organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o841-o842

2-Amino-5-nitro­pyridinium tri­fluoro­acetate

aPostgraduate and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 1 April 2013; accepted 1 May 2013; online 11 May 2013)

The title salt, C5H6N3O2+·C2F3O2, crystallizes with two cations and two anions in the asymmetric unit. In the crystal, the acetate and pyridine groups are linked by a pair of N—H⋯O hydrogen bonds, forming loops described by the graph-set motif R22(8). These loops are linked via N—H⋯O hydrogen bonds, forming chains along [001]. The chains are in turn linked by C—H⋯O and C—H⋯F hydrogen bonds, generating a three-dimensional supra­molecular network. In both anions, the O and F atoms are disordered over two sites, with occupancy ratios of 0.852 (3):0.148 (3) and 0.851 (3):0.149 (3).

Related literature

For the biological properties of pyridine derivatives and compounds containing the imidazo[1,2-a]pyridine ring system, see: Trapani et al. (2003[Trapani, G., Latrofa, A., Franco, M., Carrieri, A., Cellamare, S., Serra, M., Sanna, E., Biggio, G. & Liso, G. (2003). Eur. J. Pharm. Sci. 18, 231-240.]); Gueiffier et al. (1998[Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, I. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. P. (1998). J. Med. Chem. 41, 5108-5112.]); Rival et al. (1992[Rival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170-1176.]); Rupert et al. (2003[Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347-350.]). For the crystal structure of a related compound, see: Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o781-o782.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·C2F3O2

  • Mr = 506.30

  • Monoclinic, P 21 /c

  • a = 19.1388 (7) Å

  • b = 10.7716 (4) Å

  • c = 10.0707 (3) Å

  • β = 104.668 (2)°

  • V = 2008.47 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.958

  • 18608 measured reflections

  • 4064 independent reflections

  • 3006 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.06

  • 4064 reflections

  • 367 parameters

  • 25 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4′i 0.86 1.90 2.758 (12) 175
N2—H2A⋯O3′i 0.93 (2) 1.88 (2) 2.791 (4) 168 (2)
N2—H2B⋯O8ii 0.90 (2) 2.06 (2) 2.935 (7) 166 (2)
N4—H4A⋯O8iii 0.86 1.91 2.772 (7) 175
N5—H5A⋯O7iii 0.91 (2) 1.86 (2) 2.763 (9) 172 (2)
N5—H5B⋯O3′iv 0.87 (2) 1.97 (2) 2.801 (3) 160 (2)
C1—H1⋯O7v 0.93 2.36 3.140 (5) 141
C4—H4⋯O2iv 0.93 2.57 3.264 (3) 132
C8—H8⋯F1′vi 0.93 2.44 3.089 (3) 127
C8—H8⋯O4′vi 0.93 2.36 3.253 (7) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+2; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+2, -y+1, -z+2; (vi) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine derivatives are important intermediates in organic synthesis, particularly in the synthesis of biologically active and medicinally important agents, for example, in the synthesis of anticonvulsant agents (Trapani et al., 2003) and antiviral agents (Gueiffier et al.,1998). Compounds containing the imidazo[1,2-a]pyridine ring system have been shown to exhibit antibacterial (Rival et al., 1992) and anti-inflammatory properties (Rupert et al., 2003). The wide spectrum of medicinal applications of this class of compounds prompted us to work in this domain and we report herein on the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains two 2-amino-5-nitro-pyridinium cations and two trifluoroacetate anions, Fig. 1. Each cation is planar with a maximum deviation of -0.0379 (2) Å for atom N3 in cation (C1—C5/N1), and 0.0661 (2) Å for atom N6 in cation (C8—C12/N4). The bond distances in the cations are in good agreement with the values reported for the related structure, 2-amino-5-chloropyridinium trifluoroacetate (Hemamalini & Fun, 2010). The sums of the angles around atoms N1 (360°) and N4 (360°) are an indication of their sp3 hybridization.

In the crystal, the acetate group and pyridine moiety are linked by a pair of N—H···O hydrogen bonds bonds, forming a loop described by the graph-set motif R22(8) (Bernstein et al., 1995). These loops are linked by N—H···O hydrogen bonds to form chains along the b axis (Table 1 and Fig. 2). The chains are further linked by C—H···O and C—H···F hydrogen bonds, generating a three-dimensional supramolecular network.

Related literature top

For the biological properties of pyridine derivatives and compounds containing the imidazo[1,2-a]pyridine ring system, see: Trapani et al. (2003); Gueiffier et al. (1998); Rival et al. (1992); Rupert et al. (2003). For the crystal structure of a related compound, see: Hemamalini & Fun (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by the reaction of an equimolar ratio of 2-amino-5-nitropyridine and trifluoroacetic acid. Trifluoroacetic acid was diluted with Millipore water and to this 2-amino-5-nitropyridine was added at room temperature. The mixture was stirred for 6 h to give a homogeneous solution, which was filtered and the filtrate kept for slow evaporation at room temperature. A saturated solution of the solid obtained was prepared by using methanol. It was kept in a constant-temperature water bath at 303 K to stabilize the temperature and avoid the effect of fluctuation in room temperature. After slow evaporation over a period of 15 d large colourless block-like crystals of the title compound were obtained.

Refinement top

The N—H distances of NH2 groups were restrained to be equal and were freely refined. The other H atoms were positioned geometrically and treated as riding on their parent atoms: C—H = 0.93 Å, N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(N,C). The F and O atoms of both anions are disordered over two positions with occupancy ratios of 0.852 (3):0.148 (3) and 0.851 (3):0.149 (3).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. (Only the major components of the disorderd trifluoroacetate anions are shown).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The various hydrogen bonds are shown as dashed lines (see Table 1 for details).
2-Amino-5-nitropyridinium trifluoroacetate top
Crystal data top
C5H6N3O2+·C2F3O2F(000) = 1024
Mr = 506.30Dx = 1.674 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6393 reflections
a = 19.1388 (7) Åθ = 2.2–25.4°
b = 10.7716 (4) ŵ = 0.17 mm1
c = 10.0707 (3) ÅT = 293 K
β = 104.668 (2)°Block, colourless
V = 2008.47 (12) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII Kappa CCD
diffractometer
4064 independent reflections
Radiation source: fine-focus sealed tube3006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 26.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2323
Tmin = 0.950, Tmax = 0.958k = 1313
18608 measured reflectionsl = 128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.6997P]
where P = (Fo2 + 2Fc2)/3
4064 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.28 e Å3
25 restraintsΔρmin = 0.30 e Å3
Crystal data top
C5H6N3O2+·C2F3O2V = 2008.47 (12) Å3
Mr = 506.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.1388 (7) ŵ = 0.17 mm1
b = 10.7716 (4) ÅT = 293 K
c = 10.0707 (3) Å0.30 × 0.30 × 0.25 mm
β = 104.668 (2)°
Data collection top
Bruker APEXII Kappa CCD
diffractometer
4064 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3006 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.958Rint = 0.027
18608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04225 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
4064 reflectionsΔρmin = 0.30 e Å3
367 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1'0.6216 (3)0.0649 (2)0.6851 (3)0.0814 (9)0.852 (3)
F2'0.56447 (14)0.2115 (4)0.5636 (3)0.1083 (15)0.852 (3)
F3'0.63061 (13)0.2483 (2)0.7641 (2)0.0768 (9)0.852 (3)
O3'0.70962 (17)0.31733 (18)0.5942 (3)0.0575 (10)0.852 (3)
O4'0.7170 (6)0.1168 (5)0.5457 (14)0.0457 (12)0.852 (3)
C60.69027 (10)0.20703 (17)0.58967 (18)0.0399 (6)
C70.62582 (11)0.1822 (2)0.6500 (2)0.0512 (7)
F10.624 (2)0.0769 (12)0.717 (2)0.0814 (9)0.148 (3)
F20.5709 (9)0.171 (3)0.5411 (17)0.1083 (15)0.148 (3)
F30.6058 (9)0.2704 (12)0.7193 (13)0.0768 (9)0.148 (3)
O30.6905 (13)0.3188 (9)0.558 (2)0.0575 (10)0.148 (3)
O40.725 (4)0.122 (3)0.555 (9)0.0457 (12)0.148 (3)
F41.09841 (15)0.2673 (2)0.9010 (3)0.1233 (10)0.851 (3)
F51.15881 (12)0.1049 (2)0.8967 (2)0.1058 (9)0.851 (3)
F61.08797 (13)0.1125 (3)1.0222 (3)0.1281 (12)0.851 (3)
O71.2114 (4)0.3372 (2)1.0927 (10)0.0567 (16)0.851 (3)
O81.2245 (3)0.1454 (6)1.1793 (7)0.0529 (13)0.851 (3)
C131.19568 (11)0.22682 (19)1.0956 (2)0.0450 (7)
C141.13362 (13)0.1801 (2)0.9792 (2)0.0613 (8)
F4'1.1391 (8)0.2274 (13)0.8650 (10)0.1233 (10)0.149 (3)
F5'1.1264 (8)0.0609 (8)0.9603 (13)0.1058 (9)0.149 (3)
F6'1.0714 (5)0.2141 (16)0.9973 (18)0.1281 (12)0.149 (3)
O7'1.195 (2)0.3400 (9)1.109 (6)0.054 (9)0.149 (3)
O8'1.2391 (18)0.150 (3)1.163 (4)0.045 (6)0.149 (3)
O10.96571 (10)0.58183 (17)0.87250 (19)0.0753 (7)
O21.00888 (11)0.4598 (2)0.7436 (3)0.0991 (9)
N10.82378 (8)0.31869 (13)0.91912 (15)0.0381 (5)
N20.78170 (10)0.11850 (16)0.8954 (2)0.0517 (6)
N30.96796 (10)0.4827 (2)0.8153 (2)0.0606 (7)
C10.86882 (10)0.40934 (17)0.90128 (18)0.0408 (6)
C20.91883 (10)0.38461 (18)0.83148 (19)0.0437 (6)
C30.92425 (11)0.2660 (2)0.7785 (2)0.0500 (7)
C40.87916 (10)0.1762 (2)0.7980 (2)0.0490 (7)
C50.82704 (9)0.20153 (17)0.87184 (18)0.0385 (5)
O51.44036 (10)0.50593 (17)1.1714 (2)0.0860 (7)
O61.48351 (9)0.36088 (19)1.31572 (16)0.0756 (6)
N41.32454 (8)0.25957 (13)0.90524 (15)0.0403 (5)
N51.30568 (10)0.06118 (17)0.82079 (19)0.0533 (6)
N61.44654 (9)0.3977 (2)1.20577 (19)0.0564 (7)
C81.35833 (10)0.34404 (17)0.99745 (19)0.0417 (6)
C91.40837 (10)0.30535 (18)1.10970 (19)0.0425 (6)
C101.42431 (10)0.17906 (19)1.1319 (2)0.0477 (6)
C111.39007 (11)0.09627 (18)1.0385 (2)0.0459 (6)
C121.33876 (10)0.13646 (16)0.91913 (19)0.0394 (6)
H10.865600.488300.936700.0490*
H1A0.791500.335700.962300.0460*
H2A0.7521 (11)0.135 (2)0.953 (2)0.065 (7)*
H2B0.7837 (13)0.0419 (17)0.862 (2)0.068 (7)*
H30.958700.249500.730200.0600*
H40.882200.097100.762800.0590*
H4A1.292500.284800.834200.0480*
H5A1.2713 (10)0.092 (2)0.7491 (18)0.065 (7)*
H5B1.3104 (13)0.018 (2)0.840 (2)0.066 (7)*
H81.347400.428000.984100.0500*
H101.458200.152901.210300.0570*
H111.400100.012101.052400.0550*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1'0.1041 (13)0.0575 (10)0.108 (2)0.0127 (10)0.074 (2)0.0002 (11)
F2'0.0443 (10)0.182 (4)0.0999 (15)0.0261 (13)0.0206 (10)0.0242 (15)
F3'0.0902 (18)0.0800 (13)0.0738 (14)0.0095 (10)0.0457 (12)0.0166 (11)
O3'0.076 (2)0.0308 (8)0.076 (2)0.0038 (9)0.0383 (15)0.0069 (8)
O4'0.048 (3)0.0320 (9)0.064 (2)0.0004 (12)0.027 (3)0.0028 (9)
C60.0466 (10)0.0315 (10)0.0434 (10)0.0018 (8)0.0145 (8)0.0004 (8)
C70.0504 (12)0.0497 (12)0.0588 (12)0.0055 (10)0.0237 (10)0.0010 (10)
F10.1041 (13)0.0575 (10)0.108 (2)0.0127 (10)0.074 (2)0.0002 (11)
F20.0443 (10)0.182 (4)0.0999 (15)0.0261 (13)0.0206 (10)0.0242 (15)
F30.0902 (18)0.0800 (13)0.0738 (14)0.0095 (10)0.0457 (12)0.0166 (11)
O30.076 (2)0.0308 (8)0.076 (2)0.0038 (9)0.0383 (15)0.0069 (8)
O40.048 (3)0.0320 (9)0.064 (2)0.0004 (12)0.027 (3)0.0028 (9)
F40.109 (2)0.0852 (15)0.1244 (18)0.0264 (13)0.0654 (16)0.0034 (13)
F50.0952 (16)0.1350 (19)0.0739 (13)0.0144 (14)0.0033 (10)0.0568 (13)
F60.0820 (14)0.178 (3)0.1117 (17)0.0743 (18)0.0010 (13)0.0013 (19)
O70.056 (4)0.0419 (17)0.0666 (17)0.0009 (13)0.005 (2)0.0002 (15)
O80.056 (3)0.0368 (15)0.055 (2)0.0024 (17)0.006 (2)0.0057 (13)
C130.0423 (11)0.0408 (12)0.0486 (11)0.0064 (9)0.0052 (8)0.0068 (9)
C140.0556 (13)0.0542 (14)0.0627 (14)0.0072 (11)0.0061 (11)0.0064 (11)
F4'0.109 (2)0.0852 (15)0.1244 (18)0.0264 (13)0.0654 (16)0.0034 (13)
F5'0.0952 (16)0.1350 (19)0.0739 (13)0.0144 (14)0.0033 (10)0.0568 (13)
F6'0.0820 (14)0.178 (3)0.1117 (17)0.0743 (18)0.0010 (13)0.0013 (19)
O7'0.043 (14)0.026 (8)0.08 (2)0.013 (6)0.006 (12)0.014 (8)
O8'0.034 (9)0.044 (10)0.059 (10)0.005 (7)0.015 (7)0.007 (6)
O10.0771 (12)0.0604 (11)0.0829 (12)0.0246 (9)0.0099 (9)0.0145 (9)
O20.0768 (13)0.0950 (15)0.1466 (19)0.0023 (11)0.0674 (14)0.0403 (13)
N10.0381 (8)0.0327 (8)0.0460 (8)0.0026 (6)0.0153 (6)0.0017 (6)
N20.0548 (11)0.0353 (10)0.0711 (12)0.0039 (8)0.0271 (9)0.0098 (8)
N30.0436 (10)0.0655 (14)0.0702 (12)0.0022 (9)0.0098 (9)0.0302 (11)
C10.0414 (10)0.0332 (9)0.0453 (10)0.0011 (8)0.0062 (8)0.0046 (8)
C20.0334 (9)0.0471 (11)0.0488 (10)0.0008 (8)0.0069 (8)0.0134 (9)
C30.0377 (10)0.0625 (14)0.0528 (11)0.0094 (9)0.0169 (9)0.0043 (10)
C40.0451 (11)0.0465 (12)0.0564 (11)0.0077 (9)0.0147 (9)0.0095 (9)
C50.0369 (9)0.0337 (9)0.0440 (9)0.0035 (8)0.0085 (8)0.0022 (8)
O50.0863 (13)0.0543 (11)0.1018 (14)0.0114 (10)0.0050 (11)0.0169 (10)
O60.0656 (10)0.1026 (14)0.0505 (9)0.0010 (10)0.0002 (8)0.0128 (9)
N40.0404 (8)0.0309 (8)0.0449 (8)0.0026 (6)0.0024 (7)0.0069 (7)
N50.0614 (11)0.0309 (9)0.0612 (11)0.0006 (8)0.0036 (9)0.0047 (8)
N60.0433 (10)0.0675 (13)0.0565 (11)0.0012 (9)0.0093 (8)0.0115 (9)
C80.0407 (10)0.0317 (9)0.0524 (10)0.0002 (8)0.0115 (8)0.0022 (8)
C90.0368 (10)0.0452 (11)0.0456 (10)0.0002 (8)0.0107 (8)0.0004 (8)
C100.0424 (10)0.0550 (13)0.0444 (10)0.0077 (9)0.0087 (8)0.0127 (9)
C110.0501 (11)0.0354 (10)0.0522 (11)0.0088 (9)0.0129 (9)0.0142 (9)
C120.0398 (10)0.0305 (9)0.0489 (10)0.0007 (8)0.0131 (8)0.0075 (8)
Geometric parameters (Å, º) top
F1—C71.325 (16)N3—C21.451 (3)
F1'—C71.320 (3)N1—H1A0.8600
F2—C71.319 (17)N2—H2B0.896 (19)
F2'—C71.311 (4)N2—H2A0.93 (2)
F3—C71.293 (14)N4—C121.354 (2)
F3'—C71.335 (3)N4—C81.343 (2)
F4—C141.299 (3)N5—C121.312 (3)
F4'—C141.286 (11)N6—C91.450 (3)
F5—C141.335 (3)N4—H4A0.8600
F5'—C141.300 (9)N5—H5A0.908 (19)
F6—C141.293 (4)N5—H5B0.87 (2)
F6'—C141.302 (12)C6—C71.530 (3)
O3—C61.246 (11)C13—C141.527 (3)
O3'—C61.242 (3)C1—C21.350 (3)
O4—C61.23 (6)C2—C31.399 (3)
O4'—C61.232 (9)C3—C41.343 (3)
O7—C131.229 (4)C4—C51.414 (3)
O7'—C131.227 (12)C1—H10.9300
O8—C131.244 (7)C3—H30.9300
O8'—C131.25 (4)C4—H40.9300
O1—N31.219 (3)C8—C91.349 (3)
O2—N31.217 (3)C9—C101.400 (3)
O5—N61.213 (3)C10—C111.341 (3)
O6—N61.220 (2)C11—C121.414 (3)
N1—C11.344 (2)C8—H80.9300
N1—C51.356 (2)C10—H100.9300
N2—C51.309 (3)C11—H110.9300
C1—N1—C5122.76 (16)F4—C14—C13114.2 (2)
O1—N3—C2118.91 (19)F5'—C14—C13118.1 (6)
O2—N3—C2116.9 (2)F6'—C14—C13111.2 (8)
O1—N3—O2124.2 (2)F4'—C14—F5'106.9 (8)
C5—N1—H1A119.00F5—C14—C13110.2 (2)
C1—N1—H1A119.00F4'—C14—C13109.4 (6)
H2A—N2—H2B120 (2)F5—C14—F6104.4 (2)
C5—N2—H2B117.9 (16)F4—C14—F6108.6 (3)
C5—N2—H2A121.5 (13)F5'—C14—F6'103.4 (10)
C8—N4—C12122.89 (16)F6—C14—C13112.9 (2)
O5—N6—C9118.21 (18)F4'—C14—F6'107.4 (10)
O6—N6—C9117.5 (2)F4—C14—F5106.0 (2)
O5—N6—O6124.3 (2)N1—C1—C2119.31 (17)
C12—N4—H4A119.00N3—C2—C3120.64 (18)
C8—N4—H4A119.00C1—C2—C3120.66 (18)
C12—N5—H5B115.7 (14)N3—C2—C1118.69 (18)
C12—N5—H5A119.2 (13)C2—C3—C4119.31 (19)
H5A—N5—H5B123 (2)C3—C4—C5120.19 (19)
O3'—C6—C7114.6 (2)N2—C5—C4123.50 (18)
O4—C6—C7122 (3)N1—C5—N2118.73 (17)
O4'—C6—C7117.1 (5)N1—C5—C4117.76 (17)
O3—C6—C7109.0 (11)C2—C1—H1120.00
O3'—C6—O4'128.4 (5)N1—C1—H1120.00
O3—C6—O4128 (3)C2—C3—H3120.00
F2'—C7—F3'107.3 (2)C4—C3—H3120.00
F2—C7—F3103.5 (14)C5—C4—H4120.00
F1'—C7—F3'106.0 (2)C3—C4—H4120.00
F1'—C7—C6112.6 (3)N4—C8—C9119.03 (17)
F3'—C7—C6111.22 (19)N6—C9—C8118.56 (18)
F3—C7—C6117.7 (7)C8—C9—C10120.92 (18)
F2'—C7—C6111.8 (2)N6—C9—C10120.51 (17)
F1—C7—F3107.7 (12)C9—C10—C11119.10 (18)
F2—C7—C6103.8 (8)C10—C11—C12120.25 (18)
F1—C7—F2103.1 (18)N4—C12—C11117.77 (16)
F1'—C7—F2'107.6 (3)N5—C12—C11123.44 (17)
F1—C7—C6118.7 (16)N4—C12—N5118.78 (17)
O8'—C13—C14118.8 (16)N4—C8—H8120.00
O7—C13—O8129.0 (5)C9—C8—H8120.00
O7—C13—C14116.6 (5)C9—C10—H10120.00
O7'—C13—O8'129 (3)C11—C10—H10120.00
O7'—C13—C14113 (2)C10—C11—H11120.00
O8—C13—C14114.4 (3)C12—C11—H11120.00
C1—N1—C5—C41.6 (3)O8—C13—C14—F647.9 (4)
C1—N1—C5—N2179.07 (18)O7—C13—C14—F49.0 (5)
C5—N1—C1—C21.2 (3)O8—C13—C14—F4172.6 (4)
O2—N3—C2—C1174.9 (2)O8—C13—C14—F568.3 (4)
O1—N3—C2—C14.7 (3)O7—C13—C14—F5110.1 (5)
O2—N3—C2—C36.5 (3)O7—C13—C14—F6133.7 (5)
O1—N3—C2—C3173.9 (2)N1—C1—C2—N3178.84 (17)
C12—N4—C8—C90.5 (3)N1—C1—C2—C30.3 (3)
C8—N4—C12—C111.9 (3)C1—C2—C3—C40.2 (3)
C8—N4—C12—N5176.76 (19)N3—C2—C3—C4178.37 (19)
O5—N6—C9—C10167.4 (2)C2—C3—C4—C50.3 (3)
O5—N6—C9—C811.3 (3)C3—C4—C5—N11.1 (3)
O6—N6—C9—C1011.8 (3)C3—C4—C5—N2179.6 (2)
O6—N6—C9—C8169.47 (19)N4—C8—C9—C101.1 (3)
O4'—C6—C7—F3'138.5 (7)N4—C8—C9—N6177.59 (17)
O4'—C6—C7—F1'19.7 (7)C8—C9—C10—C111.2 (3)
O3'—C6—C7—F2'79.7 (3)N6—C9—C10—C11177.44 (19)
O4'—C6—C7—F2'101.6 (7)C9—C10—C11—C120.2 (3)
O3'—C6—C7—F1'159.0 (3)C10—C11—C12—N5176.9 (2)
O3'—C6—C7—F3'40.3 (3)C10—C11—C12—N41.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.861.902.758 (12)175
N2—H2A···O3i0.93 (2)1.88 (2)2.791 (4)168 (2)
N2—H2B···O8ii0.90 (2)2.06 (2)2.935 (7)166 (2)
N4—H4A···O8iii0.861.912.772 (7)175
N5—H5A···O7iii0.91 (2)1.86 (2)2.763 (9)172 (2)
N5—H5B···O3iv0.87 (2)1.97 (2)2.801 (3)160 (2)
C1—H1···O7v0.932.363.140 (5)141
C4—H4···O2iv0.932.573.264 (3)132
C8—H8···F1vi0.932.443.089 (3)127
C8—H8···O4vi0.932.363.253 (7)161
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y, z+2; (iii) x, y+1/2, z1/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1, z+2; (vi) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H6N3O2+·C2F3O2
Mr506.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)19.1388 (7), 10.7716 (4), 10.0707 (3)
β (°) 104.668 (2)
V3)2008.47 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.950, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
18608, 4064, 3006
Rint0.027
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.06
No. of reflections4064
No. of parameters367
No. of restraints25
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4'i0.861.902.758 (12)175
N2—H2A···O3'i0.93 (2)1.88 (2)2.791 (4)168.0 (19)
N2—H2B···O8ii0.896 (19)2.06 (2)2.935 (7)166 (2)
N4—H4A···O8iii0.861.912.772 (7)175
N5—H5A···O7iii0.908 (19)1.86 (2)2.763 (9)172.1 (18)
N5—H5B···O3'iv0.87 (2)1.97 (2)2.801 (3)160 (2)
C1—H1···O7v0.932.363.140 (5)141
C4—H4···O2iv0.932.573.264 (3)132
C8—H8···F1'vi0.932.443.089 (3)127
C8—H8···O4'vi0.932.363.253 (7)161
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y, z+2; (iii) x, y+1/2, z1/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1, z+2; (vi) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, I. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. P. (1998). J. Med. Chem. 41, 5108–5112.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o781–o782.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170–1176.  CrossRef PubMed CAS Google Scholar
First citationRupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrapani, G., Latrofa, A., Franco, M., Carrieri, A., Cellamare, S., Serra, M., Sanna, E., Biggio, G. & Liso, G. (2003). Eur. J. Pharm. Sci. 18, 231–240.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o841-o842
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds