metal-organic compounds
[Hexane-2,5-dione bis(thiosemicarbazonato)]nickel(II)
aDepartment of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium, bDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, cDepartment of Chemistry, University of Antwerp, Antwerp, Belgium, dDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and eDeutsches Elektronen-Synchrotron (DESY), Division Structural Dynamics of (Bio)chemical Systems, Notkestrasse 85, 22607 Hamburg, Germany
*Correspondence e-mail: organik10@hotmail.com
In the title compound, [Ni(C8H14N6S2)], the NiII ion is coordinated by N2S2 donor atoms of the tetradentate thiosemicarbazone ligand, and has a slightly distorted square-planar geometry. In the crystal, inversion-related molecules are linked via pairs of N—H⋯N and N—H⋯S hydrogen bonds, forming R22(8) ring motifs. Molecules are further linked by slightly weaker N—H⋯N, N—H⋯S and C—H⋯S hydrogen bonds, forming two-dimensional networks which lie parallel to the bc plane.
Related literature
For standard values of bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Cowley et al. (2004); Lobana et al. (2011). The antitumor and antibacterial activity of thiosemicarbazones and thiosemicarbazides has been attributed to their ability to chelate trace metals, see: Kirschner et al. (1966). For the preparation of hexan-2,5-dionebis(thiosemicarbazone), see: Nandi et al. (1984).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813012816/su2598sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813012816/su2598Isup2.hkl
Hexan-2,5-dionebis(thiosemicarbazone) was prepared by a method similar to that described by (Nandi et al. 1984). Hexan-2,5-dionebis(thiosemicarbazone) (1 mmol, 0.260 g) and nickel(II) acetate (0.66 g, 2.66 mmol) were placed in the main arm of a branched tube. Methanol was carefully added to fill the arms. The tube was sealed and immersed in an oil bath at 333 K while the branched arm was kept at ambient temperature. After 5 days, dark-red crystals (M.p. = 468 K) were isolated in the cooler arm and filtered off, washed with acetone and ether and dried in air (0.192 g; Yield 74%).
The N-bound H atoms were located in a difference Fourier map and constrained to refine on their parent atoms with Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and = 1.2 for other H atoms.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view along the b-axis of the crystal packing of the title compound, showing the two-dimensional networks lying parallel to the bc plane. Only the H atoms involved in hydrogen bonding are shown. |
[Ni(C8H14N6S2)] | Z = 2 |
Mr = 317.08 | F(000) = 328 |
Triclinic, P1 | Dx = 1.651 Mg m−3 |
Hall symbol: -P 1 | Melting point < 468 K |
a = 7.8928 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.0378 (3) Å | Cell parameters from 4799 reflections |
c = 11.0889 (4) Å | θ = 2.7–28.3° |
α = 69.720 (1)° | µ = 1.84 mm−1 |
β = 75.214 (1)° | T = 296 K |
γ = 85.693 (1)° | Prism, dark-red |
V = 637.96 (4) Å3 | 0.20 × 0.20 × 0.20 mm |
Bruker APEXII CCD diffractometer | 3078 independent reflections |
Radiation source: fine-focus sealed tube | 2833 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
ϕ and ω scans | θmax = 28.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→10 |
Tmin = 0.711, Tmax = 0.711 | k = −10→10 |
7275 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0381P)2 + 0.1248P] where P = (Fo2 + 2Fc2)/3 |
3078 reflections | (Δ/σ)max = 0.001 |
156 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
[Ni(C8H14N6S2)] | γ = 85.693 (1)° |
Mr = 317.08 | V = 637.96 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8928 (3) Å | Mo Kα radiation |
b = 8.0378 (3) Å | µ = 1.84 mm−1 |
c = 11.0889 (4) Å | T = 296 K |
α = 69.720 (1)° | 0.20 × 0.20 × 0.20 mm |
β = 75.214 (1)° |
Bruker APEXII CCD diffractometer | 3078 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2833 reflections with I > 2σ(I) |
Tmin = 0.711, Tmax = 0.711 | Rint = 0.011 |
7275 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.28 e Å−3 |
3078 reflections | Δρmin = −0.21 e Å−3 |
156 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.74078 (2) | 0.65209 (2) | 0.792634 (16) | 0.02818 (7) | |
S1 | 0.67960 (5) | 0.84581 (4) | 0.61696 (4) | 0.03729 (9) | |
S2 | 0.69288 (5) | 0.85168 (4) | 0.88575 (4) | 0.03624 (9) | |
N1 | 0.77048 (15) | 0.49799 (14) | 0.69038 (11) | 0.0297 (2) | |
N2 | 0.65361 (17) | 0.51991 (15) | 0.60798 (12) | 0.0336 (2) | |
N3 | 0.5029 (2) | 0.73756 (19) | 0.48368 (16) | 0.0567 (4) | |
H1N3 | 0.4658 | 0.8503 | 0.4602 | 0.068* | |
H2N3 | 0.4647 | 0.6561 | 0.4575 | 0.068* | |
N4 | 0.75863 (15) | 0.48253 (15) | 0.96705 (12) | 0.0314 (2) | |
N5 | 0.66994 (18) | 0.53312 (16) | 1.07736 (12) | 0.0381 (3) | |
N6 | 0.57514 (19) | 0.76724 (18) | 1.14636 (13) | 0.0432 (3) | |
H1N6 | 0.5353 | 0.6876 | 1.2274 | 0.052* | |
H2N6 | 0.5298 | 0.8801 | 1.1246 | 0.052* | |
C1 | 0.6069 (2) | 0.68543 (18) | 0.56807 (14) | 0.0350 (3) | |
C2 | 0.64152 (18) | 0.70094 (18) | 1.04654 (14) | 0.0321 (3) | |
C3 | 0.8992 (2) | 0.2587 (2) | 0.60870 (16) | 0.0427 (3) | |
H3A | 0.8689 | 0.3227 | 0.5264 | 0.064* | |
H3B | 0.8197 | 0.1599 | 0.6581 | 0.064* | |
H3C | 1.0167 | 0.2163 | 0.5910 | 0.064* | |
C4 | 0.88697 (18) | 0.37854 (18) | 0.68727 (14) | 0.0321 (3) | |
C5 | 1.01427 (19) | 0.3582 (2) | 0.77028 (16) | 0.0389 (3) | |
H5A | 1.0445 | 0.4742 | 0.7680 | 0.047* | |
H5B | 1.1207 | 0.3055 | 0.7337 | 0.047* | |
C6 | 0.9390 (2) | 0.24249 (19) | 0.91302 (16) | 0.0376 (3) | |
H6A | 0.8753 | 0.1449 | 0.9115 | 0.045* | |
H6B | 1.0366 | 0.1917 | 0.9514 | 0.045* | |
C7 | 0.82010 (18) | 0.32434 (18) | 1.00507 (15) | 0.0336 (3) | |
C8 | 0.7864 (2) | 0.2088 (2) | 1.14834 (17) | 0.0457 (4) | |
H8A | 0.6655 | 0.2164 | 1.1913 | 0.069* | |
H8B | 0.8593 | 0.2480 | 1.1909 | 0.069* | |
H8C | 0.8131 | 0.0881 | 1.1543 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.03387 (10) | 0.02086 (9) | 0.03506 (10) | 0.00579 (6) | −0.01551 (7) | −0.01199 (7) |
S1 | 0.0556 (2) | 0.02174 (16) | 0.04102 (19) | 0.00748 (14) | −0.02323 (16) | −0.01184 (14) |
S2 | 0.0531 (2) | 0.02249 (16) | 0.03655 (18) | 0.00501 (14) | −0.01499 (15) | −0.01232 (13) |
N1 | 0.0350 (6) | 0.0238 (5) | 0.0344 (6) | 0.0044 (4) | −0.0139 (4) | −0.0118 (4) |
N2 | 0.0452 (6) | 0.0261 (5) | 0.0369 (6) | 0.0078 (5) | −0.0209 (5) | −0.0136 (5) |
N3 | 0.0945 (12) | 0.0322 (7) | 0.0674 (9) | 0.0223 (7) | −0.0587 (9) | −0.0231 (7) |
N4 | 0.0343 (6) | 0.0259 (5) | 0.0382 (6) | 0.0036 (4) | −0.0154 (5) | −0.0119 (5) |
N5 | 0.0465 (7) | 0.0305 (6) | 0.0376 (6) | 0.0068 (5) | −0.0131 (5) | −0.0111 (5) |
N6 | 0.0557 (8) | 0.0364 (7) | 0.0375 (7) | 0.0089 (6) | −0.0092 (6) | −0.0156 (5) |
C1 | 0.0487 (8) | 0.0267 (6) | 0.0352 (7) | 0.0080 (6) | −0.0181 (6) | −0.0132 (5) |
C2 | 0.0335 (6) | 0.0296 (6) | 0.0371 (7) | 0.0023 (5) | −0.0138 (5) | −0.0129 (5) |
C3 | 0.0498 (9) | 0.0348 (7) | 0.0471 (8) | 0.0102 (6) | −0.0098 (7) | −0.0219 (7) |
C4 | 0.0337 (6) | 0.0249 (6) | 0.0372 (7) | 0.0026 (5) | −0.0084 (5) | −0.0106 (5) |
C5 | 0.0307 (6) | 0.0355 (7) | 0.0549 (9) | 0.0079 (5) | −0.0151 (6) | −0.0190 (7) |
C6 | 0.0402 (7) | 0.0279 (7) | 0.0519 (8) | 0.0116 (6) | −0.0239 (6) | −0.0158 (6) |
C7 | 0.0341 (6) | 0.0259 (6) | 0.0448 (7) | 0.0034 (5) | −0.0200 (6) | −0.0105 (6) |
C8 | 0.0503 (9) | 0.0325 (7) | 0.0487 (9) | 0.0077 (6) | −0.0185 (7) | −0.0038 (6) |
Ni1—N1 | 1.9155 (11) | N6—H2N6 | 0.9237 |
Ni1—N4 | 1.9751 (12) | C3—C4 | 1.490 (2) |
Ni1—S2 | 2.1542 (4) | C3—H3A | 0.9600 |
Ni1—S1 | 2.1718 (4) | C3—H3B | 0.9600 |
S1—C1 | 1.7434 (14) | C3—H3C | 0.9600 |
S2—C2 | 1.7374 (15) | C4—C5 | 1.4922 (19) |
N1—C4 | 1.2816 (18) | C5—C6 | 1.518 (2) |
N1—N2 | 1.4181 (15) | C5—H5A | 0.9700 |
N2—C1 | 1.3051 (17) | C5—H5B | 0.9700 |
N3—C1 | 1.3392 (19) | C6—C7 | 1.496 (2) |
N3—H1N3 | 0.9003 | C6—H6A | 0.9700 |
N3—H2N3 | 0.9003 | C6—H6B | 0.9700 |
N4—C7 | 1.2923 (17) | C7—C8 | 1.502 (2) |
N4—N5 | 1.4202 (17) | C8—H8A | 0.9600 |
N5—C2 | 1.2887 (18) | C8—H8B | 0.9600 |
N6—C2 | 1.3619 (18) | C8—H8C | 0.9600 |
N6—H1N6 | 0.8959 | ||
N1—Ni1—N4 | 101.11 (5) | C4—C3—H3B | 109.5 |
N1—Ni1—S2 | 171.94 (3) | H3A—C3—H3B | 109.5 |
N4—Ni1—S2 | 86.61 (3) | C4—C3—H3C | 109.5 |
N1—Ni1—S1 | 83.28 (3) | H3A—C3—H3C | 109.5 |
N4—Ni1—S1 | 170.95 (4) | H3B—C3—H3C | 109.5 |
S2—Ni1—S1 | 88.755 (14) | N1—C4—C5 | 117.00 (12) |
C1—S1—Ni1 | 93.57 (5) | N1—C4—C3 | 123.93 (13) |
C2—S2—Ni1 | 94.83 (5) | C5—C4—C3 | 119.06 (13) |
C4—N1—N2 | 116.52 (11) | C4—C5—C6 | 111.47 (12) |
C4—N1—Ni1 | 126.65 (10) | C4—C5—H5A | 109.3 |
N2—N1—Ni1 | 116.82 (8) | C6—C5—H5A | 109.3 |
C1—N2—N1 | 109.69 (11) | C4—C5—H5B | 109.3 |
C1—N3—H1N3 | 119.4 | C6—C5—H5B | 109.3 |
C1—N3—H2N3 | 118.7 | H5A—C5—H5B | 108.0 |
H1N3—N3—H2N3 | 121.7 | C7—C6—C5 | 118.83 (12) |
C7—N4—N5 | 111.17 (12) | C7—C6—H6A | 107.6 |
C7—N4—Ni1 | 133.49 (10) | C5—C6—H6A | 107.6 |
N5—N4—Ni1 | 114.93 (8) | C7—C6—H6B | 107.6 |
C2—N5—N4 | 113.32 (12) | C5—C6—H6B | 107.6 |
C2—N6—H1N6 | 116.4 | H6A—C6—H6B | 107.0 |
C2—N6—H2N6 | 117.9 | N4—C7—C8 | 122.59 (14) |
H1N6—N6—H2N6 | 120.2 | N4—C7—C6 | 123.82 (13) |
N2—C1—N3 | 119.68 (13) | C8—C7—C6 | 113.50 (12) |
N2—C1—S1 | 122.47 (11) | C7—C8—H8A | 109.5 |
N3—C1—S1 | 117.82 (11) | C7—C8—H8B | 109.5 |
N5—C2—N6 | 118.33 (13) | H8A—C8—H8B | 109.5 |
N5—C2—S2 | 124.34 (11) | C7—C8—H8C | 109.5 |
N6—C2—S2 | 117.25 (11) | H8A—C8—H8C | 109.5 |
C4—C3—H3A | 109.5 | H8B—C8—H8C | 109.5 |
N1—Ni1—S1—C1 | 26.73 (7) | Ni1—S1—C1—N3 | 159.93 (14) |
S2—Ni1—S1—C1 | −152.05 (6) | N4—N5—C2—N6 | −172.75 (12) |
N4—Ni1—S2—C2 | −17.03 (6) | N4—N5—C2—S2 | 3.74 (18) |
S1—Ni1—S2—C2 | 155.19 (5) | Ni1—S2—C2—N5 | 12.62 (13) |
N4—Ni1—N1—C4 | −46.03 (13) | Ni1—S2—C2—N6 | −170.86 (11) |
S1—Ni1—N1—C4 | 141.98 (12) | N2—N1—C4—C5 | 178.11 (12) |
N4—Ni1—N1—N2 | 135.05 (9) | Ni1—N1—C4—C5 | −0.80 (19) |
S1—Ni1—N1—N2 | −36.94 (9) | N2—N1—C4—C3 | −3.2 (2) |
C4—N1—N2—C1 | −148.40 (13) | Ni1—N1—C4—C3 | 177.87 (11) |
Ni1—N1—N2—C1 | 30.63 (15) | N1—C4—C5—C6 | 83.18 (16) |
N1—Ni1—N4—C7 | 18.12 (14) | C3—C4—C5—C6 | −95.57 (16) |
S2—Ni1—N4—C7 | −164.20 (13) | C4—C5—C6—C7 | −82.08 (16) |
N1—Ni1—N4—N5 | −153.75 (9) | N5—N4—C7—C8 | 4.41 (19) |
S2—Ni1—N4—N5 | 23.93 (9) | Ni1—N4—C7—C8 | −167.68 (11) |
C7—N4—N5—C2 | 165.09 (13) | N5—N4—C7—C6 | −171.94 (13) |
Ni1—N4—N5—C2 | −21.23 (15) | Ni1—N4—C7—C6 | 16.0 (2) |
N1—N2—C1—N3 | 176.82 (15) | C5—C6—C7—N4 | 9.3 (2) |
N1—N2—C1—S1 | −1.41 (18) | C5—C6—C7—C8 | −167.36 (13) |
Ni1—S1—C1—N2 | −21.81 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H2N3···N2i | 0.90 | 2.16 | 3.054 (2) | 173 |
N3—H1N3···S1ii | 0.90 | 2.58 | 3.4699 (17) | 171 |
N6—H1N6···N2iii | 0.90 | 2.28 | 3.1248 (19) | 156 |
N6—H2N6···S2iv | 0.92 | 2.67 | 3.5552 (16) | 162 |
C3—H3B···S2v | 0.96 | 2.87 | 3.7513 (17) | 152 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x+1, −y+2, −z+2; (v) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C8H14N6S2)] |
Mr | 317.08 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.8928 (3), 8.0378 (3), 11.0889 (4) |
α, β, γ (°) | 69.720 (1), 75.214 (1), 85.693 (1) |
V (Å3) | 637.96 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.84 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.711, 0.711 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7275, 3078, 2833 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.059, 0.99 |
No. of reflections | 3078 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.21 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H2N3···N2i | 0.90 | 2.16 | 3.054 (2) | 173 |
N3—H1N3···S1ii | 0.90 | 2.58 | 3.4699 (17) | 171 |
N6—H1N6···N2iii | 0.90 | 2.28 | 3.1248 (19) | 156 |
N6—H2N6···S2iv | 0.92 | 2.67 | 3.5552 (16) | 162 |
C3—H3B···S2v | 0.96 | 2.87 | 3.7513 (17) | 152 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x+1, −y+2, −z+2; (v) x, y−1, z. |
Acknowledgements
The authors thank the Chemistry Department of BSU for providing the X-ray diffraction facility.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Gee, A. D. & Heslop, J. M. (2004). Dalton Trans. pp. 2404–2412. Web of Science CSD CrossRef Google Scholar
Kirschner, S., Weu, Y. K., Francis, D. & Bergman, J. G. (1966). J. Med. Chem. 9, 369–375. CrossRef CAS PubMed Web of Science Google Scholar
Lobana, T. S., Kumari, P., Sharma, R., Castineiras, A., Butcher, R. J., Akitsu, T. & Aritake, Y. (2011). Dalton Trans. pp. 3219–3228. Google Scholar
Nandi, A. K., Chaudhuri, S. & Mazumdar, S. K. (1984). Inorg. Chim. Acta, 92, 235–240. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The antitumor and antibacterial of thiosemicarbazones and thiosemicarbazides have been attributed to their ability to chelate trace metals (Kirschner et al. 1966). Thiosemicarbazonato complexes are usually synthesized by the conventional approach of simply mixing alcoholic solutions of thiosemicarbazones and stoichiometric amounts of transition metal salt.
The asymmetric unit of the title compound, Fig. 1, comprises a thiosemicarbazone nickel(II) complex in which the NiII ion is coordinated by N2S2 donor atoms with a slightly distorted square-planar geometry. The angle between the mean planes S1–Ni1–N1 and S2–Ni1–N4 is 7.90 (4)°. The mean deviation of atom Ni1 from the mean plane N1–S1–S2–N4 is 0.0861 (5) Å. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for related structures (Cowley et al. (2004); Lobana et al. (2011).
Pairs of intermolecular N—H···N and N—H···S hydrogen bonds make R22(8) ring motifs (Bernstein et al., 1995) [Table 1].
In the crystal, molecules are linked by N—H···N, N—H···S, and C—H···S interactions forming two-dimensional networks which lie parallel to the bc plane (Table 1 and Fig. 2).