the iso­quinoline ring system. In the crystal, mol­ecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers. These dimers are linked via C—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to (10-1).

Related literature

For the biological activity of pyrazoles, see: Huang et al. (1996[Huang, R. Q., Song, J. & Feng, L. (1996). Chem. J. Chin. Univ. 17, 1089-1091.]); Li et al. (2005[Li, M., Wang, S. W., Wen, L. R., Qi, W. Y. & Yang, H. Z. (2005). Chin. J. Struct. Chem. 4, 64-68.]); Patel et al. (1990[Patel, H. V., Fernandes, P. S. & Vyas, K. A. (1990). Indian J. Chem. Sect. B, 29, 135-141.]); Zhao et al. (2001[Zhao, W. G., Li, Z. M., Yuan, P. W., Yuan, D. K., Wang, W. Y. & Wang, S. H. (2001). Chin. J. Org. Chem. 21, 593-598.]). For the crystal structures of pyrazoles, see: Manivel et al. (2009[Manivel, P. R., Hathwar, V., Maiyalagan, T., Krishnakumar, V. & Khan, F. N. (2009). Acta Cryst. E65, o1798.]); Khan et al. (2010a[Khan, F. N., Manivel, P., Kone, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o368.],b[Khan, F. N., Manivel, P., Krishnakumar, V., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o369.],c[Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010c). Acta Cryst. E66, o370.]). For the crystal structure of an isoquinazole, see: Hathwar et al. (2008[Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.]). For the biological activity of fused iso­quinoline compounds, see: Aubry et al. (2004[Aubry, A., Pan, X. S., Fisher, L. M., Jarlier, V. & Cambau, E. (2004). Antimicrob. Agents Chemother. 48, 1281-1288.]); Marco et al. (2005[Marco, E., Laine, W., Tardy, C., Lansiaux, A., Iwao, M., Ishibashi, F., Bailly, C. & Gago, F. (2005). J. Med. Chem. 48, 3796-3807.]); Reddy et al. (1999[Reddy, M. V. R., Rao, M. R., Rhodes, D., Hansen, M. S. T., Rubins, K., Bushman, F. D., Venkateswarlu, Y. & Faulkner, D. J. (1999). J. Med. Chem. 42, 1901-1907.]). For related structures, see: Chen & Wu (2010[Chen, Z.-Y. & Wu, J. (2010). Org. Lett. 12, 4856-4859.]); Ye et al. (2010[Ye, S.-Q., Yang, X.-D. & Wu, J. (2010). Chem. Commun. pp. 5238-5240.]); Yu et al. (2011a[Yu, X.-X., Pan, X.-L. & Wu, J. (2011a). Tetrahedron, 67, 1145-1149.],b[Yu, X.-X., Yang, Q., Lou, H.-L., Peng, Y.-Y. & Wu, J. (2011b). Org. Biomol. Chem. 9, 7033-7037.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H19ClFN3O3

  • Mr = 487.90

  • Monoclinic, C 2/c

  • a = 15.1203 (3) Å

  • b = 21.1088 (5) Å

  • c = 15.6334 (3) Å

  • β = 112.977 (1)°

  • V = 4593.85 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.959

  • 22581 measured reflections

  • 5703 independent reflections

  • 4241 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.123

  • S = 1.03

  • 5703 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27B⋯F1i 0.96 2.52 3.226 (3) 130
C14—H14⋯O1ii 0.93 2.50 3.402 (2) 163
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole and its derivatives are a class of important five-membered heterocycle compounds with two adjacent nitrogen atoms. During the past years considerable evidence has been accumulated to demonstrate the biological efficacy of pyrazole derivatives, including antibacterial (Patel et al., 1990), antifungal (Zhao et al., 2001), herbicidal (Li et al., 2005), insecticidal (Huang et al., 1996) and other biological activities. A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia.

Among the family of isoquinolines, the fused isoquinolines have attracted much attention owing to their biological activities including potent inhibitor of human topoisomerase I and selective inhibition against HIV-1 integrase in vitro (Aubry et al., 2004; Marco et al., 2005; Reddy et al., 1999). In view of the diverse applications of this class of compounds, and continuing our research on the synthesis and crystal structure analysis of similar compounds (Manivel et al., 2009; Khan et al., 2010a,b,c; Hathwar et al., 2008), we report herein on the crystal structure of the new title isoquinoline pyrazole compound.

The molecular structure and atom connectivity of the title compound are illustrated in Fig. 1. The isoquinoline ring system (C9-C17/N1), the methyldihydroindole ring system (N3/C1-C8) and the pyrazole ring (N1-N2/C7/C9/C24) are relatively planar, with maximum deviations from their mean planes of -0.212 Å for atom N1, -0.041 Å for C5 and 0.111 Å for C9, respectively.

The pyrazole ring mean plane forms a dihedral angle of 85.03 (9) ° with the methyldihydroindole ring system. This clearly shows that the pyrazole ring is almost perpendicular to the methyldihydroindole ring system. The dihedral angle between mean planes of the pyrazole ring and the isoquinoline ring system is 28.17 (8)°.

The pyrazole ring is twisted on bond C7-C9 with puckering parameters of q2 = 0.1879 (2) Å, ϕ = 129.28 (5)° [Cremer & Pople, 1975.

In the crystal, molecules are linked by a pair of C—H···F hydrogen bonds forming inversion dimers (Table 1). These dimers are linked via C—H···O hydrogen bonds forming a two-dimensional network lying parallel to the (101) plane (Table 1 and Fig. 2).

Related literature top

For the biological activity of pyrazoles, see: Huang et al. (1996); Li et al. (2005); Patel et al. (1990); Zhao et al. (2001). For the crystal structures of pyrazoles, see: Manivel et al. (2009); Khan et al. (2010a,b,c). For the crystal structure of an isoquinazole, see: Hathwar et al. (2008). For the biological activity of fused isoquinoline compounds, see: Aubry et al. (2004); Marco et al. (2005); Reddy et al. (1999). For related structures, see: Chen & Wu (2010); Ye et al. (2010); Yu et al. (2011a,b). For ring conformations, see: Cremer & Pople (1975).

Experimental top

General experimental procedure for the silver triflate-catalyzed tandem reaction of N'-(2-alkynylbenzylidene) hydrazide with methyleneindolinones: A mixture of N'-(2-alkynylbenzylidene) hydrazide (0.3 mmol) and AgOTf (10 mol%) in DCE (2.0 mL) was heated at 333 K with vigorous stirring for 1 hour. Then, the methyleneindolinone (0.45 mmol, 1.5 equiv), Cs2CO3 (0.9 mmol, 3.0 equiv) and toluene (2.0 mL) were added. The reaction mixture was refluxed at 353 K until completion of the reaction. The reaction mixture was diluted with ethyl acetate (5.0 mL) and quenched with water (5.0 mL). The organic layer was washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography using ethyl acetate and hexane (3:7) as an elutent on neutral alumina to provide the desired product. Block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atom: C—H 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The positions of the methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The partial view of the crystal packing of the title compound. The C-H···F and C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; Cl green, F yellow).
Methyl (3S,10b'S)-5-chloro-9'-fluoro-1-methyl-2-oxo-5'-phenyl-10b'H-spiro[indoline-3,1'-pyrazolo[3,2-a]isoquinoline]-2'-carboxylate top
Crystal data top
C27H19ClFN3O3F(000) = 2016
Mr = 487.90Dx = 1.411 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5703 reflections
a = 15.1203 (3) Åθ = 1.8–28.3°
b = 21.1088 (5) ŵ = 0.21 mm1
c = 15.6334 (3) ÅT = 293 K
β = 112.977 (1)°Block, colourless
V = 4593.85 (17) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5703 independent reflections
Radiation source: fine-focus sealed tube4241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1920
Tmin = 0.940, Tmax = 0.959k = 2628
22581 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0562P)2 + 2.5788P]
where P = (Fo2 + 2Fc2)/3
5703 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C27H19ClFN3O3V = 4593.85 (17) Å3
Mr = 487.90Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.1203 (3) ŵ = 0.21 mm1
b = 21.1088 (5) ÅT = 293 K
c = 15.6334 (3) Å0.30 × 0.25 × 0.20 mm
β = 112.977 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4241 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.959Rint = 0.028
22581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
5703 reflectionsΔρmin = 0.30 e Å3
318 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17222 (12)0.36693 (8)0.05994 (11)0.0504 (4)
C20.13286 (15)0.42416 (9)0.09683 (14)0.0633 (5)
H20.16820.45260.11620.076*
C30.04086 (15)0.44005 (9)0.10548 (14)0.0640 (5)
H30.01370.47880.13060.077*
C40.00932 (12)0.39673 (7)0.07581 (11)0.0472 (4)
C50.03056 (11)0.33864 (7)0.03903 (9)0.0391 (3)
C60.12155 (11)0.32268 (7)0.03097 (10)0.0428 (3)
H60.14830.28370.00700.051*
C70.04406 (10)0.30004 (7)0.02057 (9)0.0374 (3)
C80.13007 (11)0.34625 (7)0.04972 (10)0.0432 (3)
C90.02260 (11)0.27304 (7)0.07765 (10)0.0380 (3)
H90.08210.27530.08850.046*
C100.05599 (11)0.30133 (7)0.16069 (10)0.0390 (3)
C110.06588 (13)0.36633 (8)0.17251 (11)0.0499 (4)
H110.02800.39380.12610.060*
C120.13297 (14)0.38943 (8)0.25436 (12)0.0560 (4)
C130.19128 (13)0.35141 (9)0.32462 (12)0.0539 (4)
H130.23650.36870.37870.065*
C140.18089 (11)0.28690 (8)0.31272 (11)0.0465 (4)
H140.21980.26030.35980.056*
C150.11317 (10)0.26033 (7)0.23147 (10)0.0389 (3)
C160.09822 (11)0.19251 (7)0.22125 (10)0.0419 (3)
H160.12880.16670.27260.050*
C170.04200 (11)0.16548 (7)0.14060 (10)0.0396 (3)
C180.02320 (12)0.09669 (7)0.12735 (11)0.0444 (3)
C190.06896 (14)0.07361 (8)0.08048 (13)0.0564 (4)
H190.12010.10150.05440.068*
C200.08479 (18)0.00873 (10)0.07247 (16)0.0731 (6)
H200.14680.00660.04130.088*
C210.0103 (2)0.03290 (10)0.10988 (17)0.0782 (7)
H210.02150.07630.10350.094*
C220.0807 (2)0.01051 (10)0.15659 (17)0.0778 (6)
H220.13130.03890.18240.093*
C230.09844 (15)0.05428 (9)0.16584 (13)0.0605 (5)
H230.16060.06910.19780.073*
C240.06465 (10)0.23823 (7)0.07479 (10)0.0381 (3)
C250.10235 (11)0.23704 (8)0.17662 (10)0.0438 (3)
C260.14650 (18)0.17390 (11)0.31036 (13)0.0757 (6)
H26A0.21210.18790.33360.114*
H26B0.14420.13060.32810.114*
H26C0.11070.19980.33590.114*
C270.16737 (16)0.45421 (10)0.11482 (18)0.0786 (6)
H27A0.22590.44680.10600.118*
H27B0.18140.45880.17990.118*
H27C0.13750.49220.08280.118*
N10.00398 (10)0.20592 (6)0.06590 (8)0.0428 (3)
N20.03649 (9)0.18827 (6)0.02346 (8)0.0406 (3)
N30.10284 (10)0.40106 (6)0.07812 (10)0.0519 (3)
O10.20707 (8)0.33595 (6)0.04558 (8)0.0542 (3)
O20.12795 (11)0.28419 (6)0.22236 (8)0.0679 (4)
O30.10528 (9)0.17891 (6)0.21056 (8)0.0561 (3)
Cl10.28762 (4)0.34823 (3)0.05025 (4)0.07239 (17)
F10.13982 (11)0.45332 (5)0.26685 (8)0.0889 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0494 (9)0.0546 (9)0.0479 (8)0.0061 (7)0.0196 (7)0.0052 (7)
C20.0652 (12)0.0565 (11)0.0661 (11)0.0122 (9)0.0234 (9)0.0172 (9)
C30.0694 (13)0.0430 (9)0.0703 (12)0.0002 (8)0.0171 (10)0.0204 (8)
C40.0492 (9)0.0393 (8)0.0441 (8)0.0023 (7)0.0085 (7)0.0063 (6)
C50.0443 (8)0.0356 (7)0.0335 (7)0.0010 (6)0.0111 (6)0.0034 (5)
C60.0457 (8)0.0400 (7)0.0421 (8)0.0000 (6)0.0164 (6)0.0041 (6)
C70.0373 (7)0.0363 (7)0.0356 (7)0.0032 (6)0.0108 (6)0.0029 (5)
C80.0424 (8)0.0425 (8)0.0378 (7)0.0061 (6)0.0080 (6)0.0005 (6)
C90.0397 (7)0.0380 (7)0.0359 (7)0.0041 (6)0.0144 (6)0.0034 (5)
C100.0412 (8)0.0420 (7)0.0356 (7)0.0016 (6)0.0170 (6)0.0004 (6)
C110.0630 (10)0.0433 (8)0.0394 (8)0.0029 (7)0.0157 (7)0.0006 (6)
C120.0731 (12)0.0450 (9)0.0482 (9)0.0071 (8)0.0220 (9)0.0073 (7)
C130.0524 (10)0.0635 (11)0.0414 (8)0.0107 (8)0.0134 (7)0.0082 (7)
C140.0382 (8)0.0600 (10)0.0391 (7)0.0022 (7)0.0127 (6)0.0030 (7)
C150.0366 (7)0.0461 (8)0.0363 (7)0.0014 (6)0.0167 (6)0.0021 (6)
C160.0413 (8)0.0462 (8)0.0387 (7)0.0068 (6)0.0160 (6)0.0104 (6)
C170.0424 (8)0.0391 (7)0.0399 (7)0.0038 (6)0.0189 (6)0.0083 (6)
C180.0566 (9)0.0383 (7)0.0425 (8)0.0018 (7)0.0238 (7)0.0074 (6)
C190.0611 (11)0.0460 (9)0.0634 (11)0.0044 (8)0.0256 (9)0.0029 (8)
C200.0887 (15)0.0547 (11)0.0832 (14)0.0205 (11)0.0415 (13)0.0057 (10)
C210.118 (2)0.0417 (10)0.0919 (16)0.0034 (12)0.0594 (15)0.0057 (10)
C220.1026 (18)0.0479 (11)0.0902 (16)0.0224 (11)0.0456 (14)0.0230 (10)
C230.0689 (12)0.0498 (10)0.0619 (11)0.0118 (9)0.0247 (9)0.0152 (8)
C240.0382 (7)0.0378 (7)0.0375 (7)0.0009 (6)0.0141 (6)0.0009 (5)
C250.0419 (8)0.0494 (9)0.0379 (7)0.0009 (7)0.0133 (6)0.0012 (6)
C260.0905 (16)0.0884 (15)0.0405 (9)0.0013 (12)0.0171 (10)0.0156 (9)
C270.0661 (13)0.0526 (11)0.0986 (17)0.0201 (10)0.0120 (12)0.0203 (11)
N10.0552 (8)0.0337 (6)0.0348 (6)0.0014 (5)0.0122 (5)0.0025 (5)
N20.0437 (7)0.0397 (6)0.0371 (6)0.0010 (5)0.0144 (5)0.0013 (5)
N30.0491 (8)0.0403 (7)0.0564 (8)0.0105 (6)0.0097 (6)0.0086 (6)
O10.0412 (6)0.0587 (7)0.0583 (7)0.0084 (5)0.0147 (5)0.0007 (5)
O20.0896 (10)0.0578 (8)0.0428 (6)0.0015 (7)0.0112 (6)0.0112 (6)
O30.0682 (8)0.0573 (7)0.0379 (6)0.0059 (6)0.0154 (5)0.0073 (5)
Cl10.0575 (3)0.0824 (4)0.0885 (4)0.0046 (2)0.0407 (3)0.0143 (3)
F10.1338 (12)0.0469 (6)0.0633 (7)0.0117 (7)0.0138 (7)0.0139 (5)
Geometric parameters (Å, º) top
C1—C21.370 (3)C15—C161.448 (2)
C1—C61.391 (2)C16—C171.342 (2)
C1—Cl11.7369 (18)C16—H160.9300
C2—C31.385 (3)C17—N11.3935 (18)
C2—H20.9300C17—C181.478 (2)
C3—C41.379 (2)C18—C191.385 (2)
C3—H30.9300C18—C231.387 (2)
C4—C51.388 (2)C19—C201.388 (3)
C4—N31.403 (2)C19—H190.9300
C5—C61.374 (2)C20—C211.367 (3)
C5—C71.508 (2)C20—H200.9300
C6—H60.9300C21—C221.366 (4)
C7—C241.521 (2)C21—H210.9300
C7—C81.545 (2)C22—C231.390 (3)
C7—C91.5489 (19)C22—H220.9300
C8—O11.2107 (19)C23—H230.9300
C8—N31.359 (2)C24—N21.2926 (18)
C9—N11.4701 (18)C24—C251.467 (2)
C9—C101.500 (2)C25—O21.1981 (19)
C9—H90.9800C25—O31.3308 (19)
C10—C111.385 (2)C26—O31.440 (2)
C10—C151.405 (2)C26—H26A0.9600
C11—C121.375 (2)C26—H26B0.9600
C11—H110.9300C26—H26C0.9600
C12—F11.361 (2)C27—N31.450 (2)
C12—C131.368 (3)C27—H27A0.9600
C13—C141.375 (2)C27—H27B0.9600
C13—H130.9300C27—H27C0.9600
C14—C151.400 (2)N1—N21.3401 (17)
C14—H140.9300
C2—C1—C6121.66 (17)C17—C16—C15122.56 (13)
C2—C1—Cl1119.58 (13)C17—C16—H16118.7
C6—C1—Cl1118.76 (13)C15—C16—H16118.7
C1—C2—C3120.61 (16)C16—C17—N1116.91 (13)
C1—C2—H2119.7C16—C17—C18124.46 (13)
C3—C2—H2119.7N1—C17—C18118.58 (13)
C4—C3—C2118.03 (16)C19—C18—C23119.20 (16)
C4—C3—H3121.0C19—C18—C17121.21 (15)
C2—C3—H3121.0C23—C18—C17119.53 (16)
C3—C4—C5121.20 (16)C18—C19—C20119.83 (19)
C3—C4—N3129.00 (15)C18—C19—H19120.1
C5—C4—N3109.79 (14)C20—C19—H19120.1
C6—C5—C4120.81 (14)C21—C20—C19120.8 (2)
C6—C5—C7130.34 (13)C21—C20—H20119.6
C4—C5—C7108.66 (13)C19—C20—H20119.6
C5—C6—C1117.69 (14)C22—C21—C20119.7 (2)
C5—C6—H6121.2C22—C21—H21120.1
C1—C6—H6121.2C20—C21—H21120.1
C5—C7—C24111.26 (11)C21—C22—C23120.6 (2)
C5—C7—C8102.06 (12)C21—C22—H22119.7
C24—C7—C8114.32 (12)C23—C22—H22119.7
C5—C7—C9120.38 (12)C18—C23—C22119.9 (2)
C24—C7—C998.91 (11)C18—C23—H23120.1
C8—C7—C9110.56 (12)C22—C23—H23120.1
O1—C8—N3126.20 (15)N2—C24—C25123.66 (13)
O1—C8—C7125.94 (14)N2—C24—C7114.07 (12)
N3—C8—C7107.83 (13)C25—C24—C7121.86 (12)
N1—C9—C10111.48 (12)O2—C25—O3125.12 (15)
N1—C9—C7101.95 (11)O2—C25—C24122.13 (15)
C10—C9—C7120.01 (12)O3—C25—C24112.75 (13)
N1—C9—H9107.6O3—C26—H26A109.5
C10—C9—H9107.6O3—C26—H26B109.5
C7—C9—H9107.6H26A—C26—H26B109.5
C11—C10—C15120.27 (14)O3—C26—H26C109.5
C11—C10—C9121.18 (13)H26A—C26—H26C109.5
C15—C10—C9118.20 (13)H26B—C26—H26C109.5
C12—C11—C10118.52 (15)N3—C27—H27A109.5
C12—C11—H11120.7N3—C27—H27B109.5
C10—C11—H11120.7H27A—C27—H27B109.5
F1—C12—C13118.49 (16)N3—C27—H27C109.5
F1—C12—C11118.17 (16)H27A—C27—H27C109.5
C13—C12—C11123.32 (16)H27B—C27—H27C109.5
C12—C13—C14117.94 (15)N2—N1—C17124.28 (12)
C12—C13—H13121.0N2—N1—C9112.83 (11)
C14—C13—H13121.0C17—N1—C9122.89 (12)
C13—C14—C15121.58 (15)C24—N2—N1108.56 (12)
C13—C14—H14119.2C8—N3—C4111.52 (13)
C15—C14—H14119.2C8—N3—C27123.02 (16)
C14—C15—C10118.36 (14)C4—N3—C27125.18 (16)
C14—C15—C16121.55 (14)C25—O3—C26115.63 (14)
C10—C15—C16120.02 (13)
C6—C1—C2—C30.7 (3)C14—C15—C16—C17172.17 (14)
Cl1—C1—C2—C3179.82 (16)C10—C15—C16—C1710.8 (2)
C1—C2—C3—C40.1 (3)C15—C16—C17—N11.3 (2)
C2—C3—C4—C50.5 (3)C15—C16—C17—C18178.81 (14)
C2—C3—C4—N3179.09 (18)C16—C17—C18—C19134.10 (17)
C3—C4—C5—C60.1 (2)N1—C17—C18—C1943.4 (2)
N3—C4—C5—C6178.94 (14)C16—C17—C18—C2343.1 (2)
C3—C4—C5—C7175.39 (16)N1—C17—C18—C23139.34 (16)
N3—C4—C5—C73.42 (17)C23—C18—C19—C200.1 (3)
C4—C5—C6—C10.7 (2)C17—C18—C19—C20177.38 (16)
C7—C5—C6—C1175.11 (15)C18—C19—C20—C210.4 (3)
C2—C1—C6—C51.1 (2)C19—C20—C21—C220.7 (3)
Cl1—C1—C6—C5179.79 (12)C20—C21—C22—C230.5 (4)
C6—C5—C7—C2454.3 (2)C19—C18—C23—C220.3 (3)
C4—C5—C7—C24120.63 (13)C17—C18—C23—C22177.63 (17)
C6—C5—C7—C8176.67 (15)C21—C22—C23—C180.0 (3)
C4—C5—C7—C81.71 (15)C5—C7—C24—N2112.23 (14)
C6—C5—C7—C960.6 (2)C8—C7—C24—N2132.82 (14)
C4—C5—C7—C9124.49 (14)C9—C7—C24—N215.38 (15)
C5—C7—C8—O1178.81 (15)C5—C7—C24—C2560.72 (17)
C24—C7—C8—O160.97 (19)C8—C7—C24—C2554.23 (18)
C9—C7—C8—O149.6 (2)C9—C7—C24—C25171.67 (13)
C5—C7—C8—N30.59 (15)N2—C24—C25—O2179.97 (16)
C24—C7—C8—N3120.82 (14)C7—C24—C25—O27.8 (2)
C9—C7—C8—N3128.63 (13)N2—C24—C25—O30.6 (2)
C5—C7—C9—N1103.57 (14)C7—C24—C25—O3172.85 (13)
C24—C7—C9—N117.58 (13)C16—C17—N1—N2157.90 (14)
C8—C7—C9—N1137.85 (12)C18—C17—N1—N224.4 (2)
C5—C7—C9—C1020.10 (19)C16—C17—N1—C922.7 (2)
C24—C7—C9—C10141.26 (13)C18—C17—N1—C9155.05 (14)
C8—C7—C9—C1098.48 (15)C10—C9—N1—N2146.49 (12)
N1—C9—C10—C11164.24 (13)C7—C9—N1—N217.24 (16)
C7—C9—C10—C1145.3 (2)C10—C9—N1—C1734.01 (19)
N1—C9—C10—C1522.57 (18)C7—C9—N1—C17163.25 (13)
C7—C9—C10—C15141.53 (13)C25—C24—N2—N1178.35 (13)
C15—C10—C11—C120.4 (2)C7—C24—N2—N15.55 (17)
C9—C10—C11—C12173.48 (15)C17—N1—N2—C24172.44 (14)
C10—C11—C12—F1177.63 (15)C9—N1—N2—C248.07 (17)
C10—C11—C12—C130.6 (3)O1—C8—N3—C4179.07 (15)
F1—C12—C13—C14177.34 (16)C7—C8—N3—C42.72 (18)
C11—C12—C13—C140.9 (3)O1—C8—N3—C274.9 (3)
C12—C13—C14—C150.1 (2)C7—C8—N3—C27176.88 (16)
C13—C14—C15—C100.9 (2)C3—C4—N3—C8174.74 (18)
C13—C14—C15—C16176.19 (15)C5—C4—N3—C83.95 (19)
C11—C10—C15—C141.1 (2)C3—C4—N3—C270.7 (3)
C9—C10—C15—C14174.39 (13)C5—C4—N3—C27177.97 (17)
C11—C10—C15—C16175.96 (14)O2—C25—O3—C262.6 (3)
C9—C10—C15—C162.7 (2)C24—C25—O3—C26176.75 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27B···F1i0.962.523.226 (3)130
C14—H14···O1ii0.932.503.402 (2)163
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC27H19ClFN3O3
Mr487.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.1203 (3), 21.1088 (5), 15.6334 (3)
β (°) 112.977 (1)
V3)4593.85 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.940, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
22581, 5703, 4241
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.03
No. of reflections5703
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27B···F1i0.962.523.226 (3)130
C14—H14···O1ii0.932.503.402 (2)163
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationAubry, A., Pan, X. S., Fisher, L. M., Jarlier, V. & Cambau, E. (2004). Antimicrob. Agents Chemother. 48, 1281–1288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-Y. & Wu, J. (2010). Org. Lett. 12, 4856–4859.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, R. Q., Song, J. & Feng, L. (1996). Chem. J. Chin. Univ. 17, 1089–1091.  CAS Google Scholar
First citationKhan, F. N., Manivel, P., Kone, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Manivel, P., Krishnakumar, V., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010c). Acta Cryst. E66, o370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, M., Wang, S. W., Wen, L. R., Qi, W. Y. & Yang, H. Z. (2005). Chin. J. Struct. Chem. 4, 64–68.  Google Scholar
First citationManivel, P. R., Hathwar, V., Maiyalagan, T., Krishnakumar, V. & Khan, F. N. (2009). Acta Cryst. E65, o1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarco, E., Laine, W., Tardy, C., Lansiaux, A., Iwao, M., Ishibashi, F., Bailly, C. & Gago, F. (2005). J. Med. Chem. 48, 3796–3807.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatel, H. V., Fernandes, P. S. & Vyas, K. A. (1990). Indian J. Chem. Sect. B, 29, 135–141.  Google Scholar
First citationReddy, M. V. R., Rao, M. R., Rhodes, D., Hansen, M. S. T., Rubins, K., Bushman, F. D., Venkateswarlu, Y. & Faulkner, D. J. (1999). J. Med. Chem. 42, 1901–1907.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, S.-Q., Yang, X.-D. & Wu, J. (2010). Chem. Commun. pp. 5238–5240.  Web of Science CSD CrossRef Google Scholar
First citationYu, X.-X., Pan, X.-L. & Wu, J. (2011a). Tetrahedron, 67, 1145–1149.  Web of Science CrossRef CAS Google Scholar
First citationYu, X.-X., Yang, Q., Lou, H.-L., Peng, Y.-Y. & Wu, J. (2011b). Org. Biomol. Chem. 9, 7033–7037.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, W. G., Li, Z. M., Yuan, P. W., Yuan, D. K., Wang, W. Y. & Wang, S. H. (2001). Chin. J. Org. Chem. 21, 593–598.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o823-o824
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds