organic compounds
Methyl 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetate
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, 25000 Constantine, Algeria, cDépartement des Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria, and dCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the crystal of the title compound, C7H9N3O4, molecules are linked by weak C—H⋯O hydrogen bonds into chains along the a-axis direction. The dihedral angle between the ring and the nitro group is 3.03 (6), while that between the ring and the acetate group is 85.01 (3)°.
Related literature
For the synthesis of the title compound, see: Pavlik et al. (2011); Kasai et al. (2001). For the structural identification of nitroimidazoles, see: Larina & Lopyrev (2009). For biological activities of this class of compounds, see: Gaonkar et al. (2009); Olender et al. (2009). For our previous work on imidazole derivatives, see: Chelghoum et al. (2011); Bahnous et al. (2012).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (local program).
Supporting information
10.1107/S1600536813011914/yk2093sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813011914/yk2093Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813011914/yk2093Isup3.cml
Methyl 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetate, (I), was obtained from reaction of methyl bromoacetate and 4(5)-nitro-2-methylimidazole in presence of potassium carbonate in DMF. Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform–carbon tetrachloride solution.
All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all the H atoms were first obtained from the difference electron-density map. However, the H atoms were situated into idealized positions and the H atoms have been refined within the riding-atom approximation. The applied constraints were as follows: Caryl—Haryl = 0.95 Å, Cmethylene—Hmethylene = 0.99 Å and Cmethyl—Hmethyl = 0.98 Å. The idealized methyl group was allowed to rotate about the C—C bond during the
by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Haryl or Hmethylene) = 1.2Ueq(Caryl or Cmethylene).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (local program).C7H9N3O4 | F(000) = 416 |
Mr = 199.17 | Dx = 1.509 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3719 reflections |
a = 4.6619 (2) Å | θ = 3.8–27.5° |
b = 17.3256 (7) Å | µ = 0.13 mm−1 |
c = 11.1490 (4) Å | T = 150 K |
β = 103.204 (2)° | Prism, colourless |
V = 876.70 (6) Å3 | 0.35 × 0.3 × 0.12 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 1753 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −6→5 |
Tmin = 0.937, Tmax = 0.985 | k = −22→22 |
7665 measured reflections | l = −14→13 |
1991 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0409P)2 + 0.2051P] where P = (Fo2 + 2Fc2)/3 |
1991 reflections | (Δ/σ)max = 0.002 |
129 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C7H9N3O4 | V = 876.70 (6) Å3 |
Mr = 199.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.6619 (2) Å | µ = 0.13 mm−1 |
b = 17.3256 (7) Å | T = 150 K |
c = 11.1490 (4) Å | 0.35 × 0.3 × 0.12 mm |
β = 103.204 (2)° |
Bruker APEXII CCD diffractometer | 1991 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1753 reflections with I > 2σ(I) |
Tmin = 0.937, Tmax = 0.985 | Rint = 0.030 |
7665 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.26 e Å−3 |
1991 reflections | Δρmin = −0.21 e Å−3 |
129 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6041 (3) | −0.02718 (8) | 0.85178 (13) | 0.0358 (3) | |
H1A | 0.5668 | −0.0689 | 0.7909 | 0.054* | |
H1B | 0.5828 | −0.0469 | 0.9317 | 0.054* | |
H1C | 0.8046 | −0.0075 | 0.8596 | 0.054* | |
O2 | 0.39315 (19) | 0.03498 (5) | 0.81191 (8) | 0.0303 (2) | |
C3 | 0.4191 (2) | 0.06977 (6) | 0.70857 (10) | 0.0215 (2) | |
O4 | 0.58536 (18) | 0.05011 (5) | 0.64611 (8) | 0.0268 (2) | |
C5 | 0.2106 (3) | 0.13799 (6) | 0.67831 (10) | 0.0227 (2) | |
H5A | 0.0069 | 0.1194 | 0.6459 | 0.027* | |
H5B | 0.2144 | 0.1684 | 0.7538 | 0.027* | |
N6 | 0.3015 (2) | 0.18625 (5) | 0.58664 (8) | 0.0199 (2) | |
C7 | 0.2472 (2) | 0.17282 (6) | 0.46184 (10) | 0.0201 (2) | |
N8 | 0.4024 (2) | 0.21960 (5) | 0.40814 (8) | 0.0215 (2) | |
C9 | 0.5615 (2) | 0.26266 (6) | 0.50325 (10) | 0.0199 (2) | |
C10 | 0.5056 (2) | 0.24382 (6) | 0.61419 (10) | 0.0211 (2) | |
H10 | 0.5892 | 0.2657 | 0.6925 | 0.025* | |
C11 | 0.0408 (3) | 0.11215 (7) | 0.39924 (11) | 0.0277 (3) | |
H11A | −0.0054 | 0.1211 | 0.3101 | 0.042* | |
H11B | −0.1411 | 0.1141 | 0.4292 | 0.042* | |
H11C | 0.1327 | 0.0613 | 0.4172 | 0.042* | |
N12 | 0.7683 (2) | 0.31975 (5) | 0.48349 (9) | 0.0228 (2) | |
O13 | 0.80836 (19) | 0.32840 (5) | 0.37915 (8) | 0.0315 (2) | |
O14 | 0.8988 (2) | 0.35710 (5) | 0.57330 (8) | 0.0361 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0406 (7) | 0.0303 (7) | 0.0373 (7) | 0.0065 (6) | 0.0110 (6) | 0.0126 (6) |
O2 | 0.0335 (5) | 0.0293 (5) | 0.0315 (5) | 0.0039 (4) | 0.0143 (4) | 0.0106 (4) |
C3 | 0.0218 (5) | 0.0203 (5) | 0.0228 (5) | −0.0043 (4) | 0.0061 (4) | 0.0001 (4) |
O4 | 0.0290 (4) | 0.0248 (4) | 0.0293 (4) | 0.0039 (3) | 0.0124 (4) | 0.0003 (3) |
C5 | 0.0231 (6) | 0.0243 (6) | 0.0235 (6) | 0.0000 (4) | 0.0112 (4) | 0.0016 (4) |
N6 | 0.0223 (5) | 0.0196 (4) | 0.0191 (5) | 0.0021 (4) | 0.0075 (4) | −0.0002 (3) |
C7 | 0.0198 (5) | 0.0208 (5) | 0.0197 (5) | 0.0062 (4) | 0.0045 (4) | −0.0001 (4) |
N8 | 0.0232 (5) | 0.0230 (5) | 0.0185 (5) | 0.0051 (4) | 0.0054 (4) | 0.0013 (4) |
C9 | 0.0215 (5) | 0.0177 (5) | 0.0215 (5) | 0.0037 (4) | 0.0068 (4) | 0.0014 (4) |
C10 | 0.0243 (5) | 0.0198 (5) | 0.0200 (5) | 0.0003 (4) | 0.0067 (4) | −0.0009 (4) |
C11 | 0.0265 (6) | 0.0282 (6) | 0.0276 (6) | 0.0002 (5) | 0.0043 (5) | −0.0051 (5) |
N12 | 0.0238 (5) | 0.0212 (5) | 0.0245 (5) | 0.0040 (4) | 0.0080 (4) | 0.0037 (4) |
O13 | 0.0340 (5) | 0.0365 (5) | 0.0279 (5) | −0.0001 (4) | 0.0154 (4) | 0.0069 (4) |
O14 | 0.0417 (6) | 0.0349 (5) | 0.0318 (5) | −0.0141 (4) | 0.0084 (4) | −0.0049 (4) |
C1—O2 | 1.4578 (15) | C7—N8 | 1.3178 (15) |
C1—H1A | 0.98 | C7—C11 | 1.4869 (16) |
C1—H1B | 0.98 | N8—C9 | 1.3682 (15) |
C1—H1C | 0.98 | C9—C10 | 1.3607 (15) |
O2—C3 | 1.3299 (13) | C9—N12 | 1.4329 (14) |
C3—O4 | 1.2036 (13) | C10—H10 | 0.95 |
C3—C5 | 1.5183 (16) | C11—H11A | 0.98 |
C5—N6 | 1.4564 (14) | C11—H11B | 0.98 |
C5—H5A | 0.99 | C11—H11C | 0.98 |
C5—H5B | 0.99 | N12—O13 | 1.2287 (12) |
N6—C10 | 1.3641 (15) | N12—O14 | 1.2302 (13) |
N6—C7 | 1.3760 (14) | ||
O2—C1—H1A | 109.5 | N8—C7—N6 | 111.22 (10) |
O2—C1—H1B | 109.5 | N8—C7—C11 | 125.81 (10) |
H1A—C1—H1B | 109.5 | N6—C7—C11 | 122.96 (10) |
O2—C1—H1C | 109.5 | C7—N8—C9 | 103.89 (9) |
H1A—C1—H1C | 109.5 | C10—C9—N8 | 113.02 (10) |
H1B—C1—H1C | 109.5 | C10—C9—N12 | 125.50 (10) |
C3—O2—C1 | 114.24 (9) | N8—C9—N12 | 121.46 (10) |
O4—C3—O2 | 124.82 (11) | C9—C10—N6 | 103.85 (10) |
O4—C3—C5 | 123.76 (10) | C9—C10—H10 | 128.1 |
O2—C3—C5 | 111.41 (9) | N6—C10—H10 | 128.1 |
N6—C5—C3 | 109.20 (9) | C7—C11—H11A | 109.5 |
N6—C5—H5A | 109.8 | C7—C11—H11B | 109.5 |
C3—C5—H5A | 109.8 | H11A—C11—H11B | 109.5 |
N6—C5—H5B | 109.8 | C7—C11—H11C | 109.5 |
C3—C5—H5B | 109.8 | H11A—C11—H11C | 109.5 |
H5A—C5—H5B | 108.3 | H11B—C11—H11C | 109.5 |
C10—N6—C7 | 108.01 (9) | O13—N12—O14 | 123.54 (10) |
C10—N6—C5 | 124.16 (9) | O13—N12—C9 | 118.87 (10) |
C7—N6—C5 | 126.63 (10) | O14—N12—C9 | 117.58 (9) |
C1—O2—C3—O4 | 4.91 (17) | C11—C7—N8—C9 | −178.43 (10) |
C1—O2—C3—C5 | −175.23 (10) | C7—N8—C9—C10 | −0.55 (12) |
O4—C3—C5—N6 | −15.79 (15) | C7—N8—C9—N12 | 178.05 (9) |
O2—C3—C5—N6 | 164.35 (9) | N8—C9—C10—N6 | −0.03 (12) |
C3—C5—N6—C10 | −86.81 (12) | N12—C9—C10—N6 | −178.57 (10) |
C3—C5—N6—C7 | 79.17 (13) | C7—N6—C10—C9 | 0.58 (12) |
C10—N6—C7—N8 | −0.99 (12) | C5—N6—C10—C9 | 168.78 (10) |
C5—N6—C7—N8 | −168.81 (10) | C10—C9—N12—O13 | 176.38 (10) |
C10—N6—C7—C11 | 178.38 (10) | N8—C9—N12—O13 | −2.04 (15) |
C5—N6—C7—C11 | 10.55 (16) | C10—C9—N12—O14 | −2.92 (16) |
N6—C7—N8—C9 | 0.92 (11) | N8—C9—N12—O14 | 178.66 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O4i | 0.99 | 2.30 | 3.2350 (16) | 156 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C7H9N3O4 |
Mr | 199.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 4.6619 (2), 17.3256 (7), 11.1490 (4) |
β (°) | 103.204 (2) |
V (Å3) | 876.70 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.35 × 0.3 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.937, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7665, 1991, 1753 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.088, 1.09 |
No. of reflections | 1991 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.21 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012) and CRYSCAL (local program).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O4i | 0.99 | 2.30 | 3.2350 (16) | 156.0 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
The authors are grateful to all the personnel of the research team `Synthèse de molécules à objectif thérapeutique' of the PHYSYNOR Laboratory, Université Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique, Algerie) for financial support.
References
Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker, (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker, (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chelghoum, M., Bahnous, M., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o1890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gaonkar, S. L., Rai, K. M. L. & Shetty, N. S. (2009). Med. Chem. Res. 18, 221–230. Web of Science CrossRef CAS Google Scholar
Kasai, S., Nagasawa, H., Yamashita, M., Masui, M., Kuwasaka, H., Oshodani, T., Uto, Y., Inomata, T., Oka, S., Inayama, S. & Hori, H. (2001). Bioorg. Med. Chem. 9, 453–464. Web of Science CrossRef PubMed CAS Google Scholar
Larina, L. & Lopyrev, V. (2009). Nitroazoles: Synthesis, Structure and Applications, in Topics in Applied Chemistry, edited by A. Katritzky & G. J. Sabongi. Berlin: Springer. Google Scholar
Olender, D., Zwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645–652. Web of Science CrossRef PubMed CAS Google Scholar
Pavlik, C., Biswal, N. C., Gaenzler, F. C., Morton, M. D., Kuhn, L. T., Claffey, K. P., Zhu, Q. & Smith, M. B. (2011). Dyes Pigm. 89, 9–15. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of imidazole occupies an extremely important position within the family of five-membered heterocyclic compounds. Synthesis of imidazole derivatives has attracted great interest in recent years due to their broad spectrum of biological activities (Gaonkar et al., 2009). For a few decades, nitroimdazoles have been the subject of much interest because of their properties. Nitroimidazoles, such as metronidazole, misonidazole, ornidazole, secnidazole and etamidazole, are commonly used as therapeutic agents against a variety of protozoan and bacterial infections of humans and animals (Olender et al., 2009). The compounds with nitro group at position 4 are usually less active than the corresponding 5-nitro derivatives. The structures of nitroimidazoles have been studied more thoroughly by X-ray and 13C NMR and can be explained by wide application of these compounds, especially in medicine. The problem of structural identification of 1-substituted nitroimidazoles by NMR spectroscopy has been considered in many works (Larina & Lopyrev, 2009). In previous work, we have reported the synthesis and structure determination of some new heterocyclic compounds bearing an imidazole unit (Chelghoum et al., 2011; Bahnous et al., 2012). Herein, we report the synthesis and single-crystal X-ray structure of methyl 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetate, (I).
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of (I)consists of 2-methyl-4-nitro-1H-imidazol linked to methyl acetate. The crystal packing can be described as crossed layers in zigzag parallel to the (110) plane. (Fig. 2). It is stabilized by C—H···O and C—H···N hydrogen bond (Table 1), weak N—O···π interactions and π–π stacking interactions between imidazole rings with a centroid–centroid distance of 4.6619 (6)Å. These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.