organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-4-(prop-2-en-1-yl)phenyl 4-meth­­oxy­benzoate

aDepartment of Pharmaceutical Chemistry, International Medical University, 126 Jalan Bukit Jalil, 57000 Kuala Lumpur, Malaysia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 April 2013; accepted 26 April 2013; online 4 May 2013)

In the title compound, C18H18O4, the planes of the benzene rings are twisted by 81.60 (5)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains extending along the a axis.

Related literature

For the structure of phenyl benzoate, see: Shibakami & Sekiya (1995[Shibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326-330.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.32

  • Triclinic, [P \overline 1]

  • a = 8.7685 (6) Å

  • b = 9.8159 (7) Å

  • c = 10.3515 (6) Å

  • α = 113.030 (6)°

  • β = 101.231 (6)°

  • γ = 102.378 (6)°

  • V = 761.45 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.964, Tmax = 0.982

  • 6267 measured reflections

  • 3525 independent reflections

  • 2497 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.132

  • S = 1.06

  • 3525 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O3i 0.98 2.54 3.458 (2) 156
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title phenyl benzoate (Scheme I, Fig. 1), which possesses an allyl and a methoxy substituent, was synthesized for an evaluation of its pharmaceutical properties as it is an ester derivative of eugenol. The two benzene rings are approximately perpendicular [dihedral angle 81.60 (5)°]. The twist is similar to that found in the unsubstituted compound, phenyl benzoate (Shibakami & Sekiya, 1995). In the crystal, weak C—H···O hydrogen bond links molecules into the supramolecular chains extending along the a axis (Table 1).

Related literature top

For the structure of phenyl benzoate, see: Shibakami & Sekiya (1995).

Experimental top

4-Allyl-2-methoxyphenol (1 mmol), 4-methoxybenzoic acid (1 mmol), diethylazodicarboxylate (2 mmol) and triphenylphosphine (2 mmol) were heated in THF (10 ml) for 2 h. The solid material extracted with dichloromethane. The dichloromethane solution was eluted through a silica gel column by using an n-hexane–ethyl acetate (95: 5 v/v) solvent system. Slow evaporation of the solution yielded large colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C18H18O4 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Methoxy-4-(prop-2-en-1-yl)phenyl 4-methoxybenzoate top
Crystal data top
C18H18O4Z = 2
Mr = 298.32F(000) = 316
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7685 (6) ÅCell parameters from 2058 reflections
b = 9.8159 (7) Åθ = 3.4–27.5°
c = 10.3515 (6) ŵ = 0.09 mm1
α = 113.030 (6)°T = 100 K
β = 101.231 (6)°Prism, colorless
γ = 102.378 (6)°0.40 × 0.40 × 0.20 mm
V = 761.45 (11) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3525 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2497 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.4°
ω scanh = 118
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1112
Tmin = 0.964, Tmax = 0.982l = 1313
6267 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.0956P]
where P = (Fo2 + 2Fc2)/3
3525 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H18O4γ = 102.378 (6)°
Mr = 298.32V = 761.45 (11) Å3
Triclinic, P1Z = 2
a = 8.7685 (6) ÅMo Kα radiation
b = 9.8159 (7) ŵ = 0.09 mm1
c = 10.3515 (6) ÅT = 100 K
α = 113.030 (6)°0.40 × 0.40 × 0.20 mm
β = 101.231 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3525 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2497 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.982Rint = 0.027
6267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.06Δρmax = 0.47 e Å3
3525 reflectionsΔρmin = 0.24 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25854 (15)0.56195 (13)0.97044 (12)0.0239 (3)
O20.17691 (14)0.49329 (12)0.68408 (12)0.0201 (3)
O30.03197 (15)0.26310 (13)0.66616 (13)0.0242 (3)
O40.54829 (15)0.06265 (13)0.33989 (13)0.0245 (3)
C10.1367 (2)0.61293 (18)0.92258 (18)0.0198 (4)
C20.0589 (2)0.70167 (19)1.01000 (18)0.0212 (4)
H20.08900.73001.11260.025*
C30.0628 (2)0.75000 (19)0.94958 (18)0.0223 (4)
C40.1092 (2)0.70584 (19)0.79870 (18)0.0228 (4)
H40.19290.73730.75650.027*
C50.0329 (2)0.61580 (19)0.70993 (18)0.0208 (4)
H50.06460.58520.60690.025*
C60.0886 (2)0.57120 (18)0.77169 (17)0.0186 (4)
C70.3292 (2)0.6251 (2)1.12758 (18)0.0273 (4)
H7A0.41730.58271.14870.041*
H7B0.24430.59631.17000.041*
H7C0.37420.73921.17120.041*
C80.1423 (2)0.8524 (2)1.0485 (2)0.0285 (4)
H8A0.09310.87231.15140.034*
H8B0.11660.95441.04600.034*
C90.3225 (2)0.7840 (2)1.0064 (2)0.0342 (5)
H90.36290.69691.02360.041*
C100.4308 (3)0.8330 (3)0.9476 (2)0.0412 (5)
H10A0.39570.91980.92840.049*
H10B0.54470.78190.92390.049*
C110.1434 (2)0.33704 (18)0.64360 (17)0.0181 (4)
C120.2555 (2)0.27352 (18)0.56621 (17)0.0179 (4)
C130.2089 (2)0.11166 (19)0.47938 (18)0.0232 (4)
H130.10700.04630.47170.028*
C140.3087 (2)0.04630 (19)0.40522 (19)0.0241 (4)
H140.27450.06350.34520.029*
C150.4596 (2)0.14002 (19)0.41746 (17)0.0195 (4)
C160.5092 (2)0.30149 (19)0.50483 (18)0.0210 (4)
H160.61260.36630.51460.025*
C170.4059 (2)0.36649 (18)0.57741 (17)0.0193 (4)
H170.43870.47650.63570.023*
C180.7088 (2)0.1525 (2)0.3554 (2)0.0301 (4)
H18A0.75750.08440.29080.045*
H18B0.77820.19860.45820.045*
H18C0.70040.23600.32770.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0262 (7)0.0270 (6)0.0171 (6)0.0127 (5)0.0042 (5)0.0077 (5)
O20.0243 (6)0.0178 (6)0.0196 (6)0.0080 (5)0.0107 (5)0.0073 (5)
O30.0241 (7)0.0222 (6)0.0247 (7)0.0046 (5)0.0117 (5)0.0085 (5)
O40.0221 (6)0.0247 (6)0.0262 (7)0.0084 (5)0.0119 (5)0.0084 (5)
C10.0212 (9)0.0180 (8)0.0202 (9)0.0055 (7)0.0055 (7)0.0096 (7)
C20.0226 (9)0.0209 (8)0.0157 (8)0.0050 (7)0.0050 (7)0.0055 (7)
C30.0213 (9)0.0214 (8)0.0228 (9)0.0062 (7)0.0103 (7)0.0075 (7)
C40.0223 (9)0.0245 (9)0.0225 (9)0.0085 (7)0.0054 (8)0.0118 (7)
C50.0229 (9)0.0227 (8)0.0168 (8)0.0057 (7)0.0065 (7)0.0095 (7)
C60.0205 (8)0.0167 (8)0.0188 (8)0.0054 (7)0.0091 (7)0.0069 (7)
C70.0290 (10)0.0306 (10)0.0190 (9)0.0110 (8)0.0017 (8)0.0098 (8)
C80.0293 (10)0.0308 (10)0.0227 (9)0.0136 (8)0.0096 (8)0.0067 (8)
C90.0378 (12)0.0304 (10)0.0362 (11)0.0124 (9)0.0209 (10)0.0114 (9)
C100.0325 (11)0.0520 (13)0.0377 (12)0.0177 (10)0.0126 (10)0.0161 (10)
C110.0198 (8)0.0185 (8)0.0133 (8)0.0050 (7)0.0026 (7)0.0062 (6)
C120.0182 (8)0.0192 (8)0.0152 (8)0.0052 (7)0.0047 (7)0.0072 (6)
C130.0216 (9)0.0206 (8)0.0240 (9)0.0024 (7)0.0086 (8)0.0084 (7)
C140.0266 (9)0.0171 (8)0.0244 (9)0.0047 (7)0.0103 (8)0.0052 (7)
C150.0204 (8)0.0229 (8)0.0174 (8)0.0102 (7)0.0065 (7)0.0094 (7)
C160.0178 (8)0.0208 (8)0.0226 (9)0.0021 (7)0.0045 (7)0.0110 (7)
C170.0210 (9)0.0165 (8)0.0173 (8)0.0052 (7)0.0041 (7)0.0060 (7)
C180.0219 (9)0.0332 (10)0.0345 (11)0.0083 (8)0.0148 (8)0.0119 (8)
Geometric parameters (Å, º) top
O1—C11.362 (2)C8—H8A0.9900
O1—C71.4381 (19)C8—H8B0.9900
O2—C111.3676 (19)C9—C101.306 (3)
O2—C61.4110 (19)C9—H90.9500
O3—C111.205 (2)C10—H10A0.9500
O4—C151.358 (2)C10—H10B0.9500
O4—C181.433 (2)C11—C121.475 (2)
C1—C21.386 (2)C12—C171.388 (2)
C1—C61.398 (2)C12—C131.400 (2)
C2—C31.395 (2)C13—C141.372 (2)
C2—H20.9500C13—H130.9500
C3—C41.393 (2)C14—C151.391 (2)
C3—C81.522 (2)C14—H140.9500
C4—C51.389 (2)C15—C161.396 (2)
C4—H40.9500C16—C171.390 (2)
C5—C61.375 (2)C16—H160.9500
C5—H50.9500C17—H170.9500
C7—H7A0.9800C18—H18A0.9800
C7—H7B0.9800C18—H18B0.9800
C7—H7C0.9800C18—H18C0.9800
C8—C91.478 (3)
C1—O1—C7116.79 (13)C10—C9—C8125.6 (2)
C11—O2—C6116.91 (13)C10—C9—H9117.2
C15—O4—C18117.48 (13)C8—C9—H9117.2
O1—C1—C2125.77 (15)C9—C10—H10A120.0
O1—C1—C6115.87 (14)C9—C10—H10B120.0
C2—C1—C6118.36 (15)H10A—C10—H10B120.0
C1—C2—C3120.95 (16)O3—C11—O2122.70 (15)
C1—C2—H2119.5O3—C11—C12125.80 (15)
C3—C2—H2119.5O2—C11—C12111.46 (14)
C4—C3—C2119.50 (16)C17—C12—C13118.63 (15)
C4—C3—C8120.39 (16)C17—C12—C11123.04 (14)
C2—C3—C8120.10 (15)C13—C12—C11118.32 (15)
C5—C4—C3119.97 (16)C14—C13—C12120.75 (16)
C5—C4—H4120.0C14—C13—H13119.6
C3—C4—H4120.0C12—C13—H13119.6
C6—C5—C4119.76 (15)C13—C14—C15120.34 (15)
C6—C5—H5120.1C13—C14—H14119.8
C4—C5—H5120.1C15—C14—H14119.8
C5—C6—C1121.45 (15)O4—C15—C14115.22 (14)
C5—C6—O2119.49 (14)O4—C15—C16125.00 (15)
C1—C6—O2118.84 (14)C14—C15—C16119.78 (15)
O1—C7—H7A109.5C17—C16—C15119.31 (15)
O1—C7—H7B109.5C17—C16—H16120.3
H7A—C7—H7B109.5C15—C16—H16120.3
O1—C7—H7C109.5C12—C17—C16121.17 (15)
H7A—C7—H7C109.5C12—C17—H17119.4
H7B—C7—H7C109.5C16—C17—H17119.4
C9—C8—C3114.01 (15)O4—C18—H18A109.5
C9—C8—H8A108.8O4—C18—H18B109.5
C3—C8—H8A108.7H18A—C18—H18B109.5
C9—C8—H8B108.7O4—C18—H18C109.5
C3—C8—H8B108.7H18A—C18—H18C109.5
H8A—C8—H8B107.6H18B—C18—H18C109.5
C7—O1—C1—C29.9 (2)C3—C8—C9—C10109.0 (2)
C7—O1—C1—C6169.69 (14)C6—O2—C11—O38.1 (2)
O1—C1—C2—C3178.83 (15)C6—O2—C11—C12173.97 (12)
C6—C1—C2—C30.8 (2)O3—C11—C12—C17161.98 (17)
C1—C2—C3—C41.3 (3)O2—C11—C12—C1720.1 (2)
C1—C2—C3—C8177.75 (16)O3—C11—C12—C1317.0 (2)
C2—C3—C4—C50.7 (3)O2—C11—C12—C13160.88 (14)
C8—C3—C4—C5178.28 (15)C17—C12—C13—C140.9 (3)
C3—C4—C5—C60.3 (3)C11—C12—C13—C14179.88 (15)
C4—C5—C6—C10.7 (3)C12—C13—C14—C151.2 (3)
C4—C5—C6—O2173.71 (14)C18—O4—C15—C14176.50 (15)
O1—C1—C6—C5179.87 (15)C18—O4—C15—C163.6 (2)
C2—C1—C6—C50.2 (2)C13—C14—C15—O4179.68 (16)
O1—C1—C6—O25.4 (2)C13—C14—C15—C160.5 (3)
C2—C1—C6—O2174.27 (14)O4—C15—C16—C17179.26 (15)
C11—O2—C6—C5107.13 (17)C14—C15—C16—C170.6 (2)
C11—O2—C6—C178.29 (18)C13—C12—C17—C160.2 (2)
C4—C3—C8—C959.1 (2)C11—C12—C17—C16178.76 (15)
C2—C3—C8—C9121.88 (19)C15—C16—C17—C120.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O3i0.982.543.458 (2)156
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.32
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7685 (6), 9.8159 (7), 10.3515 (6)
α, β, γ (°)113.030 (6), 101.231 (6), 102.378 (6)
V3)761.45 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.964, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6267, 3525, 2497
Rint0.027
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.06
No. of reflections3525
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.24

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O3i0.982.543.458 (2)156
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the Inter­national Medical University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326–330.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds