metal-organic compounds
Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III)
aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64/13, 01601 Kyiv, Ukraine, bDepartment of Chemistry, University of Jyväskylä, PO Box 35, FI-40014 Jyväskyä, Finland, and cKyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Avenue 31, 03680 Kyiv, Ukraine
*Correspondence e-mail: shylin@univ.kiev.ua
In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2], the FeIII ion is coordinated by four thiocyanate N atoms and two pyridine N atoms in a trans arrangement, forming an FeN6 polyhedron with a slightly distorted octahedral geometry. Charge balance is achieved by one pyridinium cation bound to the complex anion via N—H⋯S hydrogen bonding. The consists of one FeIII cation, four thiocyanate anions, two coordinated pyridine molecules and one pyridinium cation. The structure exhibits π–π interactions between pyridine rings [centroid–centroid distances = 3.7267 (2), 3.7811 (2) and 3.8924 (2) Å]. The N atom and a neighboring C atom of the pyridinium cation are statistically disordered with an occupancy ratio of 0.58 (2):0.42 (2).
Related literature
For the use of materials with molecular assemblies comprising cationic and anionic modules, see: Fritsky et al. (1998, 2004); Strotmeyer et al. (2003); Kanderal et al. (2005). For FeII–thiocyanate complexes with aromatic N-donor ligands indicating spin crossover, see: Gamez et al. (2009). For related structures, see: Petrusenko et al. (1997); Moroz et al. (2010); Penkova et al. (2010); Shylin et al. (2013).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813011628/xu5698sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813011628/xu5698Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813011628/xu5698Isup3.cdx
Crystals of the title compound were obtained by adding 1,5-naphthyridine (26 mg, 0.2 mmol) to tetrakis(pyridine)bis(isothiocyanato)iron(II) [Fe(NCS)2(py)4] (48.8 mg, 0.1 mmol) in CHCl3 (5 ml). The solution was left to evaporate in air. In one day this yielded red crystals that were collected, washed with water and dried in air. Yield is 16 mg (30% relative to Fe).
The N atom of the pyridinium cation was disordered over two alternative sites with the occupancy ratio of 0.58/0.42. Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 and N—H = 0.88 Å, and Uiso = 1.2 Ueq(C, N).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Crystal structure of the title compound showing hydrogen bonds and π–π contacts as dashed lines (carmine = Fe, yellow = S, blue = N, light-grey = C, grey = H). |
(C5H6N)[Fe(NCS)4(C5H5N)2] | F(000) = 1076 |
Mr = 526.48 | Dx = 1.511 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3249 reflections |
a = 10.7650 (7) Å | θ = 2.5–26.9° |
b = 14.0424 (8) Å | µ = 1.03 mm−1 |
c = 15.7266 (9) Å | T = 120 K |
β = 103.244 (3)° | Block, red |
V = 2314.1 (2) Å3 | 0.21 × 0.14 × 0.07 mm |
Z = 4 |
Bruker Kappa APEXII DUO CCD diffractometer | 4739 independent reflections |
Radiation source: fine-focus sealed tube | 3027 reflections with I > 2σ(I) |
Curved graphite crystal monochromator | Rint = 0.065 |
Detector resolution: 16 pixels mm-1 | θmax = 26.4°, θmin = 2.0° |
ϕ scans and ω scans with κ offset | h = −13→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −17→17 |
Tmin = 0.814, Tmax = 0.929 | l = −19→16 |
17377 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.024P)2] where P = (Fo2 + 2Fc2)/3 |
4739 reflections | (Δ/σ)max = 0.001 |
281 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
(C5H6N)[Fe(NCS)4(C5H5N)2] | V = 2314.1 (2) Å3 |
Mr = 526.48 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.7650 (7) Å | µ = 1.03 mm−1 |
b = 14.0424 (8) Å | T = 120 K |
c = 15.7266 (9) Å | 0.21 × 0.14 × 0.07 mm |
β = 103.244 (3)° |
Bruker Kappa APEXII DUO CCD diffractometer | 4739 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 3027 reflections with I > 2σ(I) |
Tmin = 0.814, Tmax = 0.929 | Rint = 0.065 |
17377 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.33 e Å−3 |
4739 reflections | Δρmin = −0.36 e Å−3 |
281 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.02757 (4) | 0.74386 (2) | 0.35673 (2) | 0.01575 (10) | |
S1 | −0.26742 (7) | 0.99542 (5) | 0.35060 (4) | 0.02555 (18) | |
S2 | 0.33249 (7) | 0.49516 (5) | 0.37979 (4) | 0.02563 (18) | |
S3 | 0.41585 (7) | 0.90657 (5) | 0.34609 (4) | 0.02646 (18) | |
S4 | −0.37170 (7) | 0.61072 (5) | 0.37071 (5) | 0.03125 (19) | |
N1 | −0.02004 (18) | 0.75765 (14) | 0.21626 (11) | 0.0158 (5) | |
N2 | 0.0714 (2) | 0.71819 (13) | 0.49668 (12) | 0.0160 (5) | |
N3 | −0.0733 (2) | 0.86076 (15) | 0.37176 (13) | 0.0227 (5) | |
N4 | 0.1344 (2) | 0.62743 (14) | 0.34665 (13) | 0.0212 (5) | |
N5 | 0.1848 (2) | 0.82818 (14) | 0.36327 (12) | 0.0204 (5) | |
N6 | −0.1316 (2) | 0.66311 (14) | 0.34861 (13) | 0.0224 (5) | |
N7 | 0.2005 (2) | 0.26981 (16) | 0.34397 (14) | 0.0236 (7) | 0.58 (2) |
H7A | 0.1943 | 0.3257 | 0.3180 | 0.028* | 0.58 (2) |
N7A | 0.2499 (2) | 0.26424 (16) | 0.43092 (15) | 0.0236 (7) | 0.42 (2) |
H7AA | 0.2757 | 0.3165 | 0.4606 | 0.028* | 0.42 (2) |
C12 | 0.2170 (3) | 0.57121 (17) | 0.36058 (15) | 0.0181 (6) | |
C14 | −0.2322 (3) | 0.64138 (17) | 0.35776 (15) | 0.0185 (6) | |
C11 | −0.1543 (3) | 0.91796 (17) | 0.36277 (14) | 0.0171 (6) | |
C13 | 0.2810 (3) | 0.86161 (17) | 0.35567 (15) | 0.0183 (6) | |
C5 | −0.0212 (2) | 0.68043 (17) | 0.16522 (15) | 0.0185 (6) | |
H5 | 0.0013 | 0.6204 | 0.1923 | 0.022* | |
C1 | −0.0523 (2) | 0.84165 (17) | 0.17635 (15) | 0.0192 (6) | |
H1 | −0.0526 | 0.8967 | 0.2114 | 0.023* | |
C15 | 0.2499 (2) | 0.26424 (16) | 0.43092 (15) | 0.0236 (7) | 0.58 (2) |
H15 | 0.2777 | 0.3207 | 0.4630 | 0.028* | 0.58 (2) |
C15A | 0.2005 (2) | 0.26981 (16) | 0.34397 (14) | 0.0236 (7) | 0.42 (2) |
H15A | 0.1938 | 0.3301 | 0.3159 | 0.028* | 0.42 (2) |
C6 | 0.1024 (2) | 0.78922 (17) | 0.55371 (15) | 0.0187 (6) | |
H6 | 0.1088 | 0.8517 | 0.5320 | 0.022* | |
C10 | 0.0651 (3) | 0.63017 (18) | 0.52842 (16) | 0.0220 (6) | |
H10 | 0.0438 | 0.5788 | 0.4884 | 0.026* | |
C4 | −0.0536 (2) | 0.68502 (18) | 0.07530 (15) | 0.0207 (6) | |
H4 | −0.0546 | 0.6290 | 0.0413 | 0.025* | |
C3 | −0.0846 (2) | 0.77183 (18) | 0.03525 (16) | 0.0232 (6) | |
H3 | −0.1053 | 0.7768 | −0.0266 | 0.028* | |
C8 | 0.1183 (3) | 0.68517 (18) | 0.67526 (16) | 0.0246 (6) | |
H8 | 0.1336 | 0.6740 | 0.7364 | 0.030* | |
C7 | 0.1258 (3) | 0.77584 (17) | 0.64337 (15) | 0.0227 (6) | |
H7 | 0.1466 | 0.8283 | 0.6821 | 0.027* | |
C2 | −0.0849 (2) | 0.85126 (18) | 0.08662 (15) | 0.0208 (6) | |
H2 | −0.1073 | 0.9118 | 0.0607 | 0.025* | |
C16 | 0.2603 (3) | 0.18020 (18) | 0.47284 (17) | 0.0272 (7) | |
H16 | 0.2947 | 0.1771 | 0.5341 | 0.033* | |
C19 | 0.1606 (3) | 0.19118 (18) | 0.29654 (17) | 0.0268 (7) | |
H19 | 0.1259 | 0.1959 | 0.2355 | 0.032* | |
C9 | 0.0882 (3) | 0.61079 (18) | 0.61679 (16) | 0.0245 (7) | |
H9 | 0.0834 | 0.5474 | 0.6369 | 0.029* | |
C17 | 0.2203 (3) | 0.09859 (19) | 0.42586 (17) | 0.0303 (7) | |
H17 | 0.2271 | 0.0387 | 0.4546 | 0.036* | |
C18 | 0.1707 (3) | 0.10391 (18) | 0.33741 (17) | 0.0301 (7) | |
H18 | 0.1436 | 0.0478 | 0.3047 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01694 (19) | 0.01441 (19) | 0.01572 (17) | 0.00150 (16) | 0.00334 (13) | −0.00003 (15) |
S1 | 0.0250 (4) | 0.0179 (4) | 0.0332 (4) | 0.0067 (3) | 0.0055 (3) | 0.0014 (3) |
S2 | 0.0244 (4) | 0.0204 (4) | 0.0326 (4) | 0.0075 (3) | 0.0075 (3) | 0.0044 (3) |
S3 | 0.0224 (4) | 0.0271 (4) | 0.0307 (4) | −0.0042 (3) | 0.0077 (3) | 0.0048 (3) |
S4 | 0.0240 (4) | 0.0326 (4) | 0.0386 (4) | −0.0042 (3) | 0.0104 (3) | 0.0080 (3) |
N1 | 0.0135 (12) | 0.0135 (11) | 0.0204 (11) | −0.0022 (9) | 0.0042 (8) | −0.0012 (9) |
N2 | 0.0197 (13) | 0.0120 (11) | 0.0163 (10) | −0.0010 (9) | 0.0039 (9) | 0.0003 (9) |
N3 | 0.0276 (14) | 0.0194 (12) | 0.0216 (12) | 0.0044 (11) | 0.0071 (10) | 0.0003 (10) |
N6 | 0.0251 (15) | 0.0219 (12) | 0.0192 (12) | −0.0014 (11) | 0.0030 (10) | 0.0001 (10) |
N5 | 0.0216 (14) | 0.0203 (12) | 0.0187 (11) | −0.0004 (10) | 0.0033 (9) | 0.0013 (9) |
N4 | 0.0239 (14) | 0.0186 (12) | 0.0209 (12) | 0.0031 (11) | 0.0048 (10) | −0.0014 (10) |
C12 | 0.0216 (16) | 0.0162 (14) | 0.0165 (13) | −0.0051 (12) | 0.0044 (11) | −0.0002 (11) |
C14 | 0.0257 (18) | 0.0139 (14) | 0.0145 (13) | 0.0025 (12) | 0.0014 (12) | −0.0010 (11) |
C11 | 0.0233 (16) | 0.0172 (14) | 0.0105 (12) | −0.0051 (12) | 0.0033 (11) | −0.0020 (10) |
C13 | 0.0258 (17) | 0.0151 (13) | 0.0133 (13) | 0.0056 (13) | 0.0026 (11) | 0.0011 (11) |
C5 | 0.0186 (15) | 0.0141 (13) | 0.0223 (14) | −0.0044 (12) | 0.0037 (11) | −0.0004 (11) |
C1 | 0.0206 (16) | 0.0148 (14) | 0.0223 (14) | −0.0033 (12) | 0.0055 (11) | −0.0003 (11) |
C15 | 0.0283 (16) | 0.0215 (15) | 0.0229 (14) | −0.0032 (12) | 0.0100 (11) | −0.0042 (11) |
N7 | 0.0261 (15) | 0.0195 (14) | 0.0273 (15) | 0.0031 (11) | 0.0102 (11) | 0.0026 (11) |
N7A | 0.0283 (16) | 0.0215 (15) | 0.0229 (14) | −0.0032 (12) | 0.0100 (11) | −0.0042 (11) |
C15A | 0.0261 (15) | 0.0195 (14) | 0.0273 (15) | 0.0031 (11) | 0.0102 (11) | 0.0026 (11) |
C6 | 0.0186 (15) | 0.0144 (13) | 0.0233 (14) | −0.0005 (11) | 0.0051 (11) | 0.0013 (11) |
C10 | 0.0243 (16) | 0.0194 (14) | 0.0220 (14) | −0.0008 (12) | 0.0047 (12) | 0.0002 (12) |
C4 | 0.0211 (16) | 0.0198 (15) | 0.0209 (14) | −0.0049 (12) | 0.0041 (11) | −0.0082 (12) |
C3 | 0.0217 (16) | 0.0288 (16) | 0.0177 (13) | −0.0087 (12) | 0.0014 (11) | 0.0024 (12) |
C8 | 0.0242 (17) | 0.0326 (16) | 0.0171 (13) | 0.0022 (13) | 0.0047 (12) | 0.0040 (13) |
C7 | 0.0249 (16) | 0.0229 (15) | 0.0189 (14) | −0.0007 (12) | 0.0023 (12) | −0.0060 (12) |
C2 | 0.0207 (16) | 0.0189 (14) | 0.0223 (14) | −0.0019 (12) | 0.0036 (12) | 0.0037 (12) |
C16 | 0.0354 (19) | 0.0279 (16) | 0.0213 (14) | 0.0020 (14) | 0.0125 (13) | 0.0014 (13) |
C19 | 0.0294 (18) | 0.0295 (16) | 0.0231 (14) | 0.0027 (14) | 0.0094 (12) | −0.0024 (13) |
C9 | 0.0303 (17) | 0.0186 (15) | 0.0248 (15) | 0.0010 (13) | 0.0065 (12) | 0.0079 (12) |
C17 | 0.044 (2) | 0.0209 (16) | 0.0305 (16) | 0.0029 (14) | 0.0187 (14) | 0.0070 (13) |
C18 | 0.041 (2) | 0.0208 (16) | 0.0314 (16) | −0.0046 (14) | 0.0131 (14) | −0.0068 (13) |
Fe1—N1 | 2.1591 (18) | C15—H15 | 0.9500 |
Fe1—N2 | 2.1727 (19) | N7—C19 | 1.346 (3) |
Fe1—N3 | 2.012 (2) | N7—H7A | 0.8800 |
Fe1—N4 | 2.026 (2) | C6—C7 | 1.387 (3) |
Fe1—N5 | 2.049 (2) | C6—H6 | 0.9500 |
Fe1—N6 | 2.034 (2) | C10—C9 | 1.382 (3) |
S1—C11 | 1.611 (3) | C10—H10 | 0.9500 |
S2—C12 | 1.614 (3) | C4—C3 | 1.377 (3) |
S3—C13 | 1.621 (3) | C4—H4 | 0.9500 |
S4—C14 | 1.620 (3) | C3—C2 | 1.378 (3) |
N1—C1 | 1.344 (3) | C3—H3 | 0.9500 |
N1—C5 | 1.347 (3) | C8—C7 | 1.378 (3) |
N2—C6 | 1.332 (3) | C8—C9 | 1.380 (3) |
N2—C10 | 1.341 (3) | C8—H8 | 0.9500 |
N3—C11 | 1.170 (3) | C7—H7 | 0.9500 |
N6—C14 | 1.165 (3) | C2—H2 | 0.9500 |
N5—C13 | 1.168 (3) | C16—C17 | 1.378 (3) |
N4—C12 | 1.172 (3) | C16—H16 | 0.9500 |
C5—C4 | 1.378 (3) | C19—C18 | 1.377 (3) |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
C1—C2 | 1.380 (3) | C9—H9 | 0.9500 |
C1—H1 | 0.9500 | C17—C18 | 1.373 (4) |
C15—C16 | 1.344 (3) | C17—H17 | 0.9500 |
C15—N7 | 1.351 (3) | C18—H18 | 0.9500 |
N3—Fe1—N4 | 177.50 (9) | C19—N7—H7A | 119.5 |
N3—Fe1—N6 | 89.58 (9) | C15—N7—H7A | 119.5 |
N4—Fe1—N6 | 91.74 (9) | N2—C6—C7 | 122.8 (2) |
N3—Fe1—N5 | 89.11 (9) | N2—C6—H6 | 118.6 |
N4—Fe1—N5 | 89.60 (9) | C7—C6—H6 | 118.6 |
N6—Fe1—N5 | 178.43 (9) | N2—C10—C9 | 122.9 (2) |
N3—Fe1—N1 | 92.24 (8) | N2—C10—H10 | 118.5 |
N4—Fe1—N1 | 89.90 (8) | C9—C10—H10 | 118.5 |
N6—Fe1—N1 | 89.24 (8) | C3—C4—C5 | 119.2 (2) |
N5—Fe1—N1 | 89.96 (8) | C3—C4—H4 | 120.4 |
N3—Fe1—N2 | 90.81 (8) | C5—C4—H4 | 120.4 |
N4—Fe1—N2 | 87.13 (8) | C4—C3—C2 | 118.8 (2) |
N6—Fe1—N2 | 87.45 (8) | C4—C3—H3 | 120.6 |
N5—Fe1—N2 | 93.43 (8) | C2—C3—H3 | 120.6 |
N1—Fe1—N2 | 175.48 (7) | C7—C8—C9 | 118.8 (2) |
C1—N1—C5 | 117.51 (19) | C7—C8—H8 | 120.6 |
C1—N1—Fe1 | 122.14 (16) | C9—C8—H8 | 120.6 |
C5—N1—Fe1 | 120.33 (15) | C8—C7—C6 | 118.9 (2) |
C6—N2—C10 | 117.8 (2) | C8—C7—H7 | 120.6 |
C6—N2—Fe1 | 121.38 (15) | C6—C7—H7 | 120.6 |
C10—N2—Fe1 | 120.83 (15) | C3—C2—C1 | 119.1 (2) |
C11—N3—Fe1 | 162.43 (19) | C3—C2—H2 | 120.5 |
C14—N6—Fe1 | 158.7 (2) | C1—C2—H2 | 120.5 |
C13—N5—Fe1 | 165.7 (2) | C15—C16—C17 | 119.1 (2) |
C12—N4—Fe1 | 161.67 (19) | C15—C16—H16 | 120.4 |
N4—C12—S2 | 179.0 (2) | C17—C16—H16 | 120.4 |
N6—C14—S4 | 179.7 (3) | N7—C19—C18 | 119.4 (2) |
N3—C11—S1 | 179.1 (2) | N7—C19—H19 | 120.3 |
N5—C13—S3 | 179.0 (2) | C18—C19—H19 | 120.3 |
N1—C5—C4 | 122.6 (2) | C8—C9—C10 | 118.8 (2) |
N1—C5—H5 | 118.7 | C8—C9—H9 | 120.6 |
C4—C5—H5 | 118.7 | C10—C9—H9 | 120.6 |
N1—C1—C2 | 122.8 (2) | C18—C17—C16 | 119.9 (2) |
N1—C1—H1 | 118.6 | C18—C17—H17 | 120.0 |
C2—C1—H1 | 118.6 | C16—C17—H17 | 120.0 |
C16—C15—N7 | 121.1 (2) | C17—C18—C19 | 119.5 (2) |
C16—C15—H15 | 119.4 | C17—C18—H18 | 120.3 |
N7—C15—H15 | 119.4 | C19—C18—H18 | 120.3 |
C19—N7—C15 | 121.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7A···S3i | 0.88 | 2.82 | 3.532 (2) | 139 |
N7—H7A···S2 | 0.88 | 2.86 | 3.462 (2) | 127 |
N7A—H7AA···S4ii | 0.88 | 2.81 | 3.558 (2) | 144 |
N7A—H7AA···S2 | 0.88 | 2.94 | 3.504 (2) | 124 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C5H6N)[Fe(NCS)4(C5H5N)2] |
Mr | 526.48 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 10.7650 (7), 14.0424 (8), 15.7266 (9) |
β (°) | 103.244 (3) |
V (Å3) | 2314.1 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.03 |
Crystal size (mm) | 0.21 × 0.14 × 0.07 |
Data collection | |
Diffractometer | Bruker Kappa APEXII DUO CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.814, 0.929 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17377, 4739, 3027 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.065, 0.92 |
No. of reflections | 4739 |
No. of parameters | 281 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.36 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1997).
Fe1—N1 | 2.1591 (18) | Fe1—N4 | 2.026 (2) |
Fe1—N2 | 2.1727 (19) | Fe1—N5 | 2.049 (2) |
Fe1—N3 | 2.012 (2) | Fe1—N6 | 2.034 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7A···S3i | 0.88 | 2.82 | 3.532 (2) | 139.1 |
N7—H7A···S2 | 0.88 | 2.86 | 3.462 (2) | 127.3 |
N7A—H7AA···S4ii | 0.88 | 2.81 | 3.558 (2) | 143.8 |
N7A—H7AA···S2 | 0.88 | 2.94 | 3.504 (2) | 123.7 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1. |
References
Brandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752. Web of Science CSD CrossRef CAS Google Scholar
Gamez, P., Costa, J. S., Quesada, M. & Aromí, G. (2009). Dalton Trans. pp. 7845–7853. Web of Science CrossRef Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. Web of Science CrossRef PubMed Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040. Web of Science CSD CrossRef CAS Google Scholar
Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shylin, S. I., Gural'skiy, I. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m280. CSD CrossRef IUCr Journals Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecular assemblies consisting of cationic and anionic modules are of great interest for crystal engineering and molecular magnetism (Strotmeyer et al., 2003; Fritsky et al., 2004). Target properties of such compounds can be tuned by different types of intermolecular interactions, such as coordination and hydrogen bonds, π–π and lone pair – π contacts, etc. (Fritsky et al., 1998; Kanderal et al., 2005). In certain cases, even the existence of spin crossover in these complexes can be observed. Therefore, FeII isothiocyanate complexes with aromatic N-donor ligands attract much attention considering the possible metal ion spin state modulation by variation of a ligand (Gamez et al., 2009). Herein, we attempted to synthesize FeII thiocyanate complex with 1,5-naphthyridine, however, the reaction of it and [FeII(NCS)2(py)4] (py = pyridine) in CHCl3 in air led to the oxidation of FeII and to the formation of the title compound.
The compound consists of complex anion [Fe(NCS)4(py)2]- and pyridinium cation the N7 atom of which is disordered over two alternative sites with the occupancy ratio of 0.58 (2): 0.42 (2). The FeIII ion is sixfold coordinated by four N atoms of thiocyanate anions forming the equatorial plane and two N atoms of two pyridine ligands occupying axial positions (Fig. 1). The distances between FeIII ion and N atoms of the thiocyanate anions are shorter than those between FeIII and N atoms of the pyridine ligands (Table 1), hence FeN6 octahedron is slightly distorted. A similar distortion of the coordination polyhedron was reported for the related compound (Hpy)[Fe(NCS)4(py)2].4(cnpz).(py), where cnpz = pyrazine-2-carbonitrile (Shylin et al., 2013). The thiocyanate ligands are only bound through N atoms and are quasi-linear, while the Fe–NCS linkages are bent [Fe1—N3—C11 = 162.43 (19)°, Fe1—N4—C12 = 161.67 (19)°, Fe1—N5—C13 = 165.7 (2)°, Fe1—N6—C14 = 158.7 (2)°]. These structural features are typical for the complexes where the NCS group is N-bound (Petrusenko et al., 1997). The C—N and C—C bond lengths in the coordinated pyridine ligands are normal and close to the values observed in the related structures (Moroz et al., 2010; Penkova et al., 2010).
In the title compound pyridine ligands and pyridinium cations interact with one another via π–π stacking, with distances between the centroids of 3.7267 (2), 3.7811 (2) and 3.8924 (2) Å (Fig. 2). Pyridinium cations are also bound to the anionic complex through a number of N—H···S hydrogen bonds (Table 2).