organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[3-(Benzyl­di­methyl­aza­nium­yl)prop­yl]-N′,N′,N′′,N′′-tetra­methyl­guanidinium bis­­(tetra­phenyl­borate)

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de

(Received 8 May 2013; accepted 9 May 2013; online 18 May 2013)

In the crystal structure of the title salt, C17H32N42+·2C24H20B, the C—N bond lengths in the CN3 unit of the guanidinium ion are 1.323 (4), 1.336 (5) and 1.337 (5) Å, indicating partial double-bond character in each. The C atom of this unit is bonded to the three N atoms in a nearly ideal trigonal–planar geometry [N—C—N angles = 117.7 (4), 120.9 (3) and 121.4 (3)°] and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values close to a typical single bond [1.452 (5)–1.484 (6) Å]. In the crystal, C—H⋯π inter­actions are present between guanidinium H atoms and the phenyl rings of both tetra­phenyl­borate ions. This leads to the formation of a two-dimensional supramolecular pattern along the ab plane.

Related literature

For biosorption of tetra­decyl benzyl dimethyl ammonium chloride onto activated sludge, see: Ren et al. (2011[Ren, R., Li, K., Zhang, C., Liu, D. & Sun, J. (2011). Bioresour. Technol. 102, 3799-3804.]). For the synthesis of N′′-[3-(di­methyl­amino)­prop­yl]-N,N,N′,N′-tetra­methyl­guanidinium chloride, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685-698.]). For the structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). For the structures of N,N,N′,N′,N′′-penta­methyl-N′′-[3-(tri­methyl­aza­nium­yl)prop­yl]guanidin­ium bis­(tetra­phenyl­borate) and N,N,N′,N′,N′′-tetra­methyl-N′′-[3-(tri­methyl­aza­nium­yl)prop­yl]guanidinium bis­(tetra­phenyl­borate) acetone disolvate, see: Tiritiris (2013a[Tiritiris, I. (2013a). Acta Cryst. E69, o292.],b[Tiritiris, I. (2013b). Acta Cryst. E69, o337-o338.]).

[Scheme 1]

Experimental

Crystal data
  • C17H32N42+·2C24H20B

  • Mr = 930.89

  • Monoclinic, C c

  • a = 17.1981 (3) Å

  • b = 17.3466 (3) Å

  • c = 17.8082 (4) Å

  • β = 94.182 (1)°

  • V = 5298.55 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.13 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 6442 measured reflections

  • 6442 independent reflections

  • 5242 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.05

  • 6442 reflections

  • 650 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg5 are the centroids of the C36–C41, C30–C35, C24–C29, C42–C47 and C60-C65 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg1 0.97 2.73 3.699 (2) 174
C11—H11ACg2 0.97 2.66 3.509 (2) 145
C14—H14⋯Cg3i 0.93 2.92 3.531 (2) 124
C9—H9ACg4ii 0.97 2.91 3.569 (2) 126
C7—H7ACg5iii 0.96 2.82 3.696 (2) 133
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Alkyldimethylbenzylammonium salts with various even-numbered alkyl chain lengths are cationic surface-acting agents, belonging to the group of quaternary ammonium salts. They are used as biocides and also as phase transfer agents (Ren et al., 2011), with the biocidal effect being due to damaging of the bacterial cell membrane and subsequent leakage of intracellular components. Based on our previous studies about dicationic ammonioalkyl guanidinium salts (Tiritiris, 2013a and 2013b), we synthesized the here presented title compound to investigate its biocidal properties. According to the structure analysis, the C1–N1 bond of the the CN3 unit is 1.336 (5) Å, C1–N2 = 1.323 (4) Å and C1–N3 = 1.337 (5) Å, showing partial double-bond character. The N–C1–N angles are: 121.4 (3)° (N1–C1–N2), 117.7 (4)° (N1–C1–N3) and 120.9 (3)° (N2–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values close to a typical single bond [1.452 (5)–1.484 (6) Å]. The C–N bond lengths in the terminal benzyldimethylammonium group are slightly elongated [1.483 (4)–1.536 (3) Å]. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). Similar to the compound N,N,N',N',N''-tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate (Tiritiris, 2013b), C–H···π interactions between hydrogen atoms of the guanidinium ion and phenyl rings (centroids) of both tetraphenylborate ions are present, with bond lengths ranging from 2.66 to 2.92 Å (Table 1). Here, hydrogen atoms of –CH2 groups, –N(CH3) and CPhenyl are involved (Fig. 2). In contrast, N–H···Ph interactions towards the (BPh4)- ions were not observed.

Related literature top

For the biosorption of tetradecyl benzyl dimethyl ammonium chloride onto activated sludge, see: Ren et al. (2011). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidinium chloride, see: Tiritiris & Kantlehner (2012). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the crystal structure of N,N,N',N',N''-pentamethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate), see: Tiritiris (2013a) and of N,N,N',N',N''-tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate, see: Tiritiris (2013b).

Experimental top

The title compound was obtained by reaction of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidinium chloride (Tiritiris & Kantlehner, 2012) with one equivalent benzyl chloride in acetonitrile at room temperature. After evaporation of the solvent the crude N,N,N',N'-tetramethyl-N''-[3-(benzyldimethylammonio)propyl]guanidinium dichloride (I) was washed with diethylether and dried in vacuo. 1.0 g (2.75 mmol) of (I) was dissolved in 20 ml acetonitrile and 1.88 g (5.5 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium chloride was filtered off. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming colorless single crystals. Yield: 1.97 g (77%). 1H NMR (500 MHz, CD3CN/TMS): δ = 1.90–2.03 (m, 2 H, –CH2), 2.78 [s, 6 H, –N(CH3)2], 2.85 [s, 12 H, –N(CH3)2], 3.01–3.08 (m, 4 H, –CH2), 4.26 (s, 2 H, –CH2), 5.95 (s, 1 H, –NH), 6.81–6.87 (t, 8H, –C6H5), 6.96–7.02 (t, 16 H, –C6H5), 7.24–7.31 (m, 16 H, –C6H5), 7.43–7.50 (m, 5 H, –C6H5). 13C NMR (125 MHz, CD3CN/TMS): δ = 22.6 (–CH2), 39.2 [–N(CH3)2], 42.8 (–CH2), 50.6 [–N(CH3)2], 62.2 (–CH2), 69.4 (–CH2), 122.8 (–C6H5), 126.6–126.7 (–C6H5), 129.0 (–C6H5), 131.9 (–C6H5), 132.7 (–C6H5), 135.4 (–C6H5), 161.1 (N3C+), 162.3–164.7 (–C6H5).

Refinement top

The title compound crystallizes in the non-centrosymmetric space group Cc; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless. Accordingly, Friedel pairs were merged. The N-bound H atom was located in a difference Fourier map and was refined freely [N—H = 0.85 (5) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.96 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.97 Å (H atoms in CH2 groups) and (C—H) = 0.93 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 30% probability level. All carbon bonded hydrogen atoms were omitted for the sake of clarity.
[Figure 2] Fig. 2. C–H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl rings (centroids) of the tetraphenylborate ions.
N-[3-(Benzyldimethylazaniumyl)propyl]-N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate) top
Crystal data top
C17H32N42+·2C24H20BF(000) = 2000
Mr = 930.89Dx = 1.167 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6274 reflections
a = 17.1981 (3) Åθ = 0.4–28.3°
b = 17.3466 (3) ŵ = 0.07 mm1
c = 17.8082 (4) ÅT = 293 K
β = 94.182 (1)°Block, colorless
V = 5298.55 (18) Å30.19 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5242 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.000
Graphite monochromatorθmax = 28.2°, θmin = 1.7°
ϕ scans, and ω scansh = 2222
6442 measured reflectionsk = 023
6442 independent reflectionsl = 023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0457P)2 + 1.9323P]
where P = (Fo2 + 2Fc2)/3
6442 reflections(Δ/σ)max < 0.001
650 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C17H32N42+·2C24H20BV = 5298.55 (18) Å3
Mr = 930.89Z = 4
Monoclinic, CcMo Kα radiation
a = 17.1981 (3) ŵ = 0.07 mm1
b = 17.3466 (3) ÅT = 293 K
c = 17.8082 (4) Å0.19 × 0.17 × 0.13 mm
β = 94.182 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5242 reflections with I > 2σ(I)
6442 measured reflectionsRint = 0.000
6442 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
6442 reflectionsΔρmin = 0.15 e Å3
650 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5085 (2)0.39414 (17)0.5440 (2)0.0773 (8)
N20.57313 (17)0.32797 (18)0.64307 (18)0.0702 (8)
N30.61752 (19)0.32381 (18)0.5236 (2)0.0755 (9)
H30.622 (3)0.355 (3)0.487 (3)0.097 (15)*
N40.52643 (12)0.09471 (13)0.49726 (12)0.0428 (5)
C10.56661 (19)0.34872 (17)0.5714 (2)0.0608 (8)
C20.4793 (4)0.3934 (3)0.4647 (3)0.1128 (17)
H2A0.49290.34540.44220.169*
H2B0.50220.43520.43880.169*
H2C0.42370.39900.46120.169*
C30.4783 (4)0.4576 (3)0.5896 (4)0.1197 (19)
H3A0.42520.44700.59940.180*
H3B0.48070.50520.56240.180*
H3C0.50940.46160.63640.180*
C40.6487 (3)0.3162 (3)0.6859 (3)0.0993 (15)
H4A0.69010.32930.65490.149*
H4B0.65360.26310.70080.149*
H4C0.65170.34840.72980.149*
C50.5049 (3)0.3181 (3)0.6870 (3)0.1009 (15)
H5A0.45860.31590.65360.151*
H5B0.50140.36080.72090.151*
H5C0.51000.27110.71540.151*
C60.6576 (2)0.2501 (2)0.5253 (3)0.0816 (11)
H6A0.65150.22530.57330.098*
H6B0.71290.25880.52110.098*
C70.6271 (2)0.1969 (2)0.4623 (2)0.0769 (11)
H7A0.65880.15060.46370.092*
H7B0.63290.22220.41450.092*
C80.54227 (17)0.17373 (18)0.46620 (18)0.0556 (7)
H8A0.51750.21150.49680.067*
H8B0.51700.17690.41580.067*
C90.56539 (19)0.0830 (2)0.57348 (17)0.0601 (8)
H9A0.55100.03360.59240.090*
H9B0.54940.12280.60660.090*
H9C0.62090.08510.57080.090*
C100.55365 (19)0.0334 (2)0.44516 (19)0.0628 (8)
H10A0.60920.03690.44320.094*
H10B0.52890.04090.39560.094*
H10C0.54020.01650.46350.094*
C110.43788 (15)0.08420 (17)0.49881 (17)0.0509 (6)
H11B0.41470.08820.44770.061*
H11A0.42790.03250.51650.061*
C120.39766 (14)0.14053 (17)0.54710 (17)0.0473 (6)
C130.38235 (18)0.1214 (2)0.6199 (2)0.0619 (8)
H130.40150.07580.64140.074*
C140.3378 (2)0.1713 (3)0.6610 (2)0.0774 (11)
H140.32690.15830.70980.093*
C150.3100 (2)0.2393 (2)0.6300 (3)0.0756 (11)
H150.28140.27270.65810.091*
C160.32451 (18)0.2576 (2)0.5584 (2)0.0667 (9)
H160.30520.30340.53740.080*
C170.36768 (16)0.20877 (19)0.51643 (19)0.0555 (7)
H170.37670.22180.46720.067*
B10.24097 (16)0.00116 (15)0.37591 (15)0.0332 (5)
C180.16773 (14)0.05003 (14)0.40683 (13)0.0363 (5)
C190.17970 (15)0.10436 (15)0.46496 (14)0.0403 (5)
H190.23000.11100.48690.048*
C200.12048 (18)0.14858 (16)0.49124 (15)0.0470 (6)
H200.13150.18410.52970.056*
C210.04522 (18)0.14003 (18)0.46044 (17)0.0539 (7)
H210.00500.16910.47830.065*
C220.03012 (17)0.0878 (2)0.4026 (2)0.0592 (8)
H220.02050.08160.38130.071*
C230.09034 (16)0.04449 (18)0.37650 (16)0.0493 (6)
H230.07890.01020.33710.059*
C240.20756 (14)0.06016 (15)0.31129 (13)0.0364 (5)
C250.18838 (16)0.03653 (16)0.23707 (14)0.0433 (6)
H250.19830.01430.22400.052*
C260.15512 (17)0.08579 (18)0.18195 (15)0.0489 (6)
H260.14250.06740.13350.059*
C270.14083 (16)0.16161 (18)0.19889 (16)0.0489 (6)
H270.11890.19490.16220.059*
C280.15954 (18)0.18736 (18)0.27100 (17)0.0536 (7)
H280.15040.23850.28330.064*
C290.19205 (16)0.13735 (16)0.32564 (15)0.0451 (6)
H290.20400.15630.37400.054*
C300.28889 (14)0.04720 (14)0.44488 (13)0.0357 (5)
C310.35062 (17)0.09641 (17)0.43046 (16)0.0483 (6)
H310.36260.10280.38080.058*
C320.39500 (18)0.13630 (18)0.48623 (18)0.0546 (7)
H320.43590.16760.47350.065*
C330.37807 (19)0.12928 (18)0.56041 (17)0.0555 (7)
H330.40770.15500.59830.067*
C340.31687 (18)0.08373 (19)0.57725 (16)0.0539 (7)
H340.30420.07930.62700.065*
C350.27340 (16)0.04405 (16)0.52109 (15)0.0441 (6)
H350.23200.01390.53460.053*
C360.30103 (14)0.06146 (14)0.33706 (13)0.0339 (5)
C370.36449 (15)0.03477 (16)0.29928 (16)0.0474 (6)
H370.37130.01810.29460.057*
C380.41771 (16)0.08365 (18)0.26854 (17)0.0533 (7)
H380.45970.06300.24530.064*
C390.40879 (18)0.16192 (18)0.27215 (16)0.0524 (7)
H390.44500.19470.25260.063*
C400.34551 (19)0.19114 (17)0.30517 (17)0.0551 (7)
H400.33750.24410.30660.066*
C410.29310 (16)0.14124 (15)0.33662 (15)0.0445 (6)
H410.25060.16250.35850.053*
B20.23573 (16)0.49378 (16)0.26613 (16)0.0368 (6)
C420.19430 (14)0.54596 (14)0.19683 (13)0.0363 (5)
C430.13153 (15)0.59506 (15)0.20904 (15)0.0420 (5)
H430.11450.59820.25730.050*
C440.09382 (17)0.63904 (16)0.15267 (17)0.0500 (6)
H440.05220.67040.16350.060*
C450.11769 (17)0.63649 (16)0.08052 (16)0.0496 (7)
H450.09190.66510.04220.060*
C460.18023 (17)0.59087 (16)0.06629 (15)0.0470 (6)
H460.19770.58940.01810.056*
C470.21761 (15)0.54683 (15)0.12338 (14)0.0406 (5)
H470.25990.51670.11210.049*
C480.30820 (15)0.44317 (15)0.23630 (13)0.0384 (5)
C490.38646 (17)0.4554 (2)0.25770 (18)0.0560 (7)
H490.40010.49510.29120.067*
C500.44541 (19)0.4100 (2)0.2306 (2)0.0694 (9)
H500.49720.41940.24690.083*
C510.4276 (2)0.3521 (2)0.1805 (2)0.0632 (9)
H510.46700.32290.16150.076*
C520.35127 (19)0.33743 (18)0.15840 (17)0.0535 (7)
H520.33840.29760.12480.064*
C530.29295 (18)0.38214 (17)0.18621 (16)0.0480 (6)
H530.24140.37100.17080.058*
C540.17330 (15)0.43080 (15)0.29723 (13)0.0380 (5)
C550.20049 (18)0.37067 (15)0.34500 (16)0.0492 (6)
H550.25370.36750.35840.059*
C560.1518 (2)0.31584 (17)0.37310 (17)0.0591 (8)
H560.17240.27750.40520.071*
C570.0725 (2)0.31826 (18)0.35339 (19)0.0629 (9)
H570.03940.28170.37200.076*
C580.04336 (19)0.37572 (19)0.30576 (19)0.0595 (7)
H580.00980.37780.29180.071*
C590.09315 (16)0.43037 (16)0.27868 (15)0.0458 (6)
H590.07200.46850.24660.055*
C600.26902 (14)0.55380 (14)0.33323 (14)0.0378 (5)
C610.27814 (17)0.53473 (18)0.40924 (15)0.0490 (6)
H610.26280.48600.42410.059*
C620.30937 (18)0.5856 (2)0.46422 (16)0.0573 (8)
H620.31470.57020.51440.069*
C630.33218 (16)0.65778 (19)0.44484 (17)0.0528 (7)
H630.35250.69190.48150.063*
C640.3248 (2)0.67914 (19)0.37105 (19)0.0615 (8)
H640.34050.72800.35700.074*
C650.2935 (2)0.62760 (18)0.31646 (17)0.0583 (8)
H650.28900.64360.26650.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.086 (2)0.0510 (16)0.096 (2)0.0063 (15)0.0136 (17)0.0080 (15)
N20.0662 (17)0.0679 (18)0.0758 (19)0.0170 (14)0.0009 (14)0.0040 (15)
N30.0723 (18)0.0514 (16)0.107 (3)0.0109 (14)0.0335 (18)0.0011 (17)
N40.0407 (10)0.0412 (11)0.0462 (11)0.0073 (9)0.0008 (9)0.0046 (9)
C10.0577 (17)0.0404 (15)0.085 (2)0.0120 (13)0.0093 (16)0.0009 (15)
C20.143 (5)0.083 (3)0.112 (4)0.016 (3)0.002 (3)0.039 (3)
C30.116 (4)0.069 (3)0.176 (6)0.024 (3)0.023 (4)0.019 (3)
C40.088 (3)0.094 (3)0.111 (3)0.015 (2)0.032 (3)0.018 (3)
C50.091 (3)0.138 (4)0.075 (3)0.028 (3)0.016 (2)0.000 (3)
C60.0477 (17)0.071 (2)0.127 (3)0.0041 (16)0.011 (2)0.012 (2)
C70.0593 (19)0.071 (2)0.104 (3)0.0047 (17)0.037 (2)0.006 (2)
C80.0512 (15)0.0540 (17)0.0627 (17)0.0045 (13)0.0123 (13)0.0046 (14)
C90.0619 (17)0.068 (2)0.0491 (15)0.0162 (15)0.0070 (13)0.0007 (14)
C100.0596 (17)0.0620 (19)0.0667 (19)0.0179 (15)0.0029 (15)0.0204 (16)
C110.0408 (13)0.0498 (16)0.0616 (16)0.0027 (12)0.0006 (12)0.0148 (13)
C120.0326 (11)0.0491 (15)0.0604 (16)0.0037 (10)0.0038 (11)0.0137 (12)
C130.0560 (17)0.0615 (19)0.0703 (19)0.0096 (14)0.0189 (15)0.0011 (16)
C140.064 (2)0.093 (3)0.080 (2)0.019 (2)0.0344 (19)0.015 (2)
C150.0500 (18)0.076 (2)0.104 (3)0.0071 (17)0.0281 (19)0.036 (2)
C160.0444 (15)0.066 (2)0.089 (2)0.0067 (14)0.0058 (15)0.0163 (18)
C170.0406 (13)0.0636 (18)0.0615 (17)0.0059 (13)0.0014 (12)0.0089 (14)
B10.0357 (12)0.0337 (13)0.0301 (11)0.0013 (10)0.0027 (10)0.0021 (10)
C180.0379 (12)0.0378 (13)0.0340 (12)0.0012 (10)0.0075 (10)0.0015 (10)
C190.0414 (13)0.0417 (13)0.0380 (12)0.0012 (10)0.0040 (10)0.0002 (10)
C200.0640 (17)0.0403 (14)0.0381 (13)0.0052 (12)0.0134 (12)0.0007 (10)
C210.0507 (15)0.0534 (17)0.0601 (18)0.0137 (13)0.0197 (14)0.0031 (14)
C220.0375 (14)0.069 (2)0.0715 (19)0.0052 (13)0.0034 (13)0.0049 (17)
C230.0419 (14)0.0565 (17)0.0492 (15)0.0004 (12)0.0003 (12)0.0082 (13)
C240.0346 (11)0.0398 (13)0.0349 (12)0.0003 (10)0.0039 (9)0.0043 (10)
C250.0496 (14)0.0388 (13)0.0409 (13)0.0016 (11)0.0002 (11)0.0012 (11)
C260.0523 (15)0.0601 (18)0.0333 (12)0.0046 (13)0.0030 (11)0.0070 (12)
C270.0440 (14)0.0548 (17)0.0482 (15)0.0075 (12)0.0047 (12)0.0190 (13)
C280.0631 (18)0.0432 (15)0.0551 (16)0.0133 (13)0.0077 (14)0.0068 (13)
C290.0522 (15)0.0451 (15)0.0384 (13)0.0085 (12)0.0060 (11)0.0001 (11)
C300.0368 (12)0.0345 (12)0.0354 (12)0.0060 (9)0.0001 (9)0.0006 (10)
C310.0530 (15)0.0500 (16)0.0419 (14)0.0098 (13)0.0029 (12)0.0042 (12)
C320.0517 (15)0.0484 (16)0.0625 (18)0.0083 (13)0.0033 (13)0.0062 (14)
C330.0585 (17)0.0534 (17)0.0525 (17)0.0031 (14)0.0115 (13)0.0152 (13)
C340.0628 (17)0.0601 (18)0.0381 (13)0.0071 (14)0.0001 (12)0.0083 (13)
C350.0455 (14)0.0467 (14)0.0403 (13)0.0033 (11)0.0038 (11)0.0038 (11)
C360.0360 (11)0.0370 (12)0.0282 (10)0.0011 (9)0.0014 (9)0.0005 (9)
C370.0469 (14)0.0417 (14)0.0552 (15)0.0063 (11)0.0141 (12)0.0029 (12)
C380.0442 (14)0.0621 (18)0.0555 (15)0.0048 (13)0.0168 (12)0.0110 (14)
C390.0563 (16)0.0561 (18)0.0461 (14)0.0115 (13)0.0121 (12)0.0102 (13)
C400.0746 (19)0.0387 (14)0.0538 (15)0.0000 (13)0.0174 (14)0.0077 (12)
C410.0489 (14)0.0408 (14)0.0449 (13)0.0073 (11)0.0109 (11)0.0038 (11)
B20.0418 (14)0.0347 (14)0.0337 (12)0.0018 (11)0.0025 (11)0.0006 (11)
C420.0403 (13)0.0325 (12)0.0362 (12)0.0051 (9)0.0024 (10)0.0008 (9)
C430.0460 (13)0.0387 (13)0.0418 (13)0.0004 (11)0.0050 (11)0.0009 (11)
C440.0464 (14)0.0409 (15)0.0620 (17)0.0007 (12)0.0021 (13)0.0055 (13)
C450.0568 (16)0.0402 (14)0.0498 (15)0.0105 (12)0.0106 (12)0.0123 (11)
C460.0628 (16)0.0431 (14)0.0352 (13)0.0133 (13)0.0037 (12)0.0065 (11)
C470.0465 (13)0.0374 (13)0.0382 (12)0.0045 (10)0.0059 (11)0.0005 (10)
C480.0419 (13)0.0384 (13)0.0350 (12)0.0005 (10)0.0040 (10)0.0047 (10)
C490.0453 (15)0.0607 (19)0.0626 (18)0.0022 (13)0.0086 (13)0.0132 (15)
C500.0424 (15)0.073 (2)0.094 (3)0.0026 (15)0.0150 (16)0.009 (2)
C510.0595 (19)0.061 (2)0.071 (2)0.0196 (15)0.0239 (17)0.0050 (16)
C520.0687 (19)0.0455 (15)0.0469 (15)0.0140 (14)0.0080 (14)0.0020 (12)
C530.0514 (14)0.0448 (14)0.0472 (14)0.0068 (12)0.0000 (12)0.0019 (12)
C540.0472 (13)0.0335 (12)0.0340 (12)0.0015 (10)0.0080 (10)0.0026 (9)
C550.0613 (16)0.0378 (14)0.0493 (15)0.0052 (12)0.0087 (13)0.0041 (11)
C560.089 (2)0.0367 (14)0.0537 (17)0.0035 (14)0.0220 (16)0.0070 (12)
C570.085 (2)0.0439 (16)0.0645 (19)0.0135 (15)0.0340 (17)0.0001 (14)
C580.0527 (16)0.0587 (18)0.0691 (19)0.0081 (14)0.0181 (14)0.0049 (15)
C590.0487 (14)0.0417 (13)0.0478 (14)0.0011 (11)0.0099 (11)0.0007 (11)
C600.0387 (12)0.0368 (13)0.0378 (12)0.0032 (10)0.0021 (10)0.0017 (10)
C610.0574 (16)0.0493 (16)0.0407 (14)0.0009 (13)0.0074 (12)0.0011 (12)
C620.0583 (17)0.077 (2)0.0373 (14)0.0025 (16)0.0056 (12)0.0106 (14)
C630.0436 (14)0.0588 (18)0.0554 (17)0.0030 (13)0.0000 (13)0.0204 (14)
C640.069 (2)0.0433 (16)0.070 (2)0.0066 (14)0.0096 (16)0.0057 (14)
C650.082 (2)0.0446 (16)0.0460 (15)0.0094 (15)0.0107 (15)0.0051 (12)
Geometric parameters (Å, º) top
N1—C11.336 (5)C27—H270.9300
N1—C21.464 (6)C28—C291.390 (4)
N1—C31.484 (6)C28—H280.9300
N2—C11.323 (4)C29—H290.9300
N2—C51.468 (5)C30—C311.401 (4)
N2—C41.472 (5)C30—C351.403 (3)
N3—C11.337 (5)C31—C321.392 (4)
N3—C61.452 (5)C31—H310.9300
N3—H30.85 (5)C32—C331.379 (4)
N4—C91.483 (4)C32—H320.9300
N4—C101.508 (3)C33—C341.367 (5)
N4—C81.510 (4)C33—H330.9300
N4—C111.536 (3)C34—C351.387 (4)
C2—H2A0.9600C34—H340.9300
C2—H2B0.9600C35—H350.9300
C2—H2C0.9600C36—C411.391 (4)
C3—H3A0.9600C36—C371.402 (3)
C3—H3B0.9600C37—C381.389 (4)
C3—H3C0.9600C37—H370.9300
C4—H4A0.9600C38—C391.368 (4)
C4—H4B0.9600C38—H380.9300
C4—H4C0.9600C39—C401.371 (4)
C5—H5A0.9600C39—H390.9300
C5—H5B0.9600C40—C411.396 (4)
C5—H5C0.9600C40—H400.9300
C6—C71.517 (6)C41—H410.9300
C6—H6A0.9700B2—C481.644 (4)
C6—H6B0.9700B2—C421.650 (4)
C7—C81.519 (4)B2—C541.655 (4)
C7—H7A0.9700B2—C601.655 (4)
C7—H7B0.9700C42—C471.396 (3)
C8—H8A0.9700C42—C431.404 (4)
C8—H8B0.9700C43—C441.384 (4)
C9—H9A0.9600C43—H430.9300
C9—H9B0.9600C44—C451.378 (4)
C9—H9C0.9600C44—H440.9300
C10—H10A0.9600C45—C461.374 (4)
C10—H10B0.9600C45—H450.9300
C10—H10C0.9600C46—C471.391 (4)
C11—C121.503 (4)C46—H460.9300
C11—H11B0.9700C47—H470.9300
C11—H11A0.9700C48—C491.388 (4)
C12—C131.382 (4)C48—C531.397 (4)
C12—C171.387 (4)C49—C501.397 (4)
C13—C141.397 (5)C49—H490.9300
C13—H130.9300C50—C511.364 (5)
C14—C151.374 (6)C50—H500.9300
C14—H140.9300C51—C521.367 (5)
C15—C161.354 (6)C51—H510.9300
C15—H150.9300C52—C531.388 (4)
C16—C171.381 (4)C52—H520.9300
C16—H160.9300C53—H530.9300
C17—H170.9300C54—C591.394 (4)
B1—C241.640 (3)C54—C551.405 (4)
B1—C181.646 (4)C55—C561.385 (4)
B1—C361.656 (3)C55—H550.9300
B1—C301.657 (4)C56—C571.384 (5)
C18—C231.403 (4)C56—H560.9300
C18—C191.404 (3)C57—C581.379 (5)
C19—C201.384 (4)C57—H570.9300
C19—H190.9300C58—C591.387 (4)
C20—C211.377 (5)C58—H580.9300
C20—H200.9300C59—H590.9300
C21—C221.382 (5)C60—C651.387 (4)
C21—H210.9300C60—C611.391 (4)
C22—C231.387 (4)C61—C621.397 (4)
C22—H220.9300C61—H610.9300
C23—H230.9300C62—C631.363 (5)
C24—C291.393 (4)C62—H620.9300
C24—C251.400 (4)C63—C641.362 (5)
C25—C261.392 (4)C63—H630.9300
C25—H250.9300C64—C651.399 (4)
C26—C271.375 (4)C64—H640.9300
C26—H260.9300C65—H650.9300
C27—C281.375 (4)
C1—N1—C2122.8 (4)C27—C26—C25120.2 (3)
C1—N1—C3121.3 (4)C27—C26—H26119.9
C2—N1—C3115.2 (4)C25—C26—H26119.9
C1—N2—C5122.1 (3)C28—C27—C26118.8 (3)
C1—N2—C4123.1 (3)C28—C27—H27120.6
C5—N2—C4114.7 (4)C26—C27—H27120.6
C1—N3—C6127.1 (4)C27—C28—C29120.4 (3)
C1—N3—H3113 (3)C27—C28—H28119.8
C6—N3—H3120 (3)C29—C28—H28119.8
C9—N4—C10109.1 (2)C28—C29—C24123.0 (3)
C9—N4—C8112.2 (2)C28—C29—H29118.5
C10—N4—C8110.0 (2)C24—C29—H29118.5
C9—N4—C11110.5 (2)C31—C30—C35113.6 (2)
C10—N4—C11106.3 (2)C31—C30—B1121.0 (2)
C8—N4—C11108.7 (2)C35—C30—B1125.3 (2)
N2—C1—N1121.4 (3)C32—C31—C30123.8 (3)
N2—C1—N3120.9 (3)C32—C31—H31118.1
N1—C1—N3117.7 (4)C30—C31—H31118.1
N1—C2—H2A109.5C33—C32—C31119.8 (3)
N1—C2—H2B109.5C33—C32—H32120.1
H2A—C2—H2B109.5C31—C32—H32120.1
N1—C2—H2C109.5C34—C33—C32118.8 (3)
H2A—C2—H2C109.5C34—C33—H33120.6
H2B—C2—H2C109.5C32—C33—H33120.6
N1—C3—H3A109.5C33—C34—C35120.8 (3)
N1—C3—H3B109.5C33—C34—H34119.6
H3A—C3—H3B109.5C35—C34—H34119.6
N1—C3—H3C109.5C34—C35—C30123.2 (3)
H3A—C3—H3C109.5C34—C35—H35118.4
H3B—C3—H3C109.5C30—C35—H35118.4
N2—C4—H4A109.5C41—C36—C37113.9 (2)
N2—C4—H4B109.5C41—C36—B1124.5 (2)
H4A—C4—H4B109.5C37—C36—B1121.5 (2)
N2—C4—H4C109.5C38—C37—C36123.1 (3)
H4A—C4—H4C109.5C38—C37—H37118.5
H4B—C4—H4C109.5C36—C37—H37118.5
N2—C5—H5A109.5C39—C38—C37120.5 (3)
N2—C5—H5B109.5C39—C38—H38119.7
H5A—C5—H5B109.5C37—C38—H38119.7
N2—C5—H5C109.5C38—C39—C40118.8 (3)
H5A—C5—H5C109.5C38—C39—H39120.6
H5B—C5—H5C109.5C40—C39—H39120.6
N3—C6—C7112.5 (4)C39—C40—C41119.9 (3)
N3—C6—H6A109.1C39—C40—H40120.0
C7—C6—H6A109.1C41—C40—H40120.0
N3—C6—H6B109.1C36—C41—C40123.6 (2)
C7—C6—H6B109.1C36—C41—H41118.2
H6A—C6—H6B107.8C40—C41—H41118.2
C6—C7—C8114.2 (3)C48—B2—C42110.3 (2)
C6—C7—H7A108.7C48—B2—C54106.3 (2)
C8—C7—H7A108.7C42—B2—C54110.9 (2)
C6—C7—H7B108.7C48—B2—C60109.8 (2)
C8—C7—H7B108.7C42—B2—C60107.6 (2)
H7A—C7—H7B107.6C54—B2—C60111.9 (2)
N4—C8—C7117.1 (3)C47—C42—C43114.5 (2)
N4—C8—H8A108.0C47—C42—B2124.7 (2)
C7—C8—H8A108.0C43—C42—B2120.8 (2)
N4—C8—H8B108.0C44—C43—C42123.1 (2)
C7—C8—H8B108.0C44—C43—H43118.4
H8A—C8—H8B107.3C42—C43—H43118.4
N4—C9—H9A109.5C45—C44—C43120.2 (3)
N4—C9—H9B109.5C45—C44—H44119.9
H9A—C9—H9B109.5C43—C44—H44119.9
N4—C9—H9C109.5C46—C45—C44118.8 (3)
H9A—C9—H9C109.5C46—C45—H45120.6
H9B—C9—H9C109.5C44—C45—H45120.6
N4—C10—H10A109.5C45—C46—C47120.5 (3)
N4—C10—H10B109.5C45—C46—H46119.7
H10A—C10—H10B109.5C47—C46—H46119.7
N4—C10—H10C109.5C46—C47—C42122.8 (3)
H10A—C10—H10C109.5C46—C47—H47118.6
H10B—C10—H10C109.5C42—C47—H47118.6
C12—C11—N4115.6 (2)C49—C48—C53115.1 (3)
C12—C11—H11B108.4C49—C48—B2124.9 (2)
N4—C11—H11B108.4C53—C48—B2120.0 (2)
C12—C11—H11A108.4C48—C49—C50122.2 (3)
N4—C11—H11A108.4C48—C49—H49118.9
H11B—C11—H11A107.5C50—C49—H49118.9
C13—C12—C17118.9 (3)C51—C50—C49120.5 (3)
C13—C12—C11120.5 (3)C51—C50—H50119.8
C17—C12—C11120.2 (3)C49—C50—H50119.8
C12—C13—C14119.5 (4)C50—C51—C52119.4 (3)
C12—C13—H13120.2C50—C51—H51120.3
C14—C13—H13120.2C52—C51—H51120.3
C15—C14—C13120.6 (4)C51—C52—C53119.8 (3)
C15—C14—H14119.7C51—C52—H52120.1
C13—C14—H14119.7C53—C52—H52120.1
C16—C15—C14119.8 (3)C52—C53—C48123.0 (3)
C16—C15—H15120.1C52—C53—H53118.5
C14—C15—H15120.1C48—C53—H53118.5
C15—C16—C17120.6 (4)C59—C54—C55114.8 (2)
C15—C16—H16119.7C59—C54—B2125.4 (2)
C17—C16—H16119.7C55—C54—B2119.8 (2)
C16—C17—C12120.6 (3)C56—C55—C54123.1 (3)
C16—C17—H17119.7C56—C55—H55118.5
C12—C17—H17119.7C54—C55—H55118.5
C24—B1—C18109.3 (2)C57—C56—C55119.9 (3)
C24—B1—C36108.29 (19)C57—C56—H56120.1
C18—B1—C36109.28 (19)C55—C56—H56120.1
C24—B1—C30108.77 (19)C58—C57—C56119.0 (3)
C18—B1—C30111.36 (19)C58—C57—H57120.5
C36—B1—C30109.75 (19)C56—C57—H57120.5
C23—C18—C19114.4 (2)C57—C58—C59120.1 (3)
C23—C18—B1124.3 (2)C57—C58—H58119.9
C19—C18—B1121.2 (2)C59—C58—H58119.9
C20—C19—C18123.3 (3)C58—C59—C54123.1 (3)
C20—C19—H19118.3C58—C59—H59118.5
C18—C19—H19118.3C54—C59—H59118.5
C21—C20—C19120.0 (3)C65—C60—C61114.5 (2)
C21—C20—H20120.0C65—C60—B2121.3 (2)
C19—C20—H20120.0C61—C60—B2124.2 (2)
C20—C21—C22119.2 (3)C60—C61—C62122.8 (3)
C20—C21—H21120.4C60—C61—H61118.6
C22—C21—H21120.4C62—C61—H61118.6
C21—C22—C23120.1 (3)C63—C62—C61120.4 (3)
C21—C22—H22120.0C63—C62—H62119.8
C23—C22—H22120.0C61—C62—H62119.8
C22—C23—C18123.0 (3)C64—C63—C62119.0 (3)
C22—C23—H23118.5C64—C63—H63120.5
C18—C23—H23118.5C62—C63—H63120.5
C29—C24—C25114.8 (2)C63—C64—C65120.1 (3)
C29—C24—B1123.8 (2)C63—C64—H64120.0
C25—C24—B1121.3 (2)C65—C64—H64120.0
C26—C25—C24122.8 (3)C60—C65—C64123.2 (3)
C26—C25—H25118.6C60—C65—H65118.4
C24—C25—H25118.6C64—C65—H65118.4
C5—N2—C1—N131.1 (5)C24—B1—C36—C41123.8 (3)
C4—N2—C1—N1146.3 (4)C18—B1—C36—C414.7 (3)
C5—N2—C1—N3147.9 (4)C30—B1—C36—C41117.7 (3)
C4—N2—C1—N334.8 (5)C24—B1—C36—C3754.5 (3)
C2—N1—C1—N2154.0 (4)C18—B1—C36—C37173.5 (2)
C3—N1—C1—N236.2 (5)C30—B1—C36—C3764.1 (3)
C2—N1—C1—N325.0 (5)C41—C36—C37—C384.1 (4)
C3—N1—C1—N3144.8 (4)B1—C36—C37—C38177.5 (2)
C6—N3—C1—N232.7 (5)C36—C37—C38—C391.9 (5)
C6—N3—C1—N1146.3 (4)C37—C38—C39—C401.4 (5)
C1—N3—C6—C7108.1 (5)C38—C39—C40—C412.2 (5)
N3—C6—C7—C863.3 (5)C37—C36—C41—C403.3 (4)
C9—N4—C8—C755.6 (4)B1—C36—C41—C40178.4 (3)
C10—N4—C8—C766.0 (3)C39—C40—C41—C360.3 (5)
C11—N4—C8—C7178.0 (3)C48—B2—C42—C470.0 (3)
C6—C7—C8—N4101.2 (4)C54—B2—C42—C47117.5 (3)
C9—N4—C11—C1262.6 (3)C60—B2—C42—C47119.8 (2)
C10—N4—C11—C12179.2 (3)C48—B2—C42—C43179.0 (2)
C8—N4—C11—C1260.9 (3)C54—B2—C42—C4363.4 (3)
N4—C11—C12—C1396.1 (3)C60—B2—C42—C4359.2 (3)
N4—C11—C12—C1791.1 (3)C47—C42—C43—C442.0 (4)
C17—C12—C13—C140.5 (4)B2—C42—C43—C44178.8 (2)
C11—C12—C13—C14173.4 (3)C42—C43—C44—C450.5 (4)
C12—C13—C14—C150.7 (5)C43—C44—C45—C461.3 (4)
C13—C14—C15—C161.3 (5)C44—C45—C46—C471.4 (4)
C14—C15—C16—C170.6 (5)C45—C46—C47—C420.3 (4)
C15—C16—C17—C120.7 (5)C43—C42—C47—C461.9 (4)
C13—C12—C17—C161.2 (4)B2—C42—C47—C46179.0 (2)
C11—C12—C17—C16174.1 (3)C42—B2—C48—C49111.4 (3)
C24—B1—C18—C235.8 (3)C54—B2—C48—C49128.3 (3)
C36—B1—C18—C23112.6 (3)C60—B2—C48—C497.1 (4)
C30—B1—C18—C23126.0 (3)C42—B2—C48—C5369.4 (3)
C24—B1—C18—C19177.3 (2)C54—B2—C48—C5351.0 (3)
C36—B1—C18—C1964.4 (3)C60—B2—C48—C53172.2 (2)
C30—B1—C18—C1957.0 (3)C53—C48—C49—C500.3 (4)
C23—C18—C19—C200.6 (4)B2—C48—C49—C50179.6 (3)
B1—C18—C19—C20177.9 (2)C48—C49—C50—C511.1 (6)
C18—C19—C20—C210.4 (4)C49—C50—C51—C521.7 (6)
C19—C20—C21—C220.9 (4)C50—C51—C52—C531.0 (5)
C20—C21—C22—C230.2 (5)C51—C52—C53—C480.5 (5)
C21—C22—C23—C180.9 (5)C49—C48—C53—C521.1 (4)
C19—C18—C23—C221.3 (4)B2—C48—C53—C52179.5 (3)
B1—C18—C23—C22178.5 (3)C48—B2—C54—C59131.4 (2)
C18—B1—C24—C2996.4 (3)C42—B2—C54—C5911.4 (3)
C36—B1—C24—C29144.6 (2)C60—B2—C54—C59108.7 (3)
C30—B1—C24—C2925.4 (3)C48—B2—C54—C5547.0 (3)
C18—B1—C24—C2580.0 (3)C42—B2—C54—C55167.0 (2)
C36—B1—C24—C2539.0 (3)C60—B2—C54—C5572.8 (3)
C30—B1—C24—C25158.2 (2)C59—C54—C55—C561.3 (4)
C29—C24—C25—C261.1 (4)B2—C54—C55—C56179.9 (3)
B1—C24—C25—C26175.7 (2)C54—C55—C56—C570.9 (4)
C24—C25—C26—C271.1 (4)C55—C56—C57—C580.0 (5)
C25—C26—C27—C280.4 (4)C56—C57—C58—C590.4 (5)
C26—C27—C28—C290.2 (4)C57—C58—C59—C540.0 (5)
C27—C28—C29—C240.2 (5)C55—C54—C59—C580.8 (4)
C25—C24—C29—C280.4 (4)B2—C54—C59—C58179.3 (3)
B1—C24—C29—C28176.2 (3)C48—B2—C60—C6589.8 (3)
C24—B1—C30—C3155.6 (3)C42—B2—C60—C6530.3 (3)
C18—B1—C30—C31176.2 (2)C54—B2—C60—C65152.4 (3)
C36—B1—C30—C3162.7 (3)C48—B2—C60—C6187.3 (3)
C24—B1—C30—C35124.4 (3)C42—B2—C60—C61152.6 (2)
C18—B1—C30—C353.8 (3)C54—B2—C60—C6130.5 (3)
C36—B1—C30—C35117.3 (3)C65—C60—C61—C620.0 (4)
C35—C30—C31—C322.5 (4)B2—C60—C61—C62177.3 (3)
B1—C30—C31—C32177.5 (3)C60—C61—C62—C630.4 (5)
C30—C31—C32—C331.1 (5)C61—C62—C63—C640.7 (5)
C31—C32—C33—C340.9 (5)C62—C63—C64—C650.5 (5)
C32—C33—C34—C351.2 (5)C61—C60—C65—C640.1 (5)
C33—C34—C35—C300.4 (5)B2—C60—C65—C64177.5 (3)
C31—C30—C35—C342.2 (4)C63—C64—C65—C600.1 (5)
B1—C30—C35—C34177.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg5 are the centroids of the C36–C41, C30–C35, C24–C29, C42–C47 and C60-C65 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg10.972.733.699 (2)174
C11—H11A···Cg20.972.663.509 (2)145
C14—H14···Cg3i0.932.923.531 (2)124
C9—H9A···Cg4ii0.972.913.569 (2)126
C7—H7A···Cg5iii0.962.823.696 (2)133
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H32N42+·2C24H20B
Mr930.89
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)17.1981 (3), 17.3466 (3), 17.8082 (4)
β (°) 94.182 (1)
V3)5298.55 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.19 × 0.17 × 0.13
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6442, 6442, 5242
Rint0.000
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.05
No. of reflections6442
No. of parameters650
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg5 are the centroids of the C36–C41, C30–C35, C24–C29, C42–C47 and C60-C65 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg10.972.733.699 (2)174
C11—H11A···Cg20.972.663.509 (2)145
C14—H14···Cg3i0.932.923.531 (2)124
C9—H9A···Cg4ii0.972.913.569 (2)126
C7—H7A···Cg5iii0.962.823.696 (2)133
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z.
 

Acknowledgements

The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the crystal data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRen, R., Li, K., Zhang, C., Liu, D. & Sun, J. (2011). Bioresour. Technol. 102, 3799–3804.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. (2013a). Acta Cryst. E69, o292.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2013b). Acta Cryst. E69, o337–o338.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685–698.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds