organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o931-o932

4-(4-Bromo­phen­yl)-2-methyl­amino-3-nitro-5,6,7,8-tetra­hydro-4H-chromen-5-one

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 4 May 2013; accepted 9 May 2013; online 22 May 2013)

In the title compound, C16H15BrN2O4, the six-membered carbocyclic ring of the chromene moiety adopts an envelope conformation with the disordered methyl­ene C atom as the flap. The pyran ring is almost orthogonal to the chloro­phenyl ring, making a dihedral angle of 87.11 (12)°. The amine-group N atom deviates significantly from the pyran ring [0.238 (3) Å]. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, which generate C(8) chains running parallel to the b axis. The chains are linked by C—H⋯π inter­actions. The methyl­ene-group C atom of the chromene system that is disordered, along with its attached H atoms and the H atoms on the two adjacent C atoms, has an occupancy ratio of 0.791 (7):0.209 (7).

Related literature

For the uses and biological importance of chromene, see: Ercole et al. (2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]); Geen et al. (1996[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469-500. New York: Pergamon.]) Khan et al. (2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]); Raj et al. (2010[Raj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790-794.]). For a related structure, see: Sun et al. (2012[Sun, R., Wang, K., Wu, D.-D., Huang, W. & Ou, Y.-B. (2012). Acta Cryst. E68, o824.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrN2O4

  • Mr = 379.18

  • Monoclinic, P 21 /n

  • a = 8.1114 (9) Å

  • b = 10.8530 (13) Å

  • c = 18.222 (2) Å

  • β = 94.399 (6)°

  • V = 1599.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.59 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.464, Tmax = 0.523

  • 12198 measured reflections

  • 3130 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.04

  • 3130 reflections

  • 218 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyran ring (C7/C8/C13/O1/C14/C15).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.90 (2) 1.89 (2) 2.595 (3) 134 (2)
C2—H2⋯O4i 0.93 2.55 3.442 (4) 162
C10—H10BCg1ii 0.97 2.77 3.527 (3) 136
C16—H16BCg1iii 0.96 2.73 3.606 (4) 153
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromene derivatives are very important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer, etc. (Khan et al., 2010, Raj et al., 2010). Against this background an X-ray diffraction study of the title compound and its structural aspects are presented herein.

The title compound, Fig. 1, consists of a chromene moiety attached to a chlorophenyl ring, a nitro group and a methylamine group. The molecular structure is stabilized by an intramolecular N—H···O hydrogen bonds, which generates an S(6) ring motif (Table 1 and Fig. 1). The methylene group carbon atom C11 of the chromene moiety is disordered over two positions (C11/C11') with an occupancy ratio of 0.791 (7): 0.209 (7). The pyran ring (C7/C8/C13-C15/O1) makes a dihedral angle of 87.11 (12) ° with the cholorophenyl ring (C1–C6), indicating that they are almost orthogonal.

The mean planes of the nitro and methylamine groups are almost co-planar with the pyran ring, with dihedral angles of 4.66 (20) and 3.87 (19) °, respectively. The mean plane of six membered carbocyclic ring (C8–C10/C11-C13) makes a dihedral angle of 86.50 (14) ° with the chlorophenyl ring, which shows that they too are almost perpendicular to each other.

The six membered carbocyclic ring (C8-C10/C11-C13) of the chromene moiety adopts an envelope conformation on C11 atom which deviates by 0.302 (4) Å out of the mean plane formed by the remaining ring atoms. The amine group nitrogen atom N2 deviates by -0.2382 (25) Å from the pyran ring. The bromine atom Br1 deviates from the phenyl ring (C1–C6) by 0.0953 (4) Å. The title compound exhibits structural similarities with a related structure (Sun et al., 2012).

In the crystal, molecules are linked via C—H···O hydrogen bonds, which generate C(8) chains running parallel to the b axis (Bernstein et al.,1995); see Table 1 and Fig. 2. The crystal structure is further stabilized by C-H···π interactions (Table 1).

Related literature top

For the uses and biological importance of chromene, see: Ercole et al. (2009); Geen et al. (1996) Khan et al. (2010); Raj et al. (2010). For a related structure, see: Sun et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of the 4-bromobenzaldehyde (0.18 g, 1.0 mmol), cyclic 1,3-dicarbonyl compound (1.0 mmol), NMSM (0.15 g, 1.0 mmol) and piperidine (0.2 equiv) in EtOH (2 ml) was stirred for 3.5 hrs. After the reaction was complete, as indicated by TLC, the product was filtered and washed with EtOH (2 ml) to remove excess base and other impurities. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

The H atoms were localed from difference electron density maps and their distances were geometrically constrained. The amine group H atoms were constrained: N—H = 0.90 (1) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were treated as riding atoms: C—H = 0.93, 0.97, 0.96 and 0.98 Å for CH(aromatic), methylene, methine and methyl H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for methyl H atoms and = 1.2 for other H atoms. The rotation angles for the methyl groups were optimized by least squares. The bond distances of the disordered components of atom C11 were restrained using standard similarity restraint SADI [SHELXL97, Sheldrick, 2008] with s.u. of 0.01 Å. The atomic displacement parameters of the major and minor components were made equal using the constraint EADP.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level. The intramolecular hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c-axis, showing C2—H2···O4i hydrogen bonds resulting in the formation of C(8) chains running parallel to the b axis [hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity; symmetry code: (i) -x+3/2, y+1/2, -z+1/2].
4-(4-Bromophenyl)-2-methylamino-3-nitro-5,6,7,8-tetrahydro-4H-chromen-5-one top
Crystal data top
C16H15BrN2O4F(000) = 768
Mr = 379.18Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2053 reflections
a = 8.1114 (9) Åθ = 2.2–26.0°
b = 10.8530 (13) ŵ = 2.59 mm1
c = 18.222 (2) ÅT = 296 K
β = 94.399 (6)°Block, colourless
V = 1599.4 (3) Å30.30 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3130 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and ϕ scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.464, Tmax = 0.523k = 1213
12198 measured reflectionsl = 1922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.047P)2 + 0.3202P]
where P = (Fo2 + 2Fc2)/3
3130 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 0.41 e Å3
4 restraintsΔρmin = 0.48 e Å3
Crystal data top
C16H15BrN2O4V = 1599.4 (3) Å3
Mr = 379.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1114 (9) ŵ = 2.59 mm1
b = 10.8530 (13) ÅT = 296 K
c = 18.222 (2) Å0.30 × 0.25 × 0.25 mm
β = 94.399 (6)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3130 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2053 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.523Rint = 0.047
12198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0394 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
3130 reflectionsΔρmin = 0.48 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C50.6240 (3)0.6938 (2)0.54373 (14)0.0310 (6)
H50.59530.71670.49520.037*
C40.5278 (3)0.6093 (3)0.57717 (15)0.0359 (7)
H40.43390.57630.55200.043*
C30.5733 (4)0.5744 (3)0.64890 (16)0.0394 (7)
C20.7093 (3)0.6247 (3)0.68770 (15)0.0386 (7)
H20.73790.60110.73610.046*
C10.8019 (3)0.7104 (3)0.65351 (14)0.0359 (7)
H10.89300.74580.67960.043*
C60.7628 (3)0.7455 (2)0.58089 (13)0.0279 (6)
C70.8703 (3)0.8371 (2)0.54267 (14)0.0297 (6)
H70.96250.86140.57760.036*
C80.9402 (3)0.7776 (2)0.47729 (14)0.0305 (6)
C91.0663 (3)0.6799 (3)0.49073 (17)0.0384 (7)
C101.1286 (4)0.6155 (3)0.42605 (18)0.0543 (9)
H10A1.23270.65260.41510.065*0.791 (7)
H10B1.15040.53000.43910.065*0.791 (7)
H10C1.07400.53600.42180.065*0.208 (7)
H10D1.24560.59970.43740.065*0.208 (7)
C111.0137 (6)0.6194 (4)0.3590 (2)0.0529 (13)0.791 (7)
H11A0.92040.56580.36570.063*0.791 (7)
H11B1.06990.58820.31770.063*0.791 (7)
C11'1.1058 (18)0.6734 (16)0.3518 (6)0.0529 (13)0.208 (7)
H11C1.10240.60910.31470.063*0.208 (7)
H11D1.20050.72540.34450.063*0.208 (7)
C120.9494 (4)0.7503 (3)0.34074 (15)0.0441 (8)
H12A1.03660.79930.32160.053*0.791 (7)
H12B0.85780.74630.30340.053*0.791 (7)
H12C0.96580.81450.30500.053*0.208 (7)
H12D0.86210.69670.32010.053*0.208 (7)
C130.8943 (3)0.8086 (2)0.40842 (15)0.0331 (6)
C140.7371 (3)0.9798 (2)0.44461 (15)0.0314 (6)
C150.7778 (3)0.9516 (2)0.51749 (14)0.0296 (6)
C160.6219 (5)1.1042 (4)0.33983 (17)0.0643 (10)
H16A0.72471.12150.31910.096*
H16B0.55101.17490.33420.096*
H16C0.56941.03510.31490.096*
N10.7303 (3)1.0296 (2)0.57208 (14)0.0391 (6)
N20.6532 (3)1.0757 (2)0.41753 (13)0.0413 (6)
O10.7851 (2)0.90458 (17)0.39070 (10)0.0401 (5)
O21.1199 (2)0.6558 (2)0.55357 (12)0.0550 (6)
O30.6431 (3)1.12423 (18)0.55655 (11)0.0497 (6)
O40.7744 (3)1.0045 (2)0.63710 (12)0.0555 (6)
Br10.44896 (5)0.45158 (4)0.69353 (2)0.0806 (2)
H2A0.616 (4)1.124 (2)0.4528 (13)0.058 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0327 (15)0.0365 (16)0.0231 (14)0.0076 (13)0.0023 (11)0.0015 (12)
C40.0264 (15)0.0419 (17)0.0391 (18)0.0027 (13)0.0004 (12)0.0038 (14)
C30.0394 (17)0.0393 (17)0.0411 (18)0.0045 (14)0.0135 (14)0.0076 (14)
C20.0438 (18)0.0467 (18)0.0254 (15)0.0066 (15)0.0031 (13)0.0056 (13)
C10.0355 (16)0.0449 (17)0.0265 (16)0.0022 (14)0.0034 (12)0.0029 (13)
C60.0324 (15)0.0278 (14)0.0235 (14)0.0050 (12)0.0017 (11)0.0006 (11)
C70.0284 (14)0.0322 (15)0.0276 (15)0.0010 (12)0.0036 (11)0.0012 (12)
C80.0284 (14)0.0301 (15)0.0335 (16)0.0001 (12)0.0044 (12)0.0002 (12)
C90.0311 (15)0.0361 (17)0.049 (2)0.0002 (13)0.0076 (14)0.0054 (15)
C100.058 (2)0.046 (2)0.060 (2)0.0154 (17)0.0153 (18)0.0003 (17)
C110.051 (3)0.053 (3)0.054 (2)0.014 (2)0.004 (2)0.015 (2)
C11'0.051 (3)0.053 (3)0.054 (2)0.014 (2)0.004 (2)0.015 (2)
C120.0520 (19)0.0428 (18)0.0384 (18)0.0071 (15)0.0094 (14)0.0051 (14)
C130.0334 (15)0.0300 (15)0.0363 (17)0.0019 (13)0.0063 (12)0.0008 (13)
C140.0324 (15)0.0282 (15)0.0344 (17)0.0013 (13)0.0069 (12)0.0002 (13)
C150.0364 (15)0.0252 (14)0.0275 (16)0.0003 (12)0.0042 (12)0.0021 (12)
C160.082 (3)0.073 (2)0.038 (2)0.035 (2)0.0092 (17)0.0189 (18)
N10.0488 (15)0.0331 (15)0.0356 (16)0.0028 (12)0.0041 (12)0.0048 (12)
N20.0505 (15)0.0375 (15)0.0365 (15)0.0126 (12)0.0082 (12)0.0085 (12)
O10.0508 (12)0.0419 (11)0.0278 (10)0.0177 (10)0.0041 (9)0.0000 (9)
O20.0472 (13)0.0663 (15)0.0507 (15)0.0186 (11)0.0005 (11)0.0140 (12)
O30.0660 (15)0.0338 (12)0.0497 (13)0.0142 (11)0.0072 (11)0.0046 (10)
O40.0869 (17)0.0503 (13)0.0282 (13)0.0066 (12)0.0027 (11)0.0077 (10)
Br10.0731 (3)0.0910 (4)0.0789 (3)0.0277 (2)0.0142 (2)0.0337 (2)
Geometric parameters (Å, º) top
C5—C41.376 (4)C10—H10D0.9700
C5—C61.387 (3)C11—C121.541 (5)
C5—H50.9300C11—H11A0.9700
C4—C31.384 (4)C11—H11B0.9700
C4—H40.9300C11'—C121.519 (9)
C3—C21.376 (4)C11'—H11C0.9700
C3—Br11.893 (3)C11'—H11D0.9700
C2—C11.375 (4)C12—C131.485 (4)
C2—H20.9300C12—H12A0.9700
C1—C61.390 (3)C12—H12B0.9700
C1—H10.9300C12—H12C0.9700
C6—C71.526 (4)C12—H12D0.9700
C7—C81.504 (4)C13—O11.389 (3)
C7—C151.504 (4)C14—N21.318 (3)
C7—H70.9800C14—O11.357 (3)
C8—C131.325 (4)C14—C151.378 (4)
C8—C91.480 (4)C15—N11.383 (3)
C9—O21.222 (3)C16—N21.452 (4)
C9—C101.492 (4)C16—H16A0.9600
C10—C111.480 (5)C16—H16B0.9600
C10—C11'1.491 (9)C16—H16C0.9600
C10—H10A0.9700N1—O41.241 (3)
C10—H10B0.9700N1—O31.267 (3)
C10—H10C0.9700N2—H2A0.897 (10)
C4—C5—C6121.3 (2)H10C—C11—H11A75.8
C4—C5—H5119.3C10—C11—H11B109.0
C6—C5—H5119.3C12—C11—H11B109.0
C5—C4—C3118.8 (3)H10C—C11—H11B103.5
C5—C4—H4120.6H11A—C11—H11B107.8
C3—C4—H4120.6C10—C11'—C12113.3 (7)
C2—C3—C4121.5 (3)C10—C11'—H11C108.9
C2—C3—Br1119.4 (2)C12—C11'—H11C108.9
C4—C3—Br1119.1 (2)C10—C11'—H11D108.9
C3—C2—C1118.7 (3)C12—C11'—H11D108.9
C3—C2—H2120.7H11C—C11'—H11D107.7
C1—C2—H2120.7C13—C12—C11'115.2 (5)
C2—C1—C6121.6 (3)C13—C12—C11109.4 (3)
C2—C1—H1119.2C13—C12—H12A109.8
C6—C1—H1119.2C11'—C12—H12A74.0
C5—C6—C1118.2 (2)C11—C12—H12A109.8
C5—C6—C7120.8 (2)C13—C12—H12B109.8
C1—C6—C7121.1 (2)C11'—C12—H12B131.0
C8—C7—C15108.8 (2)C11—C12—H12B109.8
C8—C7—C6110.2 (2)H12A—C12—H12B108.2
C15—C7—C6112.9 (2)C13—C12—H12C108.5
C8—C7—H7108.3C11'—C12—H12C109.1
C15—C7—H7108.3C11—C12—H12C138.2
C6—C7—H7108.3H12B—C12—H12C72.4
C13—C8—C9118.7 (2)C13—C12—H12D108.7
C13—C8—C7123.0 (2)C11'—C12—H12D107.4
C9—C8—C7118.3 (2)C11—C12—H12D75.9
O2—C9—C8120.0 (3)H12A—C12—H12D136.0
O2—C9—C10121.5 (3)H12C—C12—H12D107.6
C8—C9—C10118.5 (3)C8—C13—O1122.6 (2)
C11—C10—C9114.1 (3)C8—C13—C12126.7 (3)
C11'—C10—C9119.6 (6)O1—C13—C12110.7 (2)
C11—C10—H10A108.7N2—C14—O1111.9 (2)
C11'—C10—H10A71.8N2—C14—C15128.0 (2)
C9—C10—H10A108.7O1—C14—C15120.2 (2)
C11—C10—H10B108.7C14—C15—N1119.8 (2)
C11'—C10—H10B129.3C14—C15—C7123.7 (2)
C9—C10—H10B108.7N1—C15—C7116.5 (2)
H10A—C10—H10B107.6N2—C16—H16A109.5
C11—C10—H10C72.8N2—C16—H16B109.5
C11'—C10—H10C106.1H16A—C16—H16B109.5
C9—C10—H10C107.4N2—C16—H16C109.5
H10A—C10—H10C138.8H16A—C16—H16C109.5
C11—C10—H10D136.4H16B—C16—H16C109.5
C11'—C10—H10D108.6O4—N1—O3120.4 (2)
C9—C10—H10D107.5O4—N1—C15118.4 (2)
H10B—C10—H10D67.9O3—N1—C15121.2 (2)
H10C—C10—H10D107.1C14—N2—C16125.4 (3)
C10—C11—C12112.7 (3)C14—N2—H2A112 (2)
C12—C11—H10C143.2C16—N2—H2A122 (2)
C10—C11—H11A109.0C14—O1—C13119.7 (2)
C12—C11—H11A109.0
C6—C5—C4—C31.1 (4)C10—C11'—C12—C1330.1 (16)
C5—C4—C3—C21.8 (4)C10—C11'—C12—C1158.9 (8)
C5—C4—C3—Br1176.51 (19)C10—C11—C12—C1347.2 (4)
C4—C3—C2—C10.7 (4)C10—C11—C12—C11'59.3 (8)
Br1—C3—C2—C1177.6 (2)C9—C8—C13—O1175.7 (2)
C3—C2—C1—C61.0 (4)C7—C8—C13—O14.3 (4)
C4—C5—C6—C10.6 (4)C9—C8—C13—C123.7 (4)
C4—C5—C6—C7178.8 (2)C7—C8—C13—C12176.3 (3)
C2—C1—C6—C51.7 (4)C11'—C12—C13—C817.8 (9)
C2—C1—C6—C7177.7 (2)C11—C12—C13—C821.6 (4)
C5—C6—C7—C860.6 (3)C11'—C12—C13—O1161.7 (8)
C1—C6—C7—C8118.7 (3)C11—C12—C13—O1158.9 (3)
C5—C6—C7—C1561.2 (3)N2—C14—C15—N10.6 (4)
C1—C6—C7—C15119.4 (3)O1—C14—C15—N1179.2 (2)
C15—C7—C8—C1313.3 (3)N2—C14—C15—C7178.1 (3)
C6—C7—C8—C13110.9 (3)O1—C14—C15—C72.1 (4)
C15—C7—C8—C9166.7 (2)C8—C7—C15—C1412.3 (3)
C6—C7—C8—C969.1 (3)C6—C7—C15—C14110.3 (3)
C13—C8—C9—O2174.6 (3)C8—C7—C15—N1168.9 (2)
C7—C8—C9—O25.4 (4)C6—C7—C15—N168.4 (3)
C13—C8—C9—C103.6 (4)C14—C15—N1—O4177.1 (2)
C7—C8—C9—C10176.4 (2)C7—C15—N1—O44.1 (4)
O2—C9—C10—C11158.4 (3)C14—C15—N1—O33.3 (4)
C8—C9—C10—C1123.5 (4)C7—C15—N1—O3175.6 (2)
O2—C9—C10—C11'159.3 (9)O1—C14—N2—C163.4 (4)
C8—C9—C10—C11'18.8 (9)C15—C14—N2—C16176.4 (3)
C11'—C10—C11—C1258.5 (7)N2—C14—O1—C13170.9 (2)
C9—C10—C11—C1249.3 (5)C15—C14—O1—C138.9 (4)
C11—C10—C11'—C1260.3 (9)C8—C13—O1—C148.0 (4)
C9—C10—C11'—C1231.7 (17)C12—C13—O1—C14171.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyran ring (C7/C8/C13/O1/C14/C15).
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.90 (2)1.89 (2)2.595 (3)134 (2)
C2—H2···O4i0.932.553.442 (4)162
C10—H10B···Cg1ii0.972.773.527 (3)136
C16—H16B···Cg1iii0.962.733.606 (4)153
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H15BrN2O4
Mr379.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.1114 (9), 10.8530 (13), 18.222 (2)
β (°) 94.399 (6)
V3)1599.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.59
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.464, 0.523
No. of measured, independent and
observed [I > 2σ(I)] reflections
12198, 3130, 2053
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.04
No. of reflections3130
No. of parameters218
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.48

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyran ring (C7/C8/C13/O1/C14/C15).
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.90 (2)1.89 (2)2.595 (3)134 (2)
C2—H2···O4i0.932.553.442 (4)162
C10—H10B···Cg1ii0.972.773.527 (3)136
C16—H16B···Cg1iii0.962.733.606 (4)153
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

PN and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the X-ray intensity data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.  Google Scholar
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, R., Wang, K., Wu, D.-D., Huang, W. & Ou, Y.-B. (2012). Acta Cryst. E68, o824.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o931-o932
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds