organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o921-o922

1-Ethyl-2-phenyl-3-[2-(tri­methyl­sil­yl)ethyn­yl]-1H-indole

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01033 Kyiv, Ukraine, bCNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse, France, and cUniversite de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France
*Correspondence e-mail: iaroslav.baglai@gmail.com

(Received 29 April 2013; accepted 8 May 2013; online 18 May 2013)

The title compound, C21H23NSi, was synthesized by Sonogashira-type reaction of 1-ethyl-3-iodo-2-phenyl-1H-indole with tri­methyl­silyl­acetyl­ene. The indole ring system is nearly planar [maximum atomic deviation = 0.0244 (15) Å] and is oriented at a dihedral angle of 51.48 (4)° with respect to the phenyl ring. The supramolecular aggregation is completed by weak C—H⋯π inter­actions of the methylene and phenyl groups with the benzene and pyrrole rings of the indole ring system. The methyl groups of the tri­methyl­silyl unit are equally disordered over two sets of sites.

Related literature

For background to indoles, see: Huang et al. (2004[Huang, X.-H., Zhang, Q.-F. & Sung, H. H. Y. (2004). Acta Cryst. E60, o488-o489.]); Seferoğlu et al. (2007a[Seferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2007a). Acta Cryst. E63, o148-o150.],b[Seferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2007b). Acta Cryst. E63, o568-o570.]). For the synthesis and properties of indoles, see: Ruiz et al. (2012[Ruiz, M., Sánchez, J. D., López-Alvarado, P. & Menéndez, J. C. (2012). Tetrahedron, 68, 705-710.]); Shiri (2012[Shiri, M. (2012). Chem. Rev. 112, 3508-3549.]); Hussain et al. (2011[Hussain, M., Tengho Toguem, S.-M., Ahmad, R., Tùng, Đ. T., Knepper, I., Villinger, A. & Langer, P. (2011). Tetrahedron, 67, 5304-5318.]); Prateeptongkum et al. (2010[Prateeptongkum, S., Driller, K. M., Jackstell, R., Spannenberg, A. & Beller, M. (2010). Chem. Eur. J. 16, 9606-9615.]); Rives et al. (2012[Rives, A., Baglai, I., Malytskyi, V., Maraval, V., Saffon-Merceron, N., Voitenko, Z. & Chauvin, R. (2012). Chem. Commun. 48, 8763-8765.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NSi

  • Mr = 317.51

  • Monoclinic, P 21 /n

  • a = 12.6271 (6) Å

  • b = 9.3928 (5) Å

  • c = 16.6616 (8) Å

  • β = 111.954 (2)°

  • V = 1832.83 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.06 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.90, Tmax = 0.99

  • 26426 measured reflections

  • 4320 independent reflections

  • 3254 reflections with I > 2.0σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.039

  • S = 1.12

  • 3032 reflections

  • 235 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the pyrrole and benzene rings, respectively, of indole ring system.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H102⋯Cg5i 0.98 2.66 3.3512 (18) 128
C16—H161⋯Cg5ii 0.95 2.79 3.5122 (17) 133
C17—H171⋯Cg4ii 0.95 2.81 3.4515 (17) 125
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{5\over 2}}, y+{\script{5\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Indole is one of the three heterocycles occurring in the 20 standard natural amino-acids (in (L)-trhyptophane). Its unique bicyclic aromatic structure makes it a key rigid structural basis of one of the largest classes of alkaloids, comprising more than 4000 natural products (Huang et al., 2004; Seferoğlu et al., 2007a,b; Ruiz et al., 2012). The synthesis and functionalization of indoles have been the object of research for over one and a half century (Shiri, 2012). Few examples of Sonogashira-type reactions on the indole core have been described (Hussain et al., 2011; Prateeptongkum et al., 2010). In view of obtaining 1-ethyl-3-ethynyl-2-phenyl-1H-indole 1 b as key building block for the synthesis of highly π-frustrated carbo-benzenic chromophores (Rives et al. 2012), the title compound (1a) was synthesized (Fig. 3), and we herein report on its crystal structure.

