metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(tri­phenyl­phosphane-κP)silver(I)]-μ-4,4′-bi­pyridine-κ2N:N′-[(tri­phenyl­phosphane-κP)silver(I)]-di-μ-chlorido]

aDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China, and bInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 8 May 2013; accepted 21 May 2013; online 25 May 2013)

In the title coordination polymer, [Ag2Cl2(C10H8N2)(C18H15P)2]n, the AgI cation is coordinated by a 4,4′-bi­pyridine N atom, a tri­phenyl­phosphane P atom and two Cl anions in a distorted tetra­hedral geometry. The 4,4-bi­pyridine and Cl anions bridge the AgI cations, forming polymeric chains running along [21-1]. In the crystal, weak C—H⋯Cl inter­actions link the polymeric chains into a three-dimensiona supra­molecular architecture.

Related literature

For background to silver coordination polymers, see: Hung-Low & Klausmeyer (2008[Hung-Low, F. & Klausmeyer, K. K. (2008). Inorg. Chim. Acta, 361, 1298-1310.]); Mishra et al. (2007[Mishra, L., Prajapati, R., Kimura, K. & Kobayashi, S. (2007). Inorg. Chem. Commun. 10, 1040-1044.]); Pyykkö (2004[Pyykkö, P. (2004). Angew. Chem., Int. Ed. Engl. 43, 4412-4456.]); Yam & Lo (1999[Yam, V. W. W. & Lo, K. K. W. (1999). Chem. Soc. Rev. 28, 323-334.]); Zaworotko (1994[Zaworotko, M. J. (1994). Chem. Soc. Rev. 23, 283-288.]). For related structures, see: Lu et al. (1997[Lu, J., Crisci, G., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 796-801.]); Sampanthar & Vittal (2000[Sampanthar, J. T. & Vittal, J. J. (2000). Cryst. Eng. 3, 117-133.]); Sun et al. (2009[Sun, D., Luo, G.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2009). Acta Cryst. C65, m440-m442.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2Cl2(C10H8N2)(C18H15P)2]

  • Mr = 967.36

  • Triclinic, [P \overline 1]

  • a = 9.1042 (16) Å

  • b = 13.887 (2) Å

  • c = 17.826 (3) Å

  • α = 70.753 (3)°

  • β = 79.332 (4)°

  • γ = 75.190 (3)°

  • V = 2044.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 296 K

  • 0.23 × 0.17 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 0.850

  • 14039 measured reflections

  • 9594 independent reflections

  • 6338 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.01

  • 9594 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—P1 2.4069 (9)
Ag1—N1 2.430 (3)
Ag1—Cl1 2.5709 (10)
Ag1—Cl1i 2.6639 (10)
Ag2—P2 2.4162 (9)
Ag2—N2 2.386 (3)
Ag2—Cl2 2.6111 (9)
Ag2—Cl2ii 2.6809 (10)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x-1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl2iii 0.93 2.82 3.669 (4) 153
Symmetry code: (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been an extensive interest in d10 metal complexes with phosphane ligands due to their potential application in luminescence (Yam & Lo, 1999), for this important reason, the study of d10 "closed-shell" interactions that exist between the monovalent elements of group 11 has been active for many years (Pyykko, 2004). Actually, these metal-metal interactions are typically associated with the ligand-bridged, hydrogen-bonded and pi-pi stacked effects, which may result in formation of supramolecular assemblies (Mishra et al., 2007; Zaworotko, 1994). Metal coordination polymers with linear spacer ligands have been exploited by many research workers to construct a variety of network structures. Specifically silver(I) ion has been extensively used in inorganic crystal engineering using self-assembly of tailored building-blocks (Hung-Low & Klausmeyer, 2008). In recent decade, self-assembly of silver(I) salts with different aliphatic dinitrile ligands such as 4,4'-bipyridyl (4,4'-bpy) have also been successfully made resulting into novel coordination polymers (Sampanthar & Vittal, 2000). With this in mind, we have chosen a simple AgCl salt and a linear spacer 4,4'-bpy and allowed them to react separately with PPh3 as an ancillary ligand. The results of this work are reported in this paper.

The title coordination polymer crystallizes in the triclinic centrosymmetric P-1 space group with Z = 2 as it contains one half molecule in an asymmetric unit. A view of the structure of building block in the title polymeric complex is depicted in Fig. 1. The structure consists of {(µ-Cl)(AgPPh3)}2 units bridged by 4,4'-bipy ligands to form a zig-zig infinite chain, as shown in Fig. 2. This structure is isostructural to [(µ-4,4'-bipy)(µ-I)2(AgPPh3)2]n (Sampanthar & Vittal, 2000) and [(µ-4,4'-bipy)(µ-Cl)2(CuPPh3)2]n (Lu et al., 1997). The coordination polymer possesses to the crystallographic inversion center through the middle of Ag2Cl2 squares. Two pyridine rings in the 4,4'-bipy are non-planar with dihedral angle of 22.4 (3)°. The average Ag···Ag distance in the Ag2Cl2 ring is 3.392 (1) Å, which is slightly longer than that of 3.139 (1) Å in [(µ-4,4'-bipy)(µ-I)2(AgPPh3)2]n (Sampanthar & Vittal, 2000). Each silver(I) ion in the title coordination polymer is coordinated by one nitrogen atom of 4,4'-bipy ligand, one phosphorous atom of PPh3 ligand and two chloride atoms, leading to the distorted tetrahedron with the angles around silver varying from 94.24 (7)° to 130.08 (3)°. Two silver(I) ions are separated by 4,4'-bipy groups at a distances of 10.957 (1) Å along with axial direction. The average Ag—N and Ag—P bond lengths are 2.408 (3) Å and 2.4116 (9) Å, respectively, which almost similar to the values reported in the related other complexes (Sampanthar & Vittal, 2000, Sun et al., 2009). The Ag—Cl—Ag angles of 97.37 (3)° and 102.05 (2)° in the title coordination polymer are obviously larger than the Ag—I—Ag angle of 66.27 (1)° in [(µ-4,4'-bipy)(µ-I)2(AgPPh3)2]n (Sampanthar & Vittal, 2000).

Related literature top

For background to silver coordination polymers, see: Hung-Low & Klausmeyer (2008); Mishra et al. (2007); Pyykko (2004); Yam & Lo (1999); Zaworotko (1994). For related structures, see: Lu et al. (1997); Sampanthar & Vittal (2000); Sun et al. (2009).

Experimental top

AgCl (0.080 g, 0.56 mmol) and PPh3 (0.162 g, 0.62 mmol) were mixed together and stirred in a mixture of CH2Cl2 (15 mL) and MeCN (5 mL) for 45 min to get a clear solution. An MeCN solution (5 mL) of 4,4'-bipyridyl (0.043 g, 0.28 mmol) was added slowly to the above solution with stirring. The clear solution was filtered and left for slow evaporation. Colorless crystals were collected by decanting the solvent and washed with MeOH (5 mL) and Et2O (5 x 2 mL) then air-dried. Yield: 157 mg, 58 %. Analysis for C46H38N2Cl2P2Ag2: calcd C 57.11, H 3.96, N 2.90 %; found C 57.07, H 4.03, N 2.88 %.

Refinement top

H atoms were placed in geometrically idealized positions and refined in riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title coordination polymer, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view the [(µ-4,4'-bipy)(µ-Cl)2(AgPPh3)2]n chain, four unit cells along as drawn by ORTEP with 50% probability level.
catena-Poly[[(triphenylphosphane-κP)silver(I)]-µ-4,4'-bipyridine-κ2N:N'-[(triphenylphosphane-κP)silver(I)]-di-µ-chlorido] top
Crystal data top
[Ag2Cl2(C10H8N2)(C18H15P)2]Z = 2
Mr = 967.36F(000) = 972
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1042 (16) ÅCell parameters from 4454 reflections
b = 13.887 (2) Åθ = 2.3–28.9°
c = 17.826 (3) ŵ = 1.20 mm1
α = 70.753 (3)°T = 296 K
β = 79.332 (4)°Block, light yellow
γ = 75.190 (3)°0.23 × 0.17 × 0.14 mm
V = 2044.5 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9594 independent reflections
Radiation source: fine-focus sealed tube6338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 29.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1012
Tmin = 0.770, Tmax = 0.850k = 1219
14039 measured reflectionsl = 1523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0251P)2 + 1.3705P]
where P = (Fo2 + 2Fc2)/3
9594 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ag2Cl2(C10H8N2)(C18H15P)2]γ = 75.190 (3)°
Mr = 967.36V = 2044.5 (6) Å3
Triclinic, P1Z = 2
a = 9.1042 (16) ÅMo Kα radiation
b = 13.887 (2) ŵ = 1.20 mm1
c = 17.826 (3) ÅT = 296 K
α = 70.753 (3)°0.23 × 0.17 × 0.14 mm
β = 79.332 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6338 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.850Rint = 0.018
14039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
9594 reflectionsΔρmin = 0.44 e Å3
487 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.34094 (3)1.07363 (2)0.539814 (18)0.05839 (9)
Ag20.34478 (3)0.431910 (18)0.960631 (16)0.05064 (8)
Cl10.59763 (10)0.97839 (8)0.59551 (5)0.0607 (2)
Cl20.60355 (9)0.52295 (6)0.90046 (5)0.04829 (19)
P10.20766 (10)1.25225 (6)0.52007 (5)0.0454 (2)
P20.21810 (8)0.25279 (6)0.97259 (5)0.03729 (17)
N10.1967 (3)0.9471 (2)0.62893 (17)0.0524 (7)
N20.2206 (3)0.5717 (2)0.88543 (16)0.0469 (6)
C10.0440 (4)0.9661 (3)0.6366 (2)0.0638 (10)
H10.00761.03050.60710.077*
C20.0412 (4)0.8954 (3)0.6859 (2)0.0558 (9)
H20.14730.91270.68860.067*
C30.0305 (3)0.7994 (2)0.73101 (18)0.0416 (7)
C40.1897 (4)0.7796 (3)0.7233 (2)0.0559 (9)
H40.24440.71610.75240.067*
C50.2660 (4)0.8549 (3)0.6722 (2)0.0608 (10)
H50.37230.83970.66800.073*
C60.2807 (4)0.6486 (3)0.8242 (2)0.0490 (8)
H60.37980.65210.81550.059*
C70.2039 (4)0.7233 (2)0.77318 (19)0.0468 (8)
H70.25100.77510.73130.056*
C80.0565 (3)0.7208 (2)0.78454 (18)0.0391 (7)
C90.0055 (4)0.6417 (3)0.8484 (2)0.0530 (9)
H90.10400.63650.85890.064*
C100.0804 (4)0.5706 (3)0.8963 (2)0.0555 (9)
H100.03660.51840.93900.067*
C110.2506 (4)1.3467 (3)0.42354 (19)0.0480 (8)
C120.4036 (4)1.3413 (3)0.3919 (2)0.0631 (10)
H120.47981.28910.41810.076*
C130.4405 (5)1.4153 (4)0.3205 (2)0.0745 (12)
H130.54231.41330.29950.089*
C140.3284 (7)1.4907 (3)0.2812 (3)0.0820 (14)
H140.35441.53960.23360.098*
C150.1790 (6)1.4946 (3)0.3112 (2)0.0799 (13)
H150.10291.54510.28350.096*
C160.1408 (5)1.4234 (3)0.3828 (2)0.0637 (10)
H160.03871.42750.40370.076*
C210.2366 (3)1.3116 (3)0.5928 (2)0.0460 (7)
C220.2340 (5)1.2515 (3)0.6731 (2)0.0629 (10)
H220.22161.18300.68770.075*
C230.2498 (5)1.2930 (4)0.7306 (2)0.0761 (12)
H230.24471.25300.78400.091*
C240.2731 (5)1.3926 (4)0.7100 (3)0.0721 (11)
H240.28491.42000.74910.087*
C250.2789 (5)1.4516 (3)0.6310 (3)0.0729 (11)
H250.29511.51910.61650.087*
C260.2608 (4)1.4113 (3)0.5732 (2)0.0577 (9)
H260.26491.45200.52000.069*
C310.0001 (4)1.2669 (2)0.52947 (19)0.0445 (7)
C320.0577 (4)1.2105 (3)0.4944 (2)0.0605 (9)
H320.00881.16960.46510.073*
C330.2136 (5)1.2147 (4)0.5027 (3)0.0779 (12)
H330.25151.17560.48030.093*
C340.3120 (5)1.2778 (4)0.5448 (2)0.0697 (11)
H340.41671.28100.55070.084*
C350.2569 (4)1.3350 (3)0.5774 (2)0.0602 (9)
H350.32401.37830.60460.072*
C360.1008 (4)1.3293 (3)0.5703 (2)0.0510 (8)
H360.06401.36820.59350.061*
C410.0208 (3)0.2281 (2)0.99274 (19)0.0405 (7)
C420.0690 (4)0.2968 (3)0.9441 (2)0.0515 (8)
H420.02940.35010.90070.062*
C430.2169 (4)0.2874 (3)0.9591 (3)0.0659 (11)
H430.27560.33440.92620.079*
C440.2764 (4)0.2080 (3)1.0228 (3)0.0658 (11)
H440.37540.20151.03340.079*
C450.1892 (4)0.1383 (3)1.0709 (2)0.0639 (10)
H450.23000.08391.11340.077*
C460.0410 (4)0.1492 (3)1.0561 (2)0.0509 (8)
H460.01770.10251.08940.061*
C510.2043 (3)0.2094 (2)0.88489 (18)0.0390 (7)
C520.0742 (4)0.1461 (3)0.8581 (2)0.0512 (8)
H520.01400.12700.88340.061*
C530.0759 (4)0.1116 (3)0.7940 (2)0.0590 (9)
H530.01080.06850.77690.071*
C540.2042 (5)0.1402 (3)0.7555 (2)0.0654 (10)
H540.20370.11740.71190.078*
C550.3335 (5)0.2025 (3)0.7812 (2)0.0658 (10)
H550.42120.22070.75560.079*
C560.3337 (4)0.2382 (3)0.8448 (2)0.0524 (8)
H560.42090.28170.86110.063*
C610.3002 (3)0.1526 (2)1.05223 (18)0.0392 (7)
C620.3049 (4)0.0577 (3)1.0440 (2)0.0542 (9)
H620.26480.04240.99630.065*
C630.3694 (5)0.0147 (3)1.1068 (2)0.0696 (11)
H630.37000.07891.10150.084*
C640.4319 (4)0.0076 (3)1.1765 (2)0.0632 (10)
H640.47680.04061.21800.076*
C650.4280 (5)0.1006 (3)1.1847 (2)0.0688 (11)
H650.46920.11531.23250.083*
C660.3637 (4)0.1737 (3)1.1232 (2)0.0551 (9)
H660.36310.23741.12960.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04979 (16)0.03807 (14)0.0748 (2)0.00268 (11)0.00765 (13)0.01311 (13)
Ag20.04678 (15)0.03340 (13)0.06182 (17)0.00289 (10)0.00090 (12)0.00901 (11)
Cl10.0483 (5)0.0784 (6)0.0510 (5)0.0104 (4)0.0062 (4)0.0153 (4)
Cl20.0403 (4)0.0520 (5)0.0485 (5)0.0089 (3)0.0058 (3)0.0095 (4)
P10.0429 (4)0.0348 (4)0.0514 (5)0.0040 (3)0.0009 (4)0.0100 (4)
P20.0322 (4)0.0296 (4)0.0454 (5)0.0046 (3)0.0019 (3)0.0078 (3)
N10.0519 (17)0.0442 (16)0.0566 (18)0.0153 (13)0.0060 (14)0.0115 (13)
N20.0563 (17)0.0388 (14)0.0472 (16)0.0181 (12)0.0025 (13)0.0104 (12)
C10.053 (2)0.0410 (19)0.077 (3)0.0055 (16)0.0042 (19)0.0007 (17)
C20.0427 (18)0.0443 (19)0.068 (2)0.0069 (15)0.0014 (16)0.0042 (16)
C30.0412 (16)0.0386 (16)0.0449 (18)0.0114 (13)0.0023 (14)0.0113 (13)
C40.0414 (18)0.049 (2)0.068 (2)0.0087 (15)0.0081 (17)0.0046 (17)
C50.0434 (19)0.067 (2)0.070 (2)0.0206 (18)0.0038 (17)0.016 (2)
C60.0452 (18)0.0458 (18)0.056 (2)0.0146 (15)0.0048 (16)0.0110 (16)
C70.0448 (18)0.0420 (17)0.0492 (19)0.0092 (14)0.0151 (15)0.0024 (14)
C80.0414 (16)0.0339 (15)0.0425 (17)0.0083 (12)0.0048 (13)0.0115 (13)
C90.0489 (19)0.0449 (19)0.062 (2)0.0109 (15)0.0210 (17)0.0037 (16)
C100.068 (2)0.0412 (18)0.053 (2)0.0122 (17)0.0211 (18)0.0005 (15)
C110.0536 (19)0.0456 (18)0.0419 (18)0.0091 (15)0.0022 (15)0.0141 (14)
C120.058 (2)0.078 (3)0.055 (2)0.020 (2)0.0035 (18)0.022 (2)
C130.079 (3)0.093 (3)0.063 (3)0.045 (3)0.022 (2)0.034 (2)
C140.132 (4)0.056 (3)0.056 (3)0.036 (3)0.020 (3)0.018 (2)
C150.111 (4)0.051 (2)0.053 (2)0.002 (2)0.008 (2)0.0067 (18)
C160.071 (2)0.049 (2)0.053 (2)0.0042 (18)0.0074 (18)0.0124 (17)
C210.0366 (16)0.0446 (18)0.052 (2)0.0065 (13)0.0017 (14)0.0108 (15)
C220.076 (3)0.054 (2)0.053 (2)0.0228 (19)0.0103 (19)0.0001 (18)
C230.091 (3)0.086 (3)0.048 (2)0.024 (3)0.014 (2)0.007 (2)
C240.080 (3)0.080 (3)0.066 (3)0.019 (2)0.020 (2)0.026 (2)
C250.086 (3)0.060 (2)0.081 (3)0.020 (2)0.022 (2)0.020 (2)
C260.068 (2)0.0422 (19)0.057 (2)0.0104 (17)0.0109 (18)0.0065 (16)
C310.0426 (17)0.0395 (17)0.0458 (18)0.0078 (13)0.0025 (14)0.0072 (14)
C320.064 (2)0.065 (2)0.057 (2)0.0107 (19)0.0088 (19)0.0252 (19)
C330.075 (3)0.089 (3)0.081 (3)0.021 (3)0.033 (2)0.024 (3)
C340.049 (2)0.088 (3)0.065 (3)0.017 (2)0.0140 (19)0.007 (2)
C350.0456 (19)0.065 (2)0.059 (2)0.0056 (17)0.0021 (17)0.0114 (18)
C360.0433 (18)0.0493 (19)0.059 (2)0.0103 (15)0.0003 (15)0.0168 (16)
C410.0366 (15)0.0364 (15)0.0501 (19)0.0047 (12)0.0034 (13)0.0181 (14)
C420.0432 (18)0.0450 (18)0.064 (2)0.0134 (14)0.0007 (16)0.0131 (16)
C430.048 (2)0.071 (3)0.089 (3)0.0266 (19)0.009 (2)0.035 (2)
C440.0371 (18)0.085 (3)0.089 (3)0.0070 (19)0.0128 (19)0.046 (3)
C450.050 (2)0.068 (3)0.070 (3)0.0022 (18)0.0215 (19)0.019 (2)
C460.0411 (17)0.0444 (18)0.065 (2)0.0060 (14)0.0097 (16)0.0128 (16)
C510.0378 (15)0.0311 (14)0.0425 (17)0.0092 (12)0.0017 (13)0.0035 (12)
C520.0418 (17)0.051 (2)0.057 (2)0.0059 (15)0.0044 (15)0.0155 (16)
C530.067 (2)0.052 (2)0.056 (2)0.0120 (18)0.0065 (19)0.0201 (17)
C540.092 (3)0.060 (2)0.047 (2)0.024 (2)0.004 (2)0.0149 (18)
C550.069 (3)0.068 (3)0.061 (2)0.018 (2)0.024 (2)0.008 (2)
C560.0443 (18)0.052 (2)0.053 (2)0.0082 (15)0.0091 (16)0.0051 (16)
C610.0295 (14)0.0334 (15)0.0488 (18)0.0060 (11)0.0051 (13)0.0046 (13)
C620.063 (2)0.0381 (17)0.055 (2)0.0130 (15)0.0066 (17)0.0100 (15)
C630.081 (3)0.0387 (19)0.079 (3)0.0216 (19)0.008 (2)0.0071 (18)
C640.058 (2)0.054 (2)0.061 (2)0.0197 (18)0.0008 (18)0.0072 (18)
C650.072 (3)0.083 (3)0.049 (2)0.030 (2)0.0130 (19)0.017 (2)
C660.061 (2)0.054 (2)0.052 (2)0.0216 (17)0.0071 (17)0.0181 (16)
Geometric parameters (Å, º) top
Ag1—P12.4069 (9)C22—H220.9300
Ag1—N12.430 (3)C23—C241.371 (6)
Ag1—Cl12.5709 (10)C23—H230.9300
Ag1—Cl1i2.6639 (10)C24—C251.376 (6)
Ag2—P22.4162 (9)C24—H240.9300
Ag2—N22.386 (3)C25—C261.376 (5)
Ag2—Cl22.6111 (9)C25—H250.9300
Ag2—Cl2ii2.6809 (10)C26—H260.9300
Ag2—Ag2ii3.3292 (6)C31—C361.373 (4)
Cl1—Ag1i2.6639 (11)C31—C321.392 (5)
Cl2—Ag2ii2.6809 (10)C32—C331.387 (5)
P1—C311.830 (3)C32—H320.9300
P1—C111.833 (3)C33—C341.384 (6)
P1—C211.836 (4)C33—H330.9300
P2—C411.821 (3)C34—C351.355 (6)
P2—C511.825 (3)C34—H340.9300
P2—C611.829 (3)C35—C361.388 (5)
N1—C51.322 (5)C35—H350.9300
N1—C11.336 (4)C36—H360.9300
N2—C101.321 (4)C41—C461.378 (4)
N2—C61.336 (4)C41—C421.387 (4)
C1—C21.381 (5)C42—C431.386 (5)
C1—H10.9300C42—H420.9300
C2—C31.375 (4)C43—C441.378 (6)
C2—H20.9300C43—H430.9300
C3—C41.394 (4)C44—C451.376 (5)
C3—C81.485 (4)C44—H440.9300
C4—C51.384 (5)C45—C461.384 (5)
C4—H40.9300C45—H450.9300
C5—H50.9300C46—H460.9300
C6—C71.381 (4)C51—C561.393 (4)
C6—H60.9300C51—C521.394 (4)
C7—C81.383 (4)C52—C531.380 (5)
C7—H70.9300C52—H520.9300
C8—C91.385 (4)C53—C541.368 (5)
C9—C101.380 (5)C53—H530.9300
C9—H90.9300C54—C551.374 (6)
C10—H100.9300C54—H540.9300
C11—C161.370 (5)C55—C561.379 (5)
C11—C121.395 (5)C55—H550.9300
C12—C131.396 (5)C56—H560.9300
C12—H120.9300C61—C661.382 (4)
C13—C141.364 (6)C61—C621.385 (4)
C13—H130.9300C62—C631.388 (5)
C14—C151.361 (6)C62—H620.9300
C14—H140.9300C63—C641.364 (5)
C15—C161.382 (5)C63—H630.9300
C15—H150.9300C64—C651.357 (6)
C16—H160.9300C64—H640.9300
C21—C261.377 (5)C65—C661.381 (5)
C21—C221.399 (5)C65—H650.9300
C22—C231.374 (6)C66—H660.9300
P1—Ag1—N1114.03 (7)C23—C22—C21120.4 (4)
P1—Ag1—Cl1130.08 (3)C23—C22—H22119.8
N1—Ag1—Cl195.47 (8)C21—C22—H22119.8
P1—Ag1—Cl1i112.23 (3)C24—C23—C22120.7 (4)
N1—Ag1—Cl1i103.72 (7)C24—C23—H23119.7
Cl1—Ag1—Cl1i97.37 (3)C22—C23—H23119.7
N2—Ag2—P2120.95 (7)C23—C24—C25119.3 (4)
N2—Ag2—Cl294.24 (7)C23—C24—H24120.3
P2—Ag2—Cl2124.50 (3)C25—C24—H24120.3
N2—Ag2—Cl2ii96.68 (7)C26—C25—C24120.4 (4)
P2—Ag2—Cl2ii113.34 (3)C26—C25—H25119.8
Cl2—Ag2—Cl2ii102.05 (2)C24—C25—H25119.8
N2—Ag2—Ag2ii98.72 (7)C25—C26—C21121.1 (4)
P2—Ag2—Ag2ii139.76 (2)C25—C26—H26119.5
Cl2—Ag2—Ag2ii51.96 (2)C21—C26—H26119.5
Cl2ii—Ag2—Ag2ii50.090 (19)C36—C31—C32118.6 (3)
Ag1—Cl1—Ag1i82.63 (3)C36—C31—P1123.4 (3)
Ag2—Cl2—Ag2ii77.95 (2)C32—C31—P1118.1 (3)
C31—P1—C11103.84 (15)C33—C32—C31120.7 (4)
C31—P1—C21103.95 (15)C33—C32—H32119.7
C11—P1—C21103.26 (15)C31—C32—H32119.7
C31—P1—Ag1112.39 (11)C34—C33—C32119.3 (4)
C11—P1—Ag1117.37 (11)C34—C33—H33120.4
C21—P1—Ag1114.55 (11)C32—C33—H33120.4
C41—P2—C51104.34 (14)C35—C34—C33120.4 (4)
C41—P2—C61104.46 (14)C35—C34—H34119.8
C51—P2—C61102.45 (14)C33—C34—H34119.8
C41—P2—Ag2111.14 (10)C34—C35—C36120.3 (4)
C51—P2—Ag2116.42 (10)C34—C35—H35119.8
C61—P2—Ag2116.60 (10)C36—C35—H35119.8
C5—N1—C1116.4 (3)C31—C36—C35120.7 (3)
C5—N1—Ag1121.4 (2)C31—C36—H36119.6
C1—N1—Ag1122.2 (2)C35—C36—H36119.6
C10—N2—C6116.2 (3)C46—C41—C42118.4 (3)
C10—N2—Ag2121.3 (2)C46—C41—P2123.8 (2)
C6—N2—Ag2122.1 (2)C42—C41—P2117.7 (2)
N1—C1—C2123.6 (3)C43—C42—C41121.0 (3)
N1—C1—H1118.2C43—C42—H42119.5
C2—C1—H1118.2C41—C42—H42119.5
C3—C2—C1120.1 (3)C44—C43—C42119.6 (4)
C3—C2—H2119.9C44—C43—H43120.2
C1—C2—H2119.9C42—C43—H43120.2
C2—C3—C4116.3 (3)C45—C44—C43119.9 (3)
C2—C3—C8122.0 (3)C45—C44—H44120.0
C4—C3—C8121.7 (3)C43—C44—H44120.0
C5—C4—C3119.7 (3)C44—C45—C46120.0 (4)
C5—C4—H4120.1C44—C45—H45120.0
C3—C4—H4120.1C46—C45—H45120.0
N1—C5—C4123.8 (3)C41—C46—C45121.0 (3)
N1—C5—H5118.1C41—C46—H46119.5
C4—C5—H5118.1C45—C46—H46119.5
N2—C6—C7123.6 (3)C56—C51—C52118.6 (3)
N2—C6—H6118.2C56—C51—P2117.7 (2)
C7—C6—H6118.2C52—C51—P2123.7 (2)
C6—C7—C8119.7 (3)C53—C52—C51120.1 (3)
C6—C7—H7120.1C53—C52—H52120.0
C8—C7—H7120.1C51—C52—H52120.0
C7—C8—C9116.7 (3)C54—C53—C52120.6 (4)
C7—C8—C3121.6 (3)C54—C53—H53119.7
C9—C8—C3121.7 (3)C52—C53—H53119.7
C10—C9—C8119.4 (3)C53—C54—C55120.1 (4)
C10—C9—H9120.3C53—C54—H54120.0
C8—C9—H9120.3C55—C54—H54120.0
N2—C10—C9124.4 (3)C54—C55—C56120.2 (4)
N2—C10—H10117.8C54—C55—H55119.9
C9—C10—H10117.8C56—C55—H55119.9
C16—C11—C12119.1 (3)C55—C56—C51120.5 (3)
C16—C11—P1123.2 (3)C55—C56—H56119.8
C12—C11—P1117.7 (3)C51—C56—H56119.8
C11—C12—C13119.0 (4)C66—C61—C62118.5 (3)
C11—C12—H12120.5C66—C61—P2118.3 (2)
C13—C12—H12120.5C62—C61—P2123.1 (3)
C14—C13—C12120.5 (4)C61—C62—C63120.1 (3)
C14—C13—H13119.7C61—C62—H62120.0
C12—C13—H13119.7C63—C62—H62120.0
C15—C14—C13120.5 (4)C64—C63—C62120.6 (4)
C15—C14—H14119.8C64—C63—H63119.7
C13—C14—H14119.8C62—C63—H63119.7
C14—C15—C16119.7 (4)C65—C64—C63119.6 (3)
C14—C15—H15120.1C65—C64—H64120.2
C16—C15—H15120.1C63—C64—H64120.2
C11—C16—C15121.2 (4)C64—C65—C66121.0 (4)
C11—C16—H16119.4C64—C65—H65119.5
C15—C16—H16119.4C66—C65—H65119.5
C26—C21—C22118.1 (3)C65—C66—C61120.3 (3)
C26—C21—P1124.1 (3)C65—C66—H66119.9
C22—C21—P1117.8 (3)C61—C66—H66119.9
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl2iii0.932.823.669 (4)153
Symmetry code: (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag2Cl2(C10H8N2)(C18H15P)2]
Mr967.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.1042 (16), 13.887 (2), 17.826 (3)
α, β, γ (°)70.753 (3), 79.332 (4), 75.190 (3)
V3)2044.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.23 × 0.17 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.770, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
14039, 9594, 6338
Rint0.018
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.01
No. of reflections9594
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.44

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—P12.4069 (9)Ag2—P22.4162 (9)
Ag1—N12.430 (3)Ag2—N22.386 (3)
Ag1—Cl12.5709 (10)Ag2—Cl22.6111 (9)
Ag1—Cl1i2.6639 (10)Ag2—Cl2ii2.6809 (10)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl2iii0.932.823.669 (4)153
Symmetry code: (iii) x+1, y, z.
 

Acknowledgements

This project was supported by the Natural Science Foundation of China (90922008).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHung-Low, F. & Klausmeyer, K. K. (2008). Inorg. Chim. Acta, 361, 1298–1310.  CAS Google Scholar
First citationLu, J., Crisci, G., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem. 36, 796–801.  Google Scholar
First citationMishra, L., Prajapati, R., Kimura, K. & Kobayashi, S. (2007). Inorg. Chem. Commun. 10, 1040–1044.  Web of Science CrossRef CAS Google Scholar
First citationPyykkö, P. (2004). Angew. Chem., Int. Ed. Engl. 43, 4412–4456.  Google Scholar
First citationSampanthar, J. T. & Vittal, J. J. (2000). Cryst. Eng. 3, 117–133.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Luo, G.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2009). Acta Cryst. C65, m440–m442.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYam, V. W. W. & Lo, K. K. W. (1999). Chem. Soc. Rev. 28, 323–334.  Web of Science CrossRef CAS Google Scholar
First citationZaworotko, M. J. (1994). Chem. Soc. Rev. 23, 283–288.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds