organic compounds
4′,4′,6′,6′-Tetrachloro-2-(6-methylpyridin-2-yl)-1H,2H-spiro[naphtho[1,2-e][1,3,2]oxazaphosphinine-3,2′-[1,3,5,2,4,6]triazatriphosphinine]
aDepartment of Chemistry, Kırıkkale University, 71450, Kırıkkale, Turkey, and bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The title compound, C17H14Cl4N5OP3, is a spiro-phosphazene derivative with bulky naphthalene and pyridine rings. The phosphazene and the six-membered N/O rings are in flattened-boat and twisted-boat conformations, respectively. The naphthalene ring system and the pyridine ring are oriented at a dihedral angle of 18.06 (8)°. In the crystal, weak π–π stacking between the pyridine rings and between the pyridine rings and the naphthalene ring system [centroid–centroid distances = 3.594 (2) and 3.961 (2) Å, respectively] occur. Weak C—H⋯π interactions are also observed. These interactions link the molecules into a three-dimensional supramolecular network.
Related literature
For products from the reaction of N3P3Cl6 with bifunctional reagents, see: Beşli et al. (2006). For N/O donor type bifunctional reagents used for the reaction of hexachlorocyclotriphosphazene giving spiro derivatives, see: Beşli et al. (2007); Sournies et al. (1997); Deutsch & Shaw (1990); Işıklan et al. (2010); İlter et al. (2004, 2007); Tercan et al. (2004). For industrial applications of cyclophosphazenes, see: Omotowa et al. (2004); Barbera et al. (2005); Schneider et al. (1999); Ding et al. (2005); Allcock (2006); Xu et al. (2006); Allcock & Wood (2006); Li et al. (2004); Singh et al. (2006); Greish et al. (2005). For bond-length data, see: Allen et al. (1987). For the standard compound, N3P3Cl6, see: Bullen (1971). For ring-puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813012348/xu5701sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813012348/xu5701Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813012348/xu5701Isup3.cml
Hexachlorocyclotriphosphazene (1.00 g, 2.88 mmol) in dry THF (100 ml) was introduced into a 250 ml three-necked round-bottomed flask. One equivalent of 1-[(6-methylpyridin-2-ylamino)methyl]naphthalene-2-ol (0.76 g, 2.88 mmol) and triethylamine (5 ml, 36.00 mmol) were dissolved in dry THF (50 ml) and placed in an addition funnel. The 1-[(6-methylpyridin-2-ylamino)methyl]- naphthalene-2-ol and triethylamine solution was added dropwise to the hexachlorocyclotriphosphazene solution and allowed to react for 24 h. The progress of the reaction was monitored by TLC. The precipitated triethylamine hydrochloride was filtered off. The solvent was evaporated and the product was purified through a silica gel column with a mobile phase of CHCl3. The oily product was recrystallized in n-hexane [m.p. 495.5 K, yield: 0.70 g, 45%].
H atoms were positioned geometrically with C—H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H atoms, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C17H14Cl4N5OP3 | F(000) = 2176 |
Mr = 539.04 | Dx = 1.667 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2741 reflections |
a = 21.7784 (5) Å | θ = 2.5–26.6° |
b = 7.8573 (3) Å | µ = 0.80 mm−1 |
c = 25.1034 (5) Å | T = 100 K |
V = 4295.7 (2) Å3 | Plate, colorless |
Z = 8 | 0.38 × 0.28 × 0.08 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 5297 independent reflections |
Radiation source: fine-focus sealed tube | 3446 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.070 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −25→29 |
Tmin = 0.752, Tmax = 0.939 | k = −10→6 |
22083 measured reflections | l = −31→33 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0611P)2 + 1.3984P] where P = (Fo2 + 2Fc2)/3 |
5297 reflections | (Δ/σ)max < 0.001 |
272 parameters | Δρmax = 0.73 e Å−3 |
0 restraints | Δρmin = −0.77 e Å−3 |
C17H14Cl4N5OP3 | V = 4295.7 (2) Å3 |
Mr = 539.04 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 21.7784 (5) Å | µ = 0.80 mm−1 |
b = 7.8573 (3) Å | T = 100 K |
c = 25.1034 (5) Å | 0.38 × 0.28 × 0.08 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 5297 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3446 reflections with I > 2σ(I) |
Tmin = 0.752, Tmax = 0.939 | Rint = 0.070 |
22083 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.73 e Å−3 |
5297 reflections | Δρmin = −0.77 e Å−3 |
272 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.23736 (4) | 0.09286 (12) | 0.33683 (4) | 0.0310 (2) | |
Cl2 | 0.12400 (4) | −0.12370 (11) | 0.36507 (4) | 0.0315 (2) | |
Cl3 | 0.12654 (4) | 0.54678 (12) | 0.27056 (3) | 0.0268 (2) | |
Cl4 | 0.00013 (4) | 0.37802 (12) | 0.28234 (3) | 0.0277 (2) | |
P1 | 0.10765 (4) | 0.37524 (10) | 0.42559 (3) | 0.01570 (18) | |
P2 | 0.14946 (4) | 0.11972 (11) | 0.35899 (3) | 0.0203 (2) | |
P3 | 0.08161 (4) | 0.38196 (11) | 0.31822 (3) | 0.01836 (19) | |
O1 | 0.15089 (10) | 0.5220 (3) | 0.44668 (8) | 0.0188 (5) | |
N1 | 0.14830 (12) | 0.2097 (3) | 0.41488 (10) | 0.0195 (6) | |
N2 | 0.11206 (13) | 0.2007 (4) | 0.31138 (11) | 0.0243 (7) | |
N3 | 0.07526 (12) | 0.4618 (3) | 0.37531 (10) | 0.0183 (6) | |
N4 | 0.06038 (12) | 0.3449 (3) | 0.47683 (10) | 0.0161 (6) | |
N5 | 0.00488 (13) | 0.1705 (3) | 0.42067 (11) | 0.0220 (6) | |
C1 | 0.15699 (15) | 0.5167 (4) | 0.59375 (12) | 0.0170 (7) | |
C2 | 0.12413 (15) | 0.4649 (4) | 0.63968 (12) | 0.0197 (7) | |
H2 | 0.0861 | 0.4068 | 0.6357 | 0.024* | |
C3 | 0.14637 (16) | 0.4972 (4) | 0.68968 (13) | 0.0241 (8) | |
H3 | 0.1242 | 0.4585 | 0.7199 | 0.029* | |
C4 | 0.20163 (17) | 0.5872 (5) | 0.69686 (14) | 0.0279 (8) | |
H4 | 0.2163 | 0.6104 | 0.7317 | 0.033* | |
C5 | 0.23409 (16) | 0.6410 (4) | 0.65326 (14) | 0.0248 (8) | |
H5 | 0.2713 | 0.7021 | 0.6581 | 0.030* | |
C6 | 0.21268 (15) | 0.6066 (4) | 0.60098 (13) | 0.0202 (7) | |
C7 | 0.24658 (15) | 0.6603 (4) | 0.55567 (13) | 0.0213 (7) | |
H7 | 0.2839 | 0.7211 | 0.5606 | 0.026* | |
C8 | 0.22672 (15) | 0.6265 (4) | 0.50547 (13) | 0.0203 (7) | |
H8 | 0.2499 | 0.6612 | 0.4753 | 0.024* | |
C9 | 0.17088 (14) | 0.5387 (4) | 0.49938 (12) | 0.0167 (6) | |
C10 | 0.13573 (14) | 0.4829 (4) | 0.54063 (12) | 0.0164 (6) | |
C11 | 0.07536 (14) | 0.3917 (4) | 0.53259 (11) | 0.0147 (6) | |
H11A | 0.0758 | 0.2865 | 0.5543 | 0.018* | |
H11B | 0.0420 | 0.4651 | 0.5464 | 0.018* | |
C12 | 0.00836 (14) | 0.2393 (4) | 0.46936 (13) | 0.0184 (7) | |
C13 | −0.03482 (15) | 0.2132 (4) | 0.50891 (13) | 0.0182 (7) | |
H13 | −0.0292 | 0.2574 | 0.5438 | 0.022* | |
C14 | −0.08672 (15) | 0.1197 (4) | 0.49558 (14) | 0.0229 (7) | |
H14 | −0.1179 | 0.1002 | 0.5213 | 0.027* | |
C15 | −0.09263 (16) | 0.0552 (4) | 0.44471 (14) | 0.0244 (8) | |
H15 | −0.1287 | −0.0045 | 0.4346 | 0.029* | |
C16 | −0.04548 (17) | 0.0783 (4) | 0.40862 (14) | 0.0263 (8) | |
C17 | −0.0465 (2) | −0.0028 (6) | 0.35445 (15) | 0.0493 (12) | |
H17A | −0.0384 | 0.0838 | 0.3273 | 0.074* | |
H17B | −0.0869 | −0.0539 | 0.3481 | 0.074* | |
H17C | −0.0149 | −0.0913 | 0.3526 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0266 (5) | 0.0330 (5) | 0.0333 (5) | 0.0062 (4) | 0.0064 (4) | −0.0064 (4) |
Cl2 | 0.0411 (6) | 0.0177 (4) | 0.0357 (5) | −0.0001 (4) | 0.0043 (4) | −0.0053 (4) |
Cl3 | 0.0293 (5) | 0.0327 (5) | 0.0184 (4) | −0.0093 (4) | 0.0004 (3) | 0.0037 (3) |
Cl4 | 0.0211 (4) | 0.0374 (5) | 0.0245 (4) | −0.0040 (4) | −0.0045 (3) | 0.0029 (4) |
P1 | 0.0188 (4) | 0.0146 (4) | 0.0137 (4) | 0.0009 (4) | 0.0004 (3) | −0.0004 (3) |
P2 | 0.0245 (5) | 0.0173 (4) | 0.0192 (4) | 0.0029 (4) | 0.0014 (3) | −0.0034 (3) |
P3 | 0.0199 (4) | 0.0200 (4) | 0.0151 (4) | −0.0005 (4) | −0.0005 (3) | 0.0000 (3) |
O1 | 0.0211 (12) | 0.0192 (12) | 0.0161 (11) | −0.0042 (10) | 0.0013 (9) | 0.0005 (9) |
N1 | 0.0233 (15) | 0.0169 (14) | 0.0182 (14) | 0.0053 (12) | −0.0021 (11) | −0.0008 (11) |
N2 | 0.0315 (17) | 0.0241 (15) | 0.0174 (14) | 0.0053 (13) | −0.0010 (11) | −0.0054 (12) |
N3 | 0.0222 (15) | 0.0169 (14) | 0.0159 (13) | 0.0050 (12) | −0.0021 (11) | 0.0026 (11) |
N4 | 0.0170 (14) | 0.0163 (14) | 0.0152 (12) | −0.0027 (11) | 0.0010 (10) | −0.0001 (10) |
N5 | 0.0297 (16) | 0.0186 (14) | 0.0179 (13) | −0.0036 (13) | −0.0055 (11) | 0.0005 (11) |
C1 | 0.0191 (17) | 0.0131 (16) | 0.0189 (15) | 0.0029 (13) | 0.0002 (12) | 0.0018 (12) |
C2 | 0.0201 (17) | 0.0192 (17) | 0.0199 (16) | −0.0004 (14) | 0.0011 (13) | 0.0006 (13) |
C3 | 0.030 (2) | 0.0240 (18) | 0.0185 (16) | 0.0026 (15) | −0.0009 (13) | 0.0006 (13) |
C4 | 0.032 (2) | 0.031 (2) | 0.0212 (17) | 0.0033 (16) | −0.0050 (14) | −0.0046 (14) |
C5 | 0.0244 (18) | 0.0215 (18) | 0.0286 (18) | −0.0027 (16) | −0.0045 (14) | −0.0024 (14) |
C6 | 0.0216 (17) | 0.0159 (17) | 0.0233 (16) | 0.0003 (14) | −0.0043 (13) | 0.0003 (13) |
C7 | 0.0166 (17) | 0.0177 (18) | 0.0295 (18) | −0.0027 (13) | 0.0016 (13) | −0.0011 (14) |
C8 | 0.0221 (17) | 0.0166 (16) | 0.0223 (16) | −0.0005 (15) | 0.0031 (13) | 0.0002 (13) |
C9 | 0.0198 (17) | 0.0139 (16) | 0.0164 (15) | 0.0033 (13) | −0.0017 (12) | −0.0019 (12) |
C10 | 0.0180 (16) | 0.0122 (15) | 0.0191 (15) | 0.0029 (13) | 0.0032 (12) | 0.0007 (12) |
C11 | 0.0161 (15) | 0.0161 (15) | 0.0118 (13) | 0.0012 (13) | −0.0002 (11) | 0.0025 (12) |
C12 | 0.0187 (17) | 0.0129 (16) | 0.0235 (16) | 0.0020 (14) | −0.0044 (13) | 0.0027 (13) |
C13 | 0.0205 (17) | 0.0118 (15) | 0.0225 (16) | 0.0012 (14) | 0.0006 (13) | 0.0000 (13) |
C14 | 0.0191 (17) | 0.0146 (16) | 0.0349 (19) | 0.0023 (14) | 0.0019 (14) | 0.0056 (14) |
C15 | 0.0239 (18) | 0.0155 (16) | 0.0337 (19) | −0.0032 (15) | −0.0093 (15) | 0.0058 (14) |
C16 | 0.035 (2) | 0.0184 (18) | 0.0251 (18) | −0.0069 (16) | −0.0101 (15) | 0.0037 (14) |
C17 | 0.069 (3) | 0.054 (3) | 0.025 (2) | −0.034 (2) | −0.003 (2) | −0.0021 (19) |
Cl1—P2 | 2.0047 (12) | C6—C5 | 1.419 (4) |
Cl2—P2 | 1.9972 (13) | C6—C7 | 1.420 (5) |
Cl3—P3 | 2.0165 (12) | C7—C8 | 1.358 (4) |
Cl4—P3 | 1.9902 (12) | C7—H7 | 0.9500 |
P1—O1 | 1.580 (2) | C8—H8 | 0.9500 |
P1—N1 | 1.596 (3) | C9—C8 | 1.407 (4) |
P1—N3 | 1.598 (3) | C10—C1 | 1.436 (4) |
P1—N4 | 1.665 (3) | C10—C9 | 1.360 (4) |
P2—N1 | 1.571 (3) | C11—C10 | 1.511 (4) |
P2—N2 | 1.580 (3) | C11—H11A | 0.9900 |
P3—N2 | 1.581 (3) | C11—H11B | 0.9900 |
P3—N3 | 1.571 (3) | C12—N5 | 1.339 (4) |
O1—C9 | 1.399 (4) | C12—C13 | 1.383 (4) |
N4—C11 | 1.483 (4) | C13—C14 | 1.389 (5) |
N4—C12 | 1.416 (4) | C13—H13 | 0.9500 |
C1—C2 | 1.417 (4) | C14—C15 | 1.380 (5) |
C1—C6 | 1.415 (4) | C14—H14 | 0.9500 |
C2—C3 | 1.369 (4) | C15—C16 | 1.381 (5) |
C2—H2 | 0.9500 | C15—H15 | 0.9500 |
C3—H3 | 0.9500 | C16—N5 | 1.348 (4) |
C4—C3 | 1.407 (5) | C16—C17 | 1.502 (5) |
C4—H4 | 0.9500 | C17—H17A | 0.9800 |
C5—C4 | 1.370 (5) | C17—H17B | 0.9800 |
C5—H5 | 0.9500 | C17—H17C | 0.9800 |
O1—P1—N1 | 108.71 (14) | C1—C6—C7 | 119.4 (3) |
O1—P1—N3 | 102.53 (13) | C5—C6—C7 | 120.9 (3) |
O1—P1—N4 | 102.37 (12) | C6—C7—H7 | 119.4 |
N1—P1—N3 | 117.31 (14) | C8—C7—C6 | 121.3 (3) |
N1—P1—N4 | 110.87 (14) | C8—C7—H7 | 119.4 |
N3—P1—N4 | 113.47 (14) | C7—C8—C9 | 118.2 (3) |
Cl2—P2—Cl1 | 100.69 (5) | C7—C8—H8 | 120.9 |
N1—P2—Cl1 | 108.08 (11) | C9—C8—H8 | 120.9 |
N1—P2—Cl2 | 110.98 (11) | O1—C9—C8 | 114.7 (3) |
N1—P2—N2 | 119.09 (15) | C10—C9—O1 | 121.0 (3) |
N2—P2—Cl1 | 108.95 (12) | C10—C9—C8 | 124.2 (3) |
N2—P2—Cl2 | 107.47 (12) | C1—C10—C11 | 119.5 (3) |
Cl4—P3—Cl3 | 100.03 (5) | C9—C10—C1 | 117.8 (3) |
N2—P3—Cl3 | 108.10 (12) | C9—C10—C11 | 122.7 (3) |
N2—P3—Cl4 | 108.11 (11) | N4—C11—C10 | 115.8 (2) |
N3—P3—Cl3 | 109.12 (11) | N4—C11—H11A | 108.3 |
N3—P3—Cl4 | 109.92 (11) | N4—C11—H11B | 108.3 |
N3—P3—N2 | 119.75 (14) | C10—C11—H11A | 108.3 |
C9—O1—P1 | 124.78 (19) | C10—C11—H11B | 108.3 |
P2—N1—P1 | 121.72 (17) | H11A—C11—H11B | 107.4 |
P2—N2—P3 | 119.79 (17) | N5—C12—N4 | 113.8 (3) |
P3—N3—P1 | 120.78 (17) | N5—C12—C13 | 123.8 (3) |
C11—N4—P1 | 123.9 (2) | C13—C12—N4 | 122.4 (3) |
C12—N4—P1 | 118.4 (2) | C12—C13—C14 | 117.3 (3) |
C12—N4—C11 | 116.5 (2) | C12—C13—H13 | 121.3 |
C12—N5—C16 | 117.9 (3) | C14—C13—H13 | 121.3 |
C6—C1—C2 | 118.2 (3) | C13—C14—H14 | 120.2 |
C6—C1—C10 | 119.2 (3) | C15—C14—C13 | 119.5 (3) |
C2—C1—C10 | 122.6 (3) | C15—C14—H14 | 120.2 |
C1—C2—H2 | 119.5 | C14—C15—C16 | 119.3 (3) |
C3—C2—C1 | 120.9 (3) | C14—C15—H15 | 120.4 |
C3—C2—H2 | 119.5 | C16—C15—H15 | 120.4 |
C2—C3—C4 | 120.9 (3) | N5—C16—C15 | 121.9 (3) |
C2—C3—H3 | 119.6 | N5—C16—C17 | 116.3 (3) |
C4—C3—H3 | 119.6 | C15—C16—C17 | 121.8 (3) |
C3—C4—H4 | 120.2 | C16—C17—H17A | 109.5 |
C5—C4—C3 | 119.6 (3) | C16—C17—H17B | 109.5 |
C5—C4—H4 | 120.2 | C16—C17—H17C | 109.5 |
C4—C5—C6 | 120.7 (3) | H17A—C17—H17B | 109.5 |
C4—C5—H5 | 119.6 | H17A—C17—H17C | 109.5 |
C6—C5—H5 | 119.6 | H17B—C17—H17C | 109.5 |
C1—C6—C5 | 119.7 (3) | ||
N1—P1—O1—C9 | −81.1 (3) | C10—C1—C2—C3 | 179.0 (3) |
N3—P1—O1—C9 | 154.0 (2) | C2—C1—C6—C5 | 0.4 (5) |
N4—P1—O1—C9 | 36.2 (3) | C2—C1—C6—C7 | −179.9 (3) |
O1—P1—N1—P2 | −123.90 (19) | C10—C1—C6—C5 | 179.9 (3) |
N3—P1—N1—P2 | −8.3 (3) | C10—C1—C6—C7 | −0.4 (5) |
N4—P1—N1—P2 | 124.32 (19) | C1—C2—C3—C4 | 1.8 (5) |
O1—P1—N3—P3 | 121.15 (19) | C5—C4—C3—C2 | −0.9 (5) |
N1—P1—N3—P3 | 2.2 (3) | C6—C5—C4—C3 | −0.2 (5) |
N4—P1—N3—P3 | −129.23 (18) | C1—C6—C5—C4 | 0.5 (5) |
O1—P1—N4—C11 | −22.8 (3) | C7—C6—C5—C4 | −179.2 (3) |
O1—P1—N4—C12 | 170.1 (2) | C1—C6—C7—C8 | −0.3 (5) |
N1—P1—N4—C11 | 93.0 (3) | C5—C6—C7—C8 | 179.4 (3) |
N1—P1—N4—C12 | −74.1 (3) | C6—C7—C8—C9 | 1.0 (5) |
N3—P1—N4—C11 | −132.5 (2) | O1—C9—C8—C7 | 174.6 (3) |
N3—P1—N4—C12 | 60.4 (3) | C10—C9—C8—C7 | −1.0 (5) |
Cl1—P2—N1—P1 | 128.10 (17) | C9—C10—C1—C2 | 179.9 (3) |
Cl2—P2—N1—P1 | −122.37 (17) | C9—C10—C1—C6 | 0.4 (4) |
N2—P2—N1—P1 | 3.2 (3) | C11—C10—C1—C2 | 1.3 (5) |
Cl1—P2—N2—P3 | −116.35 (18) | C11—C10—C1—C6 | −178.2 (3) |
Cl2—P2—N2—P3 | 135.37 (17) | C1—C10—C9—O1 | −175.1 (3) |
N1—P2—N2—P3 | 8.2 (3) | C1—C10—C9—C8 | 0.3 (5) |
Cl3—P3—N2—P2 | 111.53 (18) | C11—C10—C9—O1 | 3.5 (5) |
Cl4—P3—N2—P2 | −141.03 (17) | C11—C10—C9—C8 | 178.9 (3) |
N3—P3—N2—P2 | −14.2 (3) | N4—C11—C10—C1 | −173.4 (3) |
Cl3—P3—N3—P1 | −116.34 (17) | N4—C11—C10—C9 | 8.1 (4) |
Cl4—P3—N3—P1 | 134.90 (16) | N4—C12—N5—C16 | −175.2 (3) |
N2—P3—N3—P1 | 8.9 (3) | C13—C12—N5—C16 | 4.0 (5) |
P1—O1—C9—C8 | 154.1 (2) | N4—C12—C13—C14 | 174.3 (3) |
P1—O1—C9—C10 | −30.1 (4) | N5—C12—C13—C14 | −4.7 (5) |
P1—N4—C11—C10 | 4.4 (4) | C12—C13—C14—C15 | 1.1 (5) |
C12—N4—C11—C10 | 171.6 (3) | C13—C14—C15—C16 | 2.9 (5) |
P1—N4—C12—N5 | 2.2 (4) | C14—C15—C16—N5 | −3.8 (5) |
P1—N4—C12—C13 | −177.0 (2) | C14—C15—C16—C17 | 174.1 (4) |
C11—N4—C12—N5 | −165.9 (3) | C15—C16—N5—C12 | 0.4 (5) |
C11—N4—C12—C13 | 15.0 (4) | C17—C16—N5—C12 | −177.6 (3) |
C6—C1—C2—C3 | −1.5 (5) |
Cg3 is the centroid of the C8-benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg2i | 0.95 | 2.97 | 3.746 (4) | 140 |
C7—H7···Cg3i | 0.95 | 2.82 | 3.507 (3) | 130 |
Symmetry code: (i) x, −y−1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H14Cl4N5OP3 |
Mr | 539.04 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 21.7784 (5), 7.8573 (3), 25.1034 (5) |
V (Å3) | 4295.7 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.80 |
Crystal size (mm) | 0.38 × 0.28 × 0.08 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.752, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22083, 5297, 3446 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.129, 1.01 |
No. of reflections | 5297 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.73, −0.77 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
P1—O1 | 1.580 (2) | P2—N1 | 1.571 (3) |
P1—N1 | 1.596 (3) | P2—N2 | 1.580 (3) |
P1—N3 | 1.598 (3) | P3—N2 | 1.581 (3) |
P1—N4 | 1.665 (3) | P3—N3 | 1.571 (3) |
Cg3 is the centroid of the C8-benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cg3i | 0.95 | 2.82 | 3.507 (3) | 130 |
Symmetry code: (i) x, −y−1/2, z−1/2. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. The authors gratefully acknowledge the Kırıkkale University Scientific Research Projects Coordination Unit (grant No. 2009/42), the Scientific and Technical Research Council of Turkey, TÜBİTAK (grant No. 106 T503) and the Hacettepe University Scientific Research Unit (grant No. 02 02 602 002) for financial support.
References
Allcock, H. R. (2006). Curr. Opin. Solid State Mater. Sci. 10, 231–240. Web of Science CrossRef CAS Google Scholar
Allcock, H. R. & Wood, R. M. (2006). J. Polym. Sci. Part B Polym. Phys. 44, 2358–2368. Web of Science CrossRef CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Barbera, J., Bardajı, M., Jimenez, J., Laguna, A., Martinez, M. P., Oriol, L., Serrano, J. L. & Zaragozano, I. (2005). J. Am. Chem. Soc. 127, 8994–9002. Web of Science PubMed CAS Google Scholar
Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Kılıç, A. & Shaw, R. A. (2006). Polyhedron, 25, 963–974. Google Scholar
Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A. & Shaw, R. A. (2007). Dalton Trans. pp. 2792–2801. Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bullen, G. J. (1971). J. Chem. Soc. A, pp. 1450–1453. CSD CrossRef Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Deutsch, W. F. & Shaw, R. A. (1990). Phosphorus Sulfur Silicon, 47, 119–140. CrossRef CAS Web of Science Google Scholar
Ding, J., Liang, H., Shi, W. & Shen, X. (2005). J. Appl. Polym. Sci. 97, 1776–1782. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Greish, Y. E., Bender, J. E., Lakshmi, S., Brown, P. W., Allcock, H. R. & Laurencin, C. T. (2005). Biomaterials, 26, 1–9. Web of Science CrossRef PubMed CAS Google Scholar
İlter, E. E., Asmafiliz, N., Kılıç, Z., Işıklan, M., Hökelek, T., Çaylak, N. & Şahin, E. (2007). Inorg. Chem. 46, 9931–9944. PubMed Google Scholar
İlter, E. E., Çaylak, N., Işıklan, M., Asmafiliz, N., Kılıç, Z. & Hökelek, T. (2004). J. Mol. Struct. 697, 119–129. Google Scholar
Işıklan, M., Asmafiliz, N., Özalp, E. E., İlter, E. E., Kılıç, Z., Coşut, B., Yeşilot, S., Kılıç, A., Öztürk, A., Hökelek, T., Koç, L. Y., Açık, L. & Akyüz, E. (2010). Inorg. Chem. 49, 7057–7071. Web of Science PubMed Google Scholar
Li, Z., Huang, C., Hua, J., Qin, J., Yang, Z. & Ye, C. (2004). Macromolecules, 37, 371–376. Web of Science CrossRef CAS Google Scholar
Omotowa, B. A., Phillips, B. S., Zabinski, J. S. & Shreeve, J. M. (2004). Inorg. Chem. 43, 5466–5471. Web of Science CrossRef PubMed CAS Google Scholar
Schneider, R., Köllner, C., Weber, I. & Togni, A. (1999). Chem. Commun. 23, 2415–2416. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, A., Krogman, N. R., Sethurman, S., Nair, L. S., Sturgeon, J. L., Brown, P. W., Laurencin, C. T. & Allcock, H. R. (2006). Biomacromolecules, 7, 914–918. Web of Science CrossRef PubMed CAS Google Scholar
Sournies, F., Zai, K., Vercruysse, K., Labarre, M. C. & Labarre, J. F. (1997). J. Mol. Struct. 412, 19–26. CSD CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tercan, B., Hökelek, T., Işıklan, M., İlter, E. E. & Kılıç, Z. (2004). Acta Cryst. E60, o971–o973. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Xu, G.-X., Lu, Q., Yu, B. T. & Wen, L. (2006). Solid State Ionics, 177, 305–309. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyclophosphazenes are known as inorganic heterocyclic rings containing an (N=PX2)n repeating unit. Hexachlorocyclotriphosphazene, N3P3Cl6, can also be considered as a trimer, which can be obtained by the reaction of phosphorus pentachloride and ammonium chloride. It has been observed that reactions of N3P3Cl6 with bifunctional reagents can afford spiro-, ansa-, bino- and open chain (dangling) products (Beşli et al., 2006). Reaction of hexachlorocyclotriphosphazene with N/O donor type bifunctional reagents such as aminoalcohols (Beşli et al., 2007; Sournies et al., 1997; Deutsch & Shaw, 1990), aminophenols (Işıklan et al., 2010; İlter et al., 2007) and aminonaphthols (İlter et al., 2004; Tercan et al., 2004) predominantly gave spiro derivatives. Cyclophosphazenes have found industrial applications such as in the production of ionic liquids (Omotowa et al., 2004), liquid crystals (Barbera et al., 2005), dendrimers having chiral ligands for asymmetric catalysis (Schneider et al., 1999), flame retardants (Ding et al., 2005), advanced elastomers (Allcock, 2006), rechargeable lithium batteries and polymer electrolytes (Xu et al., 2006; Allcock & Wood, 2006), non-linear optics (Li et al., 2004), biomedical mambranes (Singh et al., 2006), and biomedical materials including synthetic bones (Greish et al., 2005). The present study was undertaken to ascertain the crystal structure of the title compound.
In the title compound, (Fig. 1), the phosphazene ring (A) is in flattened-boat conformation [ϕ = 31.7 (9)° and θ = 101.8 (8)°] having total puckering amplitude QT of 0.137 (2) Å (Cremer & Pople, 1975). Atoms N1, N2 and N3 are displaced from the plane through the P atoms by 0.112 (3), -0.154 (3) and -0.029 (3) Å, respectively. As expected, the naphthalene and pyridine rings are planar, and they are oriented at a dihedral angle of 18.06 (8)°. Ring B (P1/O1/C9—C11/N4) is in twisted-boat conformation [ϕ = 147.1 (7)° and θ = 96.9 (8)°] having total puckering amplitude QT of 0.482 (7) Å.
In the phosphazene ring, the P—N bond lengths are in the range of 1.571 (3)–1.598 (3) Å [average value is 1.583 (3) Å] (Table 1), exhibiting a regular variation with distances from P1: P1—N1 ≈ P1—N3 〉 P2—N2 ≈ P3—N2 〉 P2—N1 ≈ P3—N3, and showing double-bond character. However, the exocyclic P1—N4 bond [1.665 (3) Å] is at the lower limit of the single bond length. In the phosphazene compounds, the P—N and P═N bonds are generally in the ranges of 1.628–1.691 and 1.571–1.604 Å, respectively (Allen et al., 1987). The shortening in the P1—N4 bond is probably due to electron transfer from N4 to the phosphazene ring.
In the phosphazene ring, the endocyclic N1—P1—N3 angle [117.31 (14)°] is decreased and the exocyclic O1—P1—N4 angle [102.37 (12)°] is increased, with electron donation and withdrawal by the substituents, relative to the 'standard compound' N3P3Cl6 (Bullen, 1971). In the latter compound, the corresponding angles are 118.3, 118.5, 101.2 and 101.6 °, respectively.
The P1—N1—P1, P2—N2—P3 and P1—N3—P3 angles are 121.72 (17), 119.79 (17) and 120.78 (17) °, respectively; P2—N2—P3 and P1—N3—P3 are decreased, with electron donation and withdrawal by the N3P3 ring. They can be compared with the average value reported for N3P3Cl6, viz. 121.4 (3)°.
In the crystal, molecules are stacked nearly parallel to (101) [Fig. 2]. Two weak C—H···π interactions (Table 2) and two weak π–π contacts between the pyridine rings and between the pyridine and naphthalene rings, Cg5—Cg5i and Cg5—Cg3ii [symmetry codes: (i) - x, - y, 1 - z, (ii) - x, 1 - y, 1 - z, where Cg3 and Cg5 are the centroids of the rings (C1/C6—C10) and (N5/C12—C16), respectively] may stabilize the structure, with centroid-centroid distances of 3.594 (2) and 3.961 (2) Å, respectively.