In the molecule (Fig. 1), the indole ring is almost planar [maximum deviation for ring atoms = 0.0244 (15) Å], and the dihedral angle between the pyrrole and benzene ring of the indole system is equal to 1.83 (5)°. Methyl groups of the trimethylsilyl moieties are disordered into two positions with the corresponding occupancy of 0.5 for each part. The whole molecule is almost planar excluding methyl groups of trimethylsilyl and ethyl moieties as well as the benzene ring [maximum deviation for atoms = 0.0539 (16) Å]. The interplanar angle between indole and phenyl planes is equal to 51.48 (4)°. Inspite of the three aromatic rings of the molecule, the packing shown in Fig. 2 does not reveal any particular intermolecular π-stacking or columnar arrangement but weak C—H···π interactions (Table 1).

Related literature top

For background to indoles, see: Huang et al. (2004); Seferoğlu et al. (2007a,b). For the synthesis and properties of indoles, see: Ruiz et al. (2012); Shiri (2012); Hussain et al. (2011); Prateeptongkum et al. (2010); Rives et al. (2012).

Experimental top

The title compound 1a was prepared by the following two-step procedure (see Fig. 3) from commercially available 1-ethyl-2-phenyl-1H-indole 2 via 1-ethyl-3-iodo-2-phenyl-1H-indole 3.

1-ethyl-3-iodo-2-phenyl-1H-indole (3).

To a solution of 1-ethyl-2-phenyl-1H-indole 2 (0.5 g, 2.26 mmol) in CHCl3 (30 ml) at 0 °C was added N-iodosuccinimide (0.535 g, 2.37 mmol) as a small portions over 5 min. The mixture was then stirred at the same temperature for 3 h. After evaporating the solvent, the residue was extracted in dichloromethane and washed with H2O. The organic layer was separated and dried over MgSO4. The solvent was removed under reduced pressure, and the product was purified by silica gel chromatography using a mixture of acetone and pentane (2:98) as an eluent (yield 92%, 0.72 g). Rf= 0.26.

M. p. 93 °C. 1H NMR (CDCl3) δ 7.59 - 7.44 (m, 6 H, H9 Ind, o-, m-, p-Ph), 7.39 - 7.22 (m, 3 H, H6, H7, H8 Ind), 4.16 (q, J = 7.1 Hz, 2 H, CH2), 1.26 (t, J = 7.2 Hz, 3 H, CH3). 13C NMR (101 MHz, CDCl3) δ 141.4 (C2 Ind), 136.5 (C5 Ind), 132.0 (i-Ph), 130.8 (m-Ph), 130.6 (C4 Ind), 128.9 (p-Ph), 128.5 (o-Ph), 122.8, 121.6, 120.6, (C7, C8, C9 Ind), 110.0 (C6 Ind), 59.5 (C3 Ind), 39.9 (CH2), 15.5 (CH3). HRMS (DCI/CH4): m/z calcd for C16H14NI: 347.0171, found: 347.0165.

1-ethyl-2-phenyl-3-[2-(trimethylsilyl)ethynyl]-1H-indole (1a).

CuI (42 mg, 0.21 mmol) and Pd(PPh3)2Cl2 (60 mg, 0.09 mmol) were added to 1-ethyl-3-iodo-2-phenyl-1H-indole 3 (1.04 g, 3.0 mmol) under argon atmosphere. Then, freshly distilled diisopropylamine (15 ml) was added, and the mixture was stirred for 20 min, Me3SiCCH (1.0 ml, 6.52 mmol) was added to the mixture and the suspension was stirred for 60 h at room temperature before adding Et2O (20 ml). The mixture was filtrated through Celite and the filtrate was evaporated, the residue was re-dissolved in Et2O and washed with 10% HCl, water and NaHCO3. The resulting organic solution was dried over anhydrous MgSO4, the solvent was removed under reduced pressure, and the brown residue was purified by silica gel chromatography using a mixture of ether and pentane (1:99) as an eluent (yield 56%, 0.53 g). Rf(99/5 = C5H12/Ether) = 0.47. The title compound was dissolved in Et2O and CH2Cl2 (1:1 mixture). After slow evaporation over two days, crystals of 1a suitable for X-ray diffraction analysis were obtained.

M. p. 86 °C. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 7.4 Hz, 1 H, H9 Ind), 7.72 (d, J = 7.9 Hz, 2 H, o-Ph), 7.61- 7.33 (m, 6 H, H6, H7, H8 Ind, m-,p-Ph), 4.26 (q, J = 7.1 Hz, 2 H, CH2), 1.38 (t, J = 7.1 Hz, 3 H, CH3), 0.34. (s, 9 H, TMS). 13C NMR (101 MHz, CDCl3) δ 144.3 (C2 Ind), 135.9 (C5 Ind), 131.1 (i-Ph), 130.2 (m-Ph), 129.4 (C4 Ind), 128.6 (p-Ph), 128.4 (o-Ph), 122.9, 120.9, 120.3 (C7, C8, C9 Ind), 110.2 (C6 Ind), 100.0, 97.4, 96.4 (C3 Ind, –CC–), 39.3 (CH2), 15.3 (CH3), 0.43 (Si(CH3)3). HRMS (DCI/CH4): m/z calcd for C21H23NSi: 317.1600, found: 317.1614.

Refinement top

The H atoms were located in a difference Fourier map and refined with riding constraints. Methyl groups are disordered over two positions in site occupancy ratio of 0.5:0.5.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed along the c axis.
[Figure 3] Fig. 3. The reaction scheme.
1-Ethyl-2-phenyl-3-[2-(trimethylsilyl)ethynyl]-1H-indole top
Crystal data top
C21H23NSiF(000) = 680
Mr = 317.51Dx = 1.151 Mg m3
Monoclinic, P21/nMelting point: 359 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.6271 (6) ÅCell parameters from 9299 reflections
b = 9.3928 (5) Åθ = 3–28°
c = 16.6616 (8) ŵ = 0.13 mm1
β = 111.954 (2)°T = 100 K
V = 1832.83 (16) Å3Planar, colourless
Z = 40.20 × 0.20 × 0.06 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3254 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 28.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.90, Tmax = 0.99k = 1212
26426 measured reflectionsl = 2221
4320 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.039 [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are 0.191, 0.134 and 0.621E-01, and x = F /Fmax
S = 1.12(Δ/σ)max = 0.001
3032 reflectionsΔρmax = 0.31 e Å3
235 parametersΔρmin = 0.30 e Å3
6 restraints
Crystal data top
C21H23NSiV = 1832.83 (16) Å3
Mr = 317.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6271 (6) ŵ = 0.13 mm1
b = 9.3928 (5) ÅT = 100 K
c = 16.6616 (8) Å0.20 × 0.20 × 0.06 mm
β = 111.954 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
4320 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3254 reflections with I > 2.0σ(I)
Tmin = 0.90, Tmax = 0.99Rint = 0.032
26426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.039H-atom parameters constrained
S = 1.12Δρmax = 0.31 e Å3
3032 reflectionsΔρmin = 0.30 e Å3
235 parameters
Special details top

Refinement. Structure was refined by full-matrix least-squares procedures on F using the programs of the PC version of CRYSTALS, with 3032 reflexions [I>3.0σ(I)].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.99268 (10)0.72549 (13)0.49251 (8)0.0196
C20.93192 (11)0.79040 (15)0.53618 (9)0.0184
C30.98715 (12)0.76670 (15)0.62446 (9)0.0195
C41.08714 (12)0.68318 (16)0.63574 (9)0.0207
C51.08685 (11)0.65774 (16)0.55223 (9)0.0211
C61.17008 (13)0.57357 (17)0.53885 (10)0.0267
C71.25572 (13)0.51899 (18)0.61168 (11)0.0299
C81.25924 (13)0.54708 (17)0.69552 (10)0.0284
C91.17547 (13)0.62798 (16)0.70832 (10)0.0243
C100.96037 (13)0.71346 (17)0.39867 (9)0.0241
C111.03390 (14)0.80491 (19)0.36501 (10)0.0309
C120.82652 (11)0.87255 (15)0.49367 (9)0.0183
C130.73271 (13)0.84517 (17)0.51658 (11)0.0261
C140.63450 (13)0.92593 (18)0.48225 (12)0.0315
C150.62723 (13)1.03523 (16)0.42414 (11)0.0278
C160.71982 (12)1.06377 (16)0.40118 (10)0.0236
C170.81897 (12)0.98331 (16)0.43583 (9)0.0206
C180.95193 (12)0.81975 (15)0.69075 (9)0.0209
C190.91972 (13)0.86562 (16)0.74527 (9)0.0235
Si200.85785 (3)0.94562 (4)0.81844 (3)0.0218
C230.9113 (3)1.1387 (3)0.8372 (2)0.02400.5000
C2300.9514 (3)1.0854 (4)0.8847 (2)0.03010.5000
C2200.8439 (3)0.7986 (4)0.8949 (2)0.02930.5000
C220.9054 (3)0.8510 (4)0.9200 (2)0.03020.5000
C2100.7149 (4)1.0146 (5)0.7538 (3)0.04640.5000
C210.7003 (3)0.9480 (5)0.7620 (3)0.03450.5000
H611.16810.55580.48250.0324*
H711.31390.46040.60470.0374*
H811.32030.50840.74440.0353*
H911.17670.64490.76470.0307*
H1020.96870.61330.38550.0301*
H1010.88130.74250.37100.0299*
H1111.00990.79140.30420.0467*
H1121.11320.77870.39250.0468*
H1131.02300.90440.37560.0470*
H1310.73770.76800.55650.0325*
H1410.57030.90700.49760.0385*
H1510.55911.08870.40170.0332*
H1610.71561.13790.36130.0296*
H1710.88311.00450.42070.0257*
H2110.68220.99880.71070.0406*0.5000
H2120.66710.99200.79690.0406*0.5000
H2130.67270.85550.74970.0406*0.5000
H21010.66980.94120.72110.0595*0.5000
H21020.68161.05160.79050.0595*0.5000
H21030.72121.08590.71710.0595*0.5000
H2310.88691.18730.78480.0306*0.5000
H2320.99071.13810.86130.0306*0.5000
H2330.88331.18380.87490.0306*0.5000
H23010.95841.15790.84890.0395*0.5000
H23021.02301.04730.91580.0395*0.5000
H23030.92011.12200.92280.0395*0.5000
H2210.87820.75810.91020.0387*0.5000
H2220.98480.85000.94420.0387*0.5000
H2230.87730.89570.95780.0387*0.5000
H22010.79660.72650.86250.0367*0.5000
H22020.91600.76180.92600.0367*0.5000
H22030.81310.83650.93300.0367*0.5000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0187 (5)0.0257 (6)0.0131 (6)0.0054 (5)0.0045 (4)0.0013 (5)
C20.0192 (6)0.0204 (7)0.0163 (7)0.0005 (5)0.0073 (5)0.0032 (5)
C30.0211 (6)0.0193 (7)0.0174 (7)0.0013 (5)0.0064 (5)0.0019 (5)
C40.0214 (7)0.0211 (7)0.0180 (7)0.0004 (5)0.0054 (5)0.0022 (5)
C50.0186 (6)0.0257 (7)0.0161 (7)0.0021 (6)0.0031 (5)0.0008 (6)
C60.0232 (7)0.0334 (9)0.0225 (8)0.0066 (6)0.0074 (6)0.0021 (6)
C70.0214 (7)0.0335 (9)0.0317 (9)0.0081 (6)0.0063 (6)0.0017 (7)
C80.0212 (7)0.0299 (8)0.0247 (8)0.0040 (6)0.0022 (6)0.0017 (7)
C90.0258 (7)0.0250 (7)0.0160 (7)0.0006 (6)0.0007 (5)0.0006 (6)
C100.0253 (7)0.0314 (8)0.0133 (7)0.0077 (6)0.0044 (6)0.0040 (6)
C110.0327 (8)0.0436 (10)0.0181 (8)0.0098 (7)0.0114 (6)0.0030 (7)
C120.0172 (6)0.0197 (6)0.0164 (6)0.0002 (5)0.0045 (5)0.0045 (5)
C130.0244 (7)0.0233 (7)0.0341 (8)0.0027 (6)0.0147 (6)0.0031 (6)
C140.0220 (7)0.0311 (9)0.0460 (10)0.0015 (6)0.0179 (7)0.0030 (7)
C150.0198 (7)0.0257 (8)0.0353 (9)0.0051 (6)0.0073 (6)0.0019 (6)
C160.0228 (7)0.0241 (7)0.0199 (7)0.0001 (6)0.0034 (5)0.0004 (6)
C170.0171 (6)0.0275 (7)0.0161 (7)0.0011 (5)0.0049 (5)0.0018 (6)
C180.0239 (7)0.0195 (7)0.0179 (7)0.0017 (5)0.0061 (6)0.0004 (5)
C190.0300 (7)0.0220 (7)0.0194 (7)0.0014 (6)0.0102 (6)0.0011 (6)
Si200.02245 (19)0.0247 (2)0.0181 (2)0.00257 (17)0.00724 (15)0.00369 (17)
C230.0307 (15)0.0225 (15)0.0230 (16)0.0008 (13)0.0148 (13)0.0054 (13)
C2300.0341 (17)0.0319 (18)0.0258 (18)0.0038 (14)0.0130 (14)0.0090 (15)
C2200.0286 (16)0.0391 (19)0.0237 (17)0.0033 (15)0.0139 (14)0.0031 (14)
C220.0373 (18)0.0333 (18)0.0224 (17)0.0011 (16)0.0139 (15)0.0016 (14)
C2100.037 (2)0.031 (2)0.050 (3)0.009 (2)0.0083 (19)0.012 (2)
C210.0283 (18)0.036 (2)0.039 (2)0.001 (2)0.0127 (15)0.000 (2)
Geometric parameters (Å, º) top
N1—C21.3811 (17)C15—H1510.945
N1—C51.3872 (18)C16—C171.390 (2)
N1—C101.4653 (18)C16—H1610.951
C2—C31.3901 (19)C17—H1710.954
C2—C121.4709 (19)C18—C191.205 (2)
C3—C41.438 (2)C19—Si201.8366 (15)
C3—C181.426 (2)Si20—C231.920 (3)
C4—C51.410 (2)Si20—C2301.834 (3)
C4—C91.402 (2)Si20—C2201.930 (3)
C5—C61.398 (2)Si20—C221.804 (3)
C6—C71.387 (2)Si20—C2101.839 (4)
C6—H610.944Si20—C211.856 (4)
C7—C81.406 (2)C23—H2310.930
C7—H710.960C23—H2320.930
C8—C91.382 (2)C23—H2330.930
C8—H810.959C230—H23010.930
C9—H910.946C230—H23020.930
C10—C111.518 (2)C230—H23030.930
C10—H1020.981C220—H22010.930
C10—H1010.969C220—H22020.930
C11—H1110.951C220—H22030.930
C11—H1120.965C22—H2210.930
C11—H1130.971C22—H2220.930
C12—C131.3974 (19)C22—H2230.930
C12—C171.397 (2)C210—H21010.930
C13—C141.382 (2)C210—H21020.930
C13—H1310.970C210—H21030.930
C14—C151.390 (2)C21—H2110.930
C14—H1410.953C21—H2120.930
C15—C161.385 (2)C21—H2130.930
C2—N1—C5108.70 (11)C16—C17—H171119.9
C2—N1—C10127.47 (11)C3—C18—C19178.42 (15)
C5—N1—C10123.51 (11)C18—C19—Si20173.57 (14)
N1—C2—C3109.21 (12)C19—Si20—C23106.48 (10)
N1—C2—C12123.97 (12)C19—Si20—C230110.76 (12)
C3—C2—C12126.81 (12)C19—Si20—C220108.16 (11)
C2—C3—C4107.12 (12)C23—Si20—C220132.96 (15)
C2—C3—C18125.82 (13)C230—Si20—C220108.21 (17)
C4—C3—C18127.04 (13)C19—Si20—C22110.27 (12)
C3—C4—C5106.57 (12)C23—Si20—C22109.80 (16)
C3—C4—C9133.70 (14)C230—Si20—C2282.80 (18)
C5—C4—C9119.73 (13)C19—Si20—C210108.84 (18)
C4—C5—N1108.38 (12)C230—Si20—C210111.74 (18)
C4—C5—C6121.89 (13)C220—Si20—C210109.0 (2)
N1—C5—C6129.71 (13)C22—Si20—C210129.2 (2)
C5—C6—C7117.15 (14)C19—Si20—C21108.08 (15)
C5—C6—H61121.1C23—Si20—C21108.43 (18)
C7—C6—H61121.8C230—Si20—C21128.55 (18)
C6—C7—C8121.64 (14)C220—Si20—C2189.87 (18)
C6—C7—H71119.2C22—Si20—C21113.51 (18)
C8—C7—H71119.1Si20—C23—H231109.7
C7—C8—C9120.98 (14)Si20—C23—H232108.8
C7—C8—H81119.3H231—C23—H232109.5
C9—C8—H81119.7Si20—C23—H233109.9
C4—C9—C8118.56 (14)H231—C23—H233109.5
C4—C9—H91120.4H232—C23—H233109.5
C8—C9—H91121.0Si20—C230—H2301109.5
N1—C10—C11112.70 (13)Si20—C230—H2302109.4
N1—C10—H102107.6H2301—C230—H2302109.5
C11—C10—H102109.2Si20—C230—H2303109.5
N1—C10—H101108.2H2301—C230—H2303109.5
C11—C10—H101109.2H2302—C230—H2303109.5
H102—C10—H101110.0Si20—C220—H2201109.7
C10—C11—H111108.8Si20—C220—H2202108.8
C10—C11—H112110.5H2201—C220—H2202109.5
H111—C11—H112109.4Si20—C220—H2203110.0
C10—C11—H113109.3H2201—C220—H2203109.5
H111—C11—H113108.2H2202—C220—H2203109.5
H112—C11—H113110.6Si20—C22—H221109.0
C2—C12—C13118.60 (13)Si20—C22—H222109.8
C2—C12—C17122.61 (12)H221—C22—H222109.5
C13—C12—C17118.64 (13)Si20—C22—H223109.6
C12—C13—C14120.46 (15)H221—C22—H223109.5
C12—C13—H131118.7H222—C22—H223109.5
C14—C13—H131120.8Si20—C210—H2101109.6
C13—C14—C15120.59 (14)Si20—C210—H2102109.4
C13—C14—H141120.5H2101—C210—H2102109.5
C15—C14—H141118.9Si20—C210—H2103109.4
C14—C15—C16119.49 (14)H2101—C210—H2103109.5
C14—C15—H151118.8H2102—C210—H2103109.5
C16—C15—H151121.7Si20—C21—H211108.7
C15—C16—C17120.15 (14)Si20—C21—H212109.7
C15—C16—H161120.2H211—C21—H212109.5
C17—C16—H161119.7Si20—C21—H213110.0
C12—C17—C16120.67 (13)H211—C21—H213109.5
C12—C17—H171119.5H212—C21—H213109.5
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the pyrrole and benzene rings, respectively, of indole ring system.
D—H···AD—HH···AD···AD—H···A
C10—H102···Cg5i0.982.663.3512 (18)128
C16—H161···Cg5ii0.952.793.5122 (17)133
C17—H171···Cg4ii0.952.813.4515 (17)125
Symmetry codes: (i) x+5/2, y+3/2, z+3/2; (ii) x+5/2, y+5/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H23NSi
Mr317.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.6271 (6), 9.3928 (5), 16.6616 (8)
β (°) 111.954 (2)
V3)1832.83 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.20 × 0.06
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.90, 0.99
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
26426, 4320, 3254
Rint0.032
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.039, 1.12
No. of reflections3032
No. of parameters235
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the pyrrole and benzene rings, respectively, of indole ring system.
D—H···AD—HH···AD···AD—H···A
C10—H102···Cg5i0.982.65743.3512 (18)128
C16—H161···Cg5ii0.952.79163.5122 (17)133
C17—H171···Cg4ii0.952.81363.4515 (17)125
Symmetry codes: (i) x+5/2, y+3/2, z+3/2; (ii) x+5/2, y+5/2, z+3/2.
 

Acknowledgements

The authors would like to thank Professor Z. V. Voitenko and Professor Yu. M. Volovenko for helpful discussions.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationHuang, X.-H., Zhang, Q.-F. & Sung, H. H. Y. (2004). Acta Cryst. E60, o488–o489.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHussain, M., Tengho Toguem, S.-M., Ahmad, R., Tùng, Đ. T., Knepper, I., Villinger, A. & Langer, P. (2011). Tetrahedron, 67, 5304–5318.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrateeptongkum, S., Driller, K. M., Jackstell, R., Spannenberg, A. & Beller, M. (2010). Chem. Eur. J. 16, 9606–9615.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRives, A., Baglai, I., Malytskyi, V., Maraval, V., Saffon-Merceron, N., Voitenko, Z. & Chauvin, R. (2012). Chem. Commun. 48, 8763–8765.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuiz, M., Sánchez, J. D., López-Alvarado, P. & Menéndez, J. C. (2012). Tetrahedron, 68, 705–710.  Web of Science CrossRef CAS Google Scholar
First citationSeferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2007a). Acta Cryst. E63, o148–o150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeferoğlu, Z., Hökelek, T., Şahin, E. & Ertan, N. (2007b). Acta Cryst. E63, o568–o570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiri, M. (2012). Chem. Rev. 112, 3508–3549.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o921-o922
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds