metal-organic compounds
Bis{2-[2,5-bis(pyridin-2-yl)-1H-imidazol-4-yl]pyridinium} tetracyanidoplatinate(II) tetrahydrate
aDepartamento de Investigación en Polimeros y Materiales, Universidad de Sonora, Rosales y Blvd. Luis Encinas S/N, Col. Centro, Edificio 3G, CP 83000, Hermosillo, Sonora, México, bCentro de Investigaciones Quimicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, México, and cFacultad de Ingenieria Mochis, Universidad Autónoma de Sinaloa, Fuente Poseidon y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México
*Correspondence e-mail: gaxiolajose@yahoo.com.mx
The 18H14N5)2[Pt(CN)4]·4H2O, consists of one 2-[2,5-bis(pyridin-2-yl)-1H-imidazol-4-yl]pyridinium cation, half a tetracyanidoplatinate(II) dianion, which is located about a crystallographic inversion center, and two water molecules of crystallization. The PtII atom has a square-planar coordination environment, with Pt—CCN distances of 1.992 (4) and 2.000 (4) Å. In the cation, there is an N—H⋯N hydrogen bond linking adjacent pyridinium and pyridine rings in positions 4 and 5. Despite this, the organic component is non-planar, as shown by the dihedral angles of 10.3 (2), 6.60 (19) and 15.66 (18)° between the planes of the central imidazole ring and the pyridine/pyridinium substituents in the 2-, 4- and 5-positions. In the crystal, cations and anions are linked via O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming a three-dimensional network. Additional π–π, C—H⋯O and C—H⋯N contacts provide stabilization to the crystal lattice.
of the title hydrated complex salt, (CRelated literature
For the structural, magnetic, optical and electrical properties of hydrogen-bonded inorganic–organic hybrid materials, see: Anastassiadou et al. (2000); Crawford et al. (2004); Dechambenoit et al. (2006); Du et al. (2013); Lebeau & Innocenzi (2011); Maynard & Sykora (2008); Pardo et al. (2011); Sanchez et al. (2005); Wang et al. (2010); Yao et al. (2010).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813011665/su2593sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813011665/su2593Isup2.hkl
The organic component in the title compound, 2-(2,5-di(pyridin-2-yl)-1H-imidazol-4-yl)pyridine, was synthesized according to a previously reported procedure (Anastassiadou et al., 2000). Single crystals of the platinum complex were prepared at room temperature by slow diffusion of a CH3CN/H2O (2 ml, 1:1 v/v) solution containing both Eu(NO3)3 . 6H2O (0.034 g, 0.08 mmol) and K2Pt(CN)4 (0.030 g, 0.08 mmol) into a CH2Cl2 (2 ml) solution of 2-(2,5-di(pyridin-2-yl)-1H-imidazol-4-yl)pyridine (0.024 g, 0.08 mmol). After two weeks, pale yellow crystals were obtained [Yield: 40%]. IR and TGA details are given in the archived CIF.
The C-bound H atoms were positioned geometrically and refined as riding atoms [aryl C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The pyridinium N—H+ and water H atoms were located in difference Fourier maps. They were refined with distance restraints of 0.840 (1)Å, with Uiso(H) = 1.5Ueq(O, N). For the
of the water molecules a constraint has also been employed for the H—O—H bond angles (DANG = 1.35 (1) Å). In the final difference Fourier map a large residual density peak, 3.10 eÅ-3, and hole, -2.26 eÅ-3, were found near the Pt atom.Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker 2001); data reduction: SAINT-Plus (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x + 1/2, -y + 3/2, -z + 1]. | |
Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the O—H···O, O—H···N, N—H···O, C—H···O and C—H···N hydrogen bonded three-dimensional supramolecular network (hydrogen bonds are shown as dashed lines; see Table 1 for details). |
(C18H14N5)2[Pt(CN)4]·4H2O | F(000) = 1936 |
Mr = 971.92 | Dx = 1.667 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9440 reflections |
a = 20.958 (5) Å | θ = 2.3–27.7° |
b = 12.048 (3) Å | µ = 3.69 mm−1 |
c = 15.403 (3) Å | T = 100 K |
β = 95.483 (3)° | Rectangular prism, yellow |
V = 3871.6 (14) Å3 | 0.50 × 0.34 × 0.28 mm |
Z = 4 |
Bruker SMART CCD area detector diffractometer | 3418 independent reflections |
Radiation source: fine-focus sealed tube | 2726 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
phi and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −24→24 |
Tmin = 0.26, Tmax = 0.43 | k = −14→14 |
17095 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0497P)2] where P = (Fo2 + 2Fc2)/3 |
3418 reflections | (Δ/σ)max < 0.001 |
286 parameters | Δρmax = 3.10 e Å−3 |
8 restraints | Δρmin = −2.27 e Å−3 |
(C18H14N5)2[Pt(CN)4]·4H2O | V = 3871.6 (14) Å3 |
Mr = 971.92 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.958 (5) Å | µ = 3.69 mm−1 |
b = 12.048 (3) Å | T = 100 K |
c = 15.403 (3) Å | 0.50 × 0.34 × 0.28 mm |
β = 95.483 (3)° |
Bruker SMART CCD area detector diffractometer | 3418 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2726 reflections with I > 2σ(I) |
Tmin = 0.26, Tmax = 0.43 | Rint = 0.066 |
17095 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 8 restraints |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 3.10 e Å−3 |
3418 reflections | Δρmin = −2.27 e Å−3 |
286 parameters |
Experimental. IR and TGA details for the title compound: IR(KBr, cm-1): 3406, 3385, 3268, 3100, 2129, 1661, 1596, 1501, 1447, 1235, 1139, 1096, 777, 703. TGA: Calcd. for 4H2O: 7.42. Found: 7.69% (298 - 385 K). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.2500 | 0.7500 | 0.5000 | 0.01672 (10) | |
N1 | 0.96962 (15) | 1.0885 (2) | 0.10252 (19) | 0.0173 (7) | |
H1' | 0.973 (2) | 1.1564 (9) | 0.114 (3) | 0.026* | |
N2 | 0.92075 (14) | 0.9356 (2) | 0.05054 (18) | 0.0179 (7) | |
N3 | 0.87601 (18) | 1.2211 (3) | −0.0001 (2) | 0.0226 (8) | |
N4 | 1.09913 (14) | 0.9336 (2) | 0.22311 (18) | 0.0171 (7) | |
N5 | 1.03998 (19) | 0.7543 (2) | 0.1645 (2) | 0.0189 (8) | |
H5' | 1.0631 (17) | 0.798 (3) | 0.196 (2) | 0.028* | |
N6 | 0.31880 (15) | 0.8613 (3) | 0.6676 (2) | 0.0256 (8) | |
N7 | 0.32877 (17) | 0.9085 (3) | 0.3882 (2) | 0.0320 (8) | |
C1 | 0.91839 (17) | 1.0457 (3) | 0.0535 (2) | 0.0181 (8) | |
C2 | 1.00799 (17) | 1.0022 (3) | 0.1331 (2) | 0.0168 (8) | |
C3 | 0.97619 (18) | 0.9069 (3) | 0.1007 (2) | 0.0170 (9) | |
C4 | 0.86797 (17) | 1.1094 (3) | 0.0042 (2) | 0.0188 (8) | |
C5 | 0.81594 (17) | 1.0555 (3) | −0.0383 (2) | 0.0238 (9) | |
H5 | 0.8109 | 0.9777 | −0.0321 | 0.029* | |
C6 | 0.77141 (19) | 1.1165 (3) | −0.0900 (2) | 0.0286 (10) | |
H6 | 0.7355 | 1.0812 | −0.1206 | 0.034* | |
C7 | 0.7798 (3) | 1.2285 (4) | −0.0962 (3) | 0.0325 (11) | |
H7 | 0.7502 | 1.2718 | −0.1325 | 0.039* | |
C8 | 0.8316 (2) | 1.2785 (4) | −0.0496 (3) | 0.0290 (10) | |
H8 | 0.8358 | 1.3568 | −0.0528 | 0.035* | |
C9 | 1.07022 (17) | 1.0222 (3) | 0.1828 (2) | 0.0172 (8) | |
C10 | 1.09906 (18) | 1.1263 (3) | 0.1866 (2) | 0.0201 (8) | |
H10 | 1.0780 | 1.1884 | 0.1588 | 0.024* | |
C11 | 1.15875 (19) | 1.1376 (3) | 0.2316 (2) | 0.0218 (9) | |
H11 | 1.1794 | 1.2079 | 0.2344 | 0.026* | |
C12 | 1.18881 (19) | 1.0470 (3) | 0.2727 (2) | 0.0225 (9) | |
H12 | 1.2301 | 1.0535 | 0.3037 | 0.027* | |
C13 | 1.15672 (18) | 0.9468 (3) | 0.2671 (2) | 0.0218 (9) | |
H13 | 1.1765 | 0.8842 | 0.2959 | 0.026* | |
C14 | 0.99006 (18) | 0.7888 (3) | 0.1090 (2) | 0.0155 (8) | |
C15 | 0.95298 (19) | 0.7094 (3) | 0.0622 (2) | 0.0196 (9) | |
H15 | 0.9177 | 0.7314 | 0.0226 | 0.023* | |
C16 | 0.9678 (2) | 0.5986 (3) | 0.0734 (3) | 0.0241 (9) | |
H16 | 0.9424 | 0.5439 | 0.0420 | 0.029* | |
C17 | 1.01988 (19) | 0.5669 (3) | 0.1306 (2) | 0.0230 (9) | |
H17 | 1.0306 | 0.4907 | 0.1386 | 0.028* | |
C18 | 1.05545 (19) | 0.6473 (3) | 0.1752 (2) | 0.0215 (9) | |
H18 | 1.0914 | 0.6269 | 0.2141 | 0.026* | |
C19 | 0.29365 (18) | 0.8199 (3) | 0.6075 (2) | 0.0204 (9) | |
C20 | 0.29937 (19) | 0.8513 (3) | 0.4291 (2) | 0.0220 (9) | |
O31 | 0.96490 (15) | 0.3159 (2) | 0.1280 (2) | 0.0341 (7) | |
H31A | 0.9379 (13) | 0.310 (4) | 0.0842 (14) | 0.051* | |
H32A | 0.1394 (19) | 0.481 (2) | 0.304 (2) | 0.051* | |
O32 | 0.12373 (15) | 0.4241 (2) | 0.27892 (18) | 0.0324 (7) | |
H31B | 0.9448 (15) | 0.334 (4) | 0.1704 (15) | 0.049* | |
H32B | 0.135 (2) | 0.426 (3) | 0.2280 (11) | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01960 (15) | 0.01288 (15) | 0.01807 (14) | 0.00058 (8) | 0.00385 (8) | −0.00070 (7) |
N1 | 0.0203 (18) | 0.0123 (16) | 0.0202 (16) | 0.0003 (15) | 0.0066 (13) | −0.0003 (14) |
N2 | 0.0202 (18) | 0.0155 (17) | 0.0191 (16) | −0.0003 (14) | 0.0083 (13) | 0.0013 (13) |
N3 | 0.027 (2) | 0.0138 (16) | 0.029 (2) | 0.0015 (16) | 0.0114 (15) | 0.0038 (15) |
N4 | 0.0224 (18) | 0.0111 (16) | 0.0184 (16) | 0.0006 (14) | 0.0048 (13) | 0.0000 (13) |
N5 | 0.021 (2) | 0.016 (2) | 0.0201 (19) | −0.0058 (14) | 0.0047 (14) | −0.0014 (13) |
N6 | 0.026 (2) | 0.0281 (19) | 0.0228 (18) | −0.0027 (16) | 0.0053 (15) | −0.0046 (15) |
N7 | 0.035 (2) | 0.031 (2) | 0.031 (2) | −0.0065 (17) | 0.0077 (16) | 0.0025 (16) |
C1 | 0.019 (2) | 0.018 (2) | 0.0183 (19) | 0.0004 (17) | 0.0099 (16) | 0.0001 (16) |
C2 | 0.022 (2) | 0.013 (2) | 0.0169 (19) | 0.0014 (17) | 0.0098 (15) | 0.0005 (16) |
C3 | 0.020 (2) | 0.018 (2) | 0.0152 (19) | −0.0019 (17) | 0.0090 (16) | 0.0016 (16) |
C4 | 0.020 (2) | 0.018 (2) | 0.0200 (19) | 0.0058 (17) | 0.0117 (16) | 0.0013 (16) |
C5 | 0.023 (2) | 0.024 (2) | 0.025 (2) | −0.0002 (19) | 0.0073 (17) | −0.0027 (17) |
C6 | 0.026 (2) | 0.030 (2) | 0.030 (2) | 0.006 (2) | 0.0015 (17) | −0.0021 (19) |
C7 | 0.033 (3) | 0.034 (3) | 0.030 (3) | 0.011 (2) | 0.002 (2) | 0.006 (2) |
C8 | 0.035 (3) | 0.021 (2) | 0.033 (3) | 0.005 (2) | 0.014 (2) | 0.008 (2) |
C9 | 0.022 (2) | 0.016 (2) | 0.0156 (19) | 0.0004 (17) | 0.0100 (15) | −0.0019 (15) |
C10 | 0.028 (2) | 0.0115 (19) | 0.022 (2) | 0.0001 (18) | 0.0067 (16) | 0.0003 (16) |
C11 | 0.025 (2) | 0.015 (2) | 0.026 (2) | −0.0034 (18) | 0.0045 (17) | −0.0038 (17) |
C12 | 0.026 (2) | 0.019 (2) | 0.022 (2) | −0.0032 (18) | 0.0025 (17) | −0.0033 (17) |
C13 | 0.028 (2) | 0.017 (2) | 0.021 (2) | 0.0022 (18) | 0.0054 (17) | 0.0052 (16) |
C14 | 0.018 (2) | 0.0142 (17) | 0.016 (2) | −0.0009 (18) | 0.0092 (16) | 0.0017 (16) |
C15 | 0.021 (2) | 0.0181 (19) | 0.020 (2) | 0.0000 (19) | 0.0057 (16) | 0.0009 (17) |
C16 | 0.029 (2) | 0.019 (2) | 0.025 (2) | −0.0070 (19) | 0.0061 (18) | −0.0042 (17) |
C17 | 0.028 (2) | 0.012 (2) | 0.030 (2) | −0.0029 (19) | 0.0095 (18) | 0.0008 (17) |
C18 | 0.025 (2) | 0.018 (2) | 0.023 (2) | −0.0006 (18) | 0.0058 (16) | 0.0064 (17) |
C19 | 0.024 (2) | 0.019 (2) | 0.020 (2) | 0.0026 (18) | 0.0069 (17) | 0.0014 (17) |
C20 | 0.025 (2) | 0.019 (2) | 0.022 (2) | −0.0011 (18) | 0.0024 (17) | −0.0068 (17) |
O31 | 0.0371 (19) | 0.0219 (17) | 0.0444 (19) | −0.0019 (15) | 0.0096 (14) | −0.0049 (15) |
O32 | 0.046 (2) | 0.0254 (16) | 0.0277 (16) | −0.0057 (15) | 0.0115 (14) | −0.0006 (13) |
Pt1—C20 | 1.992 (4) | C6—C7 | 1.365 (5) |
Pt1—C20i | 1.992 (4) | C6—H6 | 0.9500 |
Pt1—C19 | 2.000 (4) | C7—C8 | 1.381 (7) |
Pt1—C19i | 2.000 (4) | C7—H7 | 0.9500 |
N1—C1 | 1.354 (5) | C8—H8 | 0.9500 |
N1—C2 | 1.370 (5) | C9—C10 | 1.391 (5) |
N1—H1' | 0.8400 (11) | C10—C11 | 1.378 (5) |
N2—C1 | 1.328 (4) | C10—H10 | 0.9500 |
N2—C3 | 1.377 (5) | C11—C12 | 1.383 (5) |
N3—C8 | 1.338 (6) | C11—H11 | 0.9500 |
N3—C4 | 1.358 (5) | C12—C13 | 1.381 (5) |
N4—C13 | 1.336 (5) | C12—H12 | 0.9500 |
N4—C9 | 1.349 (4) | C13—H13 | 0.9500 |
N5—C18 | 1.336 (4) | C14—C15 | 1.391 (6) |
N5—C14 | 1.351 (6) | C15—C16 | 1.377 (6) |
N5—H5' | 0.8400 (11) | C15—H15 | 0.9500 |
N6—C19 | 1.135 (5) | C16—C17 | 1.390 (6) |
N7—C20 | 1.151 (4) | C16—H16 | 0.9500 |
C1—C4 | 1.459 (5) | C17—C18 | 1.367 (5) |
C2—C3 | 1.396 (5) | C17—H17 | 0.9500 |
C2—C9 | 1.467 (5) | C18—H18 | 0.9500 |
C3—C14 | 1.455 (5) | O31—H31A | 0.8401 (11) |
C4—C5 | 1.380 (5) | O31—H31B | 0.8400 (11) |
C5—C6 | 1.379 (5) | O32—H32A | 0.8401 (11) |
C5—H5 | 0.9500 | O32—H32B | 0.8400 (11) |
C20—Pt1—C20i | 180.00 (17) | N3—C8—H8 | 118.6 |
C20—Pt1—C19 | 88.59 (15) | C7—C8—H8 | 118.6 |
C20i—Pt1—C19 | 91.41 (14) | N4—C9—C10 | 121.3 (3) |
C20—Pt1—C19i | 91.41 (14) | N4—C9—C2 | 116.6 (3) |
C20i—Pt1—C19i | 88.59 (15) | C10—C9—C2 | 122.1 (3) |
C19—Pt1—C19i | 180.000 (1) | C11—C10—C9 | 118.7 (3) |
C1—N1—C2 | 108.2 (3) | C11—C10—H10 | 120.6 |
C1—N1—H1' | 123 (3) | C9—C10—H10 | 120.6 |
C2—N1—H1' | 129 (3) | C10—C11—C12 | 120.3 (4) |
C1—N2—C3 | 105.3 (3) | C10—C11—H11 | 119.8 |
C8—N3—C4 | 117.2 (4) | C12—C11—H11 | 119.8 |
C13—N4—C9 | 118.9 (3) | C13—C12—C11 | 117.6 (4) |
C18—N5—C14 | 122.6 (4) | C13—C12—H12 | 121.2 |
C18—N5—H5' | 115 (3) | C11—C12—H12 | 121.2 |
C14—N5—H5' | 123 (3) | N4—C13—C12 | 123.1 (3) |
N2—C1—N1 | 111.6 (3) | N4—C13—H13 | 118.4 |
N2—C1—C4 | 122.3 (3) | C12—C13—H13 | 118.4 |
N1—C1—C4 | 125.9 (3) | N5—C14—C15 | 118.5 (4) |
N1—C2—C3 | 104.9 (3) | N5—C14—C3 | 119.5 (4) |
N1—C2—C9 | 121.2 (3) | C15—C14—C3 | 122.0 (4) |
C3—C2—C9 | 133.8 (3) | C16—C15—C14 | 119.6 (4) |
N2—C3—C2 | 110.0 (3) | C16—C15—H15 | 120.2 |
N2—C3—C14 | 116.5 (3) | C14—C15—H15 | 120.2 |
C2—C3—C14 | 133.5 (4) | C15—C16—C17 | 120.0 (4) |
N3—C4—C5 | 122.6 (4) | C15—C16—H16 | 120.0 |
N3—C4—C1 | 117.4 (3) | C17—C16—H16 | 120.0 |
C5—C4—C1 | 120.0 (3) | C18—C17—C16 | 118.8 (4) |
C6—C5—C4 | 118.9 (4) | C18—C17—H17 | 120.6 |
C6—C5—H5 | 120.5 | C16—C17—H17 | 120.6 |
C4—C5—H5 | 120.5 | N5—C18—C17 | 120.5 (4) |
C7—C6—C5 | 118.8 (4) | N5—C18—H18 | 119.7 |
C7—C6—H6 | 120.6 | C17—C18—H18 | 119.7 |
C5—C6—H6 | 120.6 | N6—C19—Pt1 | 178.6 (3) |
C6—C7—C8 | 119.6 (5) | N7—C20—Pt1 | 178.8 (3) |
C6—C7—H7 | 120.2 | H31A—O31—H31B | 107.2 (12) |
C8—C7—H7 | 120.2 | H32A—O32—H32B | 106.3 (12) |
N3—C8—C7 | 122.7 (4) | ||
C3—N2—C1—N1 | 0.4 (4) | C13—N4—C9—C10 | −0.4 (5) |
C3—N2—C1—C4 | 176.7 (3) | C13—N4—C9—C2 | 178.1 (3) |
C2—N1—C1—N2 | 0.4 (4) | N1—C2—C9—N4 | 168.6 (3) |
C2—N1—C1—C4 | −175.8 (3) | C3—C2—C9—N4 | −17.0 (5) |
C1—N1—C2—C3 | −0.9 (4) | N1—C2—C9—C10 | −12.9 (5) |
C1—N1—C2—C9 | 175.0 (3) | C3—C2—C9—C10 | 161.5 (4) |
C1—N2—C3—C2 | −1.0 (4) | N4—C9—C10—C11 | 1.1 (5) |
C1—N2—C3—C14 | 179.5 (3) | C2—C9—C10—C11 | −177.4 (3) |
N1—C2—C3—N2 | 1.2 (4) | C9—C10—C11—C12 | −0.7 (5) |
C9—C2—C3—N2 | −173.9 (3) | C10—C11—C12—C13 | −0.3 (5) |
N1—C2—C3—C14 | −179.4 (4) | C9—N4—C13—C12 | −0.7 (5) |
C9—C2—C3—C14 | 5.5 (7) | C11—C12—C13—N4 | 1.0 (5) |
C8—N3—C4—C5 | −1.4 (5) | C18—N5—C14—C15 | 0.8 (6) |
C8—N3—C4—C1 | 176.1 (3) | C18—N5—C14—C3 | −179.9 (3) |
N2—C1—C4—N3 | −168.9 (3) | N2—C3—C14—N5 | −173.1 (3) |
N1—C1—C4—N3 | 6.9 (5) | C2—C3—C14—N5 | 7.4 (6) |
N2—C1—C4—C5 | 8.7 (5) | N2—C3—C14—C15 | 6.1 (5) |
N1—C1—C4—C5 | −175.5 (3) | C2—C3—C14—C15 | −173.3 (4) |
N3—C4—C5—C6 | 2.5 (5) | N5—C14—C15—C16 | 0.1 (5) |
C1—C4—C5—C6 | −175.0 (3) | C3—C14—C15—C16 | −179.1 (4) |
C4—C5—C6—C7 | −1.0 (6) | C14—C15—C16—C17 | −0.7 (5) |
C5—C6—C7—C8 | −1.4 (7) | C15—C16—C17—C18 | 0.3 (6) |
C4—N3—C8—C7 | −1.1 (6) | C14—N5—C18—C17 | −1.2 (6) |
C6—C7—C8—N3 | 2.6 (7) | C16—C17—C18—N5 | 0.6 (6) |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5′···N4 | 0.84 | 1.83 | 2.609 (4) | 154 |
N1—H1′···O31ii | 0.84 | 1.94 | 2.771 (4) | 169 |
O31—H31B···O32iii | 0.84 | 2.02 | 2.778 (4) | 151 |
O32—H32A···N6i | 0.84 | 2.12 | 2.937 (4) | 164 |
O31—H31A···N3iv | 0.84 | 2.05 | 2.822 (5) | 152 |
O32—H32B···N7v | 0.84 | 2.02 | 2.854 (5) | 170 |
C6—H6···O32vi | 0.95 | 2.68 | 3.564 (5) | 155 |
C17—H17···O32vii | 0.95 | 2.88 | 3.459 (5) | 120 |
C18—H18···O32vii | 0.95 | 2.70 | 3.375 (5) | 129 |
C18—H18···N6viii | 0.95 | 2.50 | 3.406 (5) | 161 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x, y+1, z; (iii) −x+1, y, −z+1/2; (iv) x, y−1, z; (v) −x+1/2, y−1/2, −z+1/2; (vi) x+1/2, −y+3/2, z−1/2; (vii) x+1, y, z; (viii) −x+3/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C18H14N5)2[Pt(CN)4]·4H2O |
Mr | 971.92 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 20.958 (5), 12.048 (3), 15.403 (3) |
β (°) | 95.483 (3) |
V (Å3) | 3871.6 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.69 |
Crystal size (mm) | 0.50 × 0.34 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART CCD area detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.26, 0.43 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17095, 3418, 2726 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.078, 1.00 |
No. of reflections | 3418 |
No. of parameters | 286 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 3.10, −2.27 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5'···N4 | 0.84 | 1.83 | 2.609 (4) | 154 |
N1—H1'···O31i | 0.84 | 1.94 | 2.771 (4) | 169 |
O31—H31B···O32ii | 0.84 | 2.02 | 2.778 (4) | 151 |
O32—H32A···N6iii | 0.84 | 2.12 | 2.937 (4) | 164 |
O31—H31A···N3iv | 0.84 | 2.05 | 2.822 (5) | 152 |
O32—H32B···N7v | 0.84 | 2.02 | 2.854 (5) | 170 |
C6—H6···O32vi | 0.95 | 2.68 | 3.564 (5) | 155 |
C17—H17···O32vii | 0.95 | 2.88 | 3.459 (5) | 120 |
C18—H18···O32vii | 0.95 | 2.70 | 3.375 (5) | 129 |
C18—H18···N6viii | 0.95 | 2.50 | 3.406 (5) | 161 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, −y+3/2, −z+1; (iv) x, y−1, z; (v) −x+1/2, y−1/2, −z+1/2; (vi) x+1/2, −y+3/2, z−1/2; (vii) x+1, y, z; (viii) −x+3/2, −y+3/2, −z+1. |
Acknowledgements
This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2012/032). RGH thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.
References
Anastassiadou, M., Baziard-Mouysset, G. & &Payard, M. (2000). Synthesis, 13, 1814–1816. CrossRef Google Scholar
Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crawford, P. C., Gillon, A. L., Green, J., Orpen, A. G., Podesta, T. J. & Pritchard, S. V. (2004). CrystEngComm, 6, 419–428. Web of Science CSD CrossRef CAS Google Scholar
Dechambenoit, P., Ferlay, S., Hosseini, M. W., Planeix, J. M. & Kyritsakas, N. (2006). New J. Chem. 30, 1403–1410. Web of Science CSD CrossRef CAS Google Scholar
Du, F., Zhang, H., Tian, C. & Du, S. (2013). Cryst. Growth Des. 13, 1736–1742. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lebeau, B. & Innocenzi, P. (2011). Chem. Soc. Rev. 40, 886–906. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maynard, B. A. & Sykora, R. E. (2008). Acta Cryst. E64, m138–m139. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pardo, R., Zayat, M. & Levy, D. (2011). Chem. Soc. Rev. 40, 672–687. Web of Science CrossRef CAS PubMed Google Scholar
Sanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559–3592. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, M. S., Xu, G., Zhang, Z. J. & &Guo, G. C. (2010). Chem. Commun. 46, 361–376. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, H. B., Gao, M. R. & Yu, S. H. (2010). Nanoscale, 2, 323–334. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bond based inorganic–organic hybrid materials are receiving continuous interest because of their structural, magnetic, optical and electrical properties (Sanchez et al., 2005; Yao et al., 2010; Wang et al., 2010; Lebeau et al., 2011; Pardo et al., 2011; Du et al., 2013). An interesting approach for the preparation of such materials consists in the utilization of supramolecular synthons capable of forming O—H···O, O—H···N and N—H···O hydrogen bonds, through which organic cations and anionic metal complexes are linked to form crystalline inorganic–organic hybrid solids (Crawford et al., 2004; Dechambenoit et al., 2006; Maynard & Sykora, 2008). As a further contribution to this filed of research we report herein on the synthesis and crystal structure of the title compound.
The asymmetric unit of the title compound consists of one organic cation of the composition [(C18H14N5)]+, which is located in a general position, half of an independent [Pt(CN)4]2- anion, which is located on a crystallographic inversion center, and two water molecules of crystallization (Fig. 1). The Pt atom has a square-planar coordination environment with Pt—C(cyanido) distances ranging from 1.992 (4) to 2.000 (4) Å. Although two of the three pyridine substituents are linked by an intramolecular N5+—H5'···N4 hydrogen bond (Table 1), the organic component is essentially nonplanar, as shown by the dihedral angles of 10.3 (2), 6.60 (19) and 15.66 (18)°, respectively, formed between the central imidazole ring plane and the pyridine substituents in the 2-, 4- and 5-positions.
In the crystal, the cations and anions are linked by O—H···O, O—H···N and N—H···O hydrogen bonds forming a three-dimensional network (Table 1 and Fig. 2). Within the network, the organic cations are stacked through a series of π—π interactions involving the imidazole and pyridinium rings [Cg1···Cg1i distance = 3.359 (2) Å; Cg1···Cg2ii distance = 3.559 (2) Å; Cg3···Cg3iii distance = 4.023 (3) Å; Cg2···Cg3i distance = 3.929 (2) Å; Cg1= N1/C1/N2/C3/C2; Cg2 = N4/C9-C13 and Cg3 = N3/C4—C8; symmetry codes: (i) –x+1, -y+1, -z; (ii) –x+1, y, 1- z+1/2; (iii)-x+1/2, - y+3/2, -z]. Additionally, there are a number of C—H···O and C—H···N contacts present, thus providing additional stabilization to the crystal lattice (Table 1 and Fig. 2).