organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o988-o989

2,4,5-Tri­phenyl-1-(prop-2-en-1-yl)-1H-imidazole

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, dPharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt, eMamedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, and fDepartment of Organic Chemistry, Faculty of Science, Institute of Biotechnology, Granada University, Granada, E-18071, Spain
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 15 May 2013; accepted 21 May 2013; online 31 May 2013)

In the title compound, C24H20N2, one of the ring C atoms and one of the ring N atoms are disordered over two sets of sites in a 0.615 (3):0.385 (3) ratio. The two parts of the disordered imidazole ring adopt an envelope conformation, with the undisordered ring N atom as the flap, displaced by −0.118 (6) and 0.226 (7) Å, respectively, in the two disorder components from the plane through the other ring atoms. The crystal structure features C—H⋯N hydrogen bonds and C—H⋯π inter­actions, which lead to the formation of infinite chains along [010].

Related literature

For the biological significance of imidazole derivatives, see, for example: Kumar (2010[Kumar, J. R. (2010). Pharmacophore, 1, 167-177.]); Castaño et al. (2008[Castaño, T., Encinas, A., Pérez, C., Castro, A., Campillo, N. E. & Gil, C. (2008). Bioorg. Med. Chem. 16, 6193-6206.]); Banfi et al. (2006[Banfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Maurizio Fermeglia, M., Paneni, M. S. & Sabrina Pric, S. (2006). J. Antimicrob. Chemother. 58, 76-84.]); Bogle et al. (1994[Bogle, R. G., Whitley, G. S., Soo, S. C., Johnstone, A. P. & Vallance, P. (1994). Br. J. Pharmacol. 111, 1257-1261.]). For the synthesis and the structures of similar imidazoles, see: Mohamed et al. (2013a[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474-o475.],b[Mohamed, S. K., Akkurt, M., Marzouk, A. A. E., Santoyo-Gonzalez, F. & Elremaily, M. A. A. (2013b). Acta Cryst. E69, o875-o876.]); Akkurt et al. (2013[Akkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013). Acta Cryst. E69, o527-o528.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2

  • Mr = 336.42

  • Monoclinic, P 21 /n

  • a = 10.362 (3) Å

  • b = 8.938 (2) Å

  • c = 19.387 (5) Å

  • β = 90.340 (5)°

  • V = 1795.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.14 × 0.14 × 0.003 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.990, Tmax = 1.000

  • 17127 measured reflections

  • 3168 independent reflections

  • 2442 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.183

  • S = 1.04

  • 3168 reflections

  • 299 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C4–C9 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17A—H17A⋯N1i 0.95 2.45 3.246 (8) 141
C21A—H21ACg3ii 0.95 2.98 3.888 (5) 160
C21B—H21BCg4i 0.95 2.99 3.914 (4) 163
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The substituted imidazole derivatives are valuable in treatment of many systemic microbial infections and exhibit different types of pharmacological and biological activities (Kumar 2010). A number of substituted imidazoles, including clotrimazole, are selective inhibitors of nitric oxide synthase, which makes them interesting drug targets in inflammation, neurodegenerative diseases and tumors of the nervous system (Bogle et al., 1994; Castaño et al., 2008). Imidazoles also belong to the class of azole antifungals (Banfi et al., 2006), which includes 1-vinyl imidazole, ketoconazole, miconazole, and clotrimazole. In this aspect we have prepared a series of tetrasubstituted imidazoles including the title compound as potential bio-active precursors. Herein, we report the single-crystal X-ray structure of 2,4,5-Triphenyl-1-(prop-2-en-1-yl)-1H-imidazole (I).

In the title compound (I), (Fig. 1), the two parts of the disordered imidazole ring adopt an envelope conformation [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.076 (3) Å, ϕ(2) = 357 (4) ° for (N1/N2A/C1/C2A/C3), and Q(2) = 0.146 (4) Å, ϕ(2) = 180 (3) ° for (N1/N2B/C1/C2B/C3)]. The phenyl rings (C4–C9, C10–C15, C16A–C21A and C16B–C21B) makes dihedral angles of 35.91 (7), 18.14 (17), 85.0 (2) and 87.8 (2)°, respectively, with the mean plane of the imadazole ring (N1/N2A/C1/C2A/C3) and the corresponding angles are 18.8 (3), 35.3 (2), 85.7 (3) and 83.6 (3)°, respectively, for (N1/N2B/C1/C2B/C3). The bond lengths in (I) are within normal ranges and are comparable with those reported for the similar structures (Mohamed et al., 2013a,b; Akkurt et al., 2013).

In the crystal structure, molecules are linked by intermolecular C—H···N hydrogen bonds (Table 1, Fig. 2). In addition, C—H···π interactions contribute to the stabilization of the crystal packing.

Related literature top

For the biological significance of imidazole derivatives, see, for example: Kumar (2010); Castaño et al. (2008); Banfi et al. (2006); Bogle et al. (1994). For the synthesis and the structures of similar imidazoles, see: Mohamed et al. (2013a,b); Akkurt et al. (2013). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized according to our reported method (Mohamed et al. 2013a) in 83% yield. Colourless plates suitable for X-ray analyses were obtained by slow evaporation of a solution of (I) in ethanol, m.p. 377–379 K.

Refinement top

All H atoms were placed in geometrically, with C—H = 0.95 and 0.99 Å, and refined as riding with Uiso(H) = 1.2 Ueq(C) of the parent atom. The carbon (C2) and nitrogen (N2) atoms which are adjacent at the imidazole ring and the phenyl (C16–C21) and propane (C22—C24) groups which attached to them respectively, are disordered over two sites (with the suffixes A and B) with an occupancy ratio of 0.615 (3):0.385 (3). The atoms of the disordered propane groups were set to equal each other by an EADP instruction. The disordered phenyl ring (C16B–C21B) was constrained to a rigid hexagon with the AFIX 66 instruction, and for the other atoms of disorder the SIMU and DELU instructions were used in the refinement procedure.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the major component of the disordered title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound viewing along the b axis. The hydrogen atoms not involved in hydrogen bonding and the minor component of the disorder have been omitted for clarity.
2,4,5-Triphenyl-1-(prop-2-en-1-yl)-1H-imidazole top
Crystal data top
C24H20N2F(000) = 712
Mr = 336.42Dx = 1.245 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2698 reflections
a = 10.362 (3) Åθ = 2.2–21.5°
b = 8.938 (2) ŵ = 0.07 mm1
c = 19.387 (5) ÅT = 100 K
β = 90.340 (5)°Plate, colourless
V = 1795.5 (8) Å30.14 × 0.14 × 0.003 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3168 independent reflections
Radiation source: sealed tube2442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
h = 1212
Tmin = 0.990, Tmax = 1.000k = 1010
17127 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0987P)2 + 0.7593P]
where P = (Fo2 + 2Fc2)/3
3168 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.49 e Å3
12 restraintsΔρmin = 0.29 e Å3
Crystal data top
C24H20N2V = 1795.5 (8) Å3
Mr = 336.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.362 (3) ŵ = 0.07 mm1
b = 8.938 (2) ÅT = 100 K
c = 19.387 (5) Å0.14 × 0.14 × 0.003 mm
β = 90.340 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3168 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
2442 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 1.000Rint = 0.046
17127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06212 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
3168 reflectionsΔρmin = 0.29 e Å3
299 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.08400 (18)0.74686 (19)0.49897 (9)0.0410 (6)
N2A0.1170 (5)0.7384 (5)0.5420 (2)0.0353 (16)0.615 (3)
C10.0060 (2)0.8077 (2)0.45077 (12)0.0403 (7)
C2A0.1231 (6)0.8099 (6)0.4794 (3)0.0360 (17)0.615 (3)
C30.0081 (2)0.6952 (2)0.54940 (11)0.0402 (7)
C40.0590 (2)0.6243 (2)0.61210 (11)0.0394 (7)
C50.0089 (2)0.5150 (2)0.64866 (11)0.0437 (7)
C60.0425 (2)0.4520 (3)0.70782 (12)0.0486 (8)
C70.1627 (3)0.4953 (3)0.73117 (12)0.0515 (8)
C80.2316 (2)0.6021 (3)0.69493 (13)0.0489 (8)
C90.1804 (2)0.6654 (3)0.63597 (13)0.0454 (8)
C100.0566 (2)0.8751 (2)0.38715 (11)0.0390 (7)
C110.1781 (2)0.8326 (3)0.36242 (12)0.0441 (8)
C120.2281 (2)0.8935 (3)0.30231 (12)0.0482 (8)
C130.1588 (2)0.9992 (3)0.26605 (12)0.0496 (8)
C140.0392 (2)1.0439 (3)0.29035 (12)0.0494 (8)
C150.0118 (2)0.9824 (2)0.35016 (11)0.0429 (7)
C16A0.2459 (4)0.8604 (4)0.44996 (18)0.0334 (11)0.615 (3)
C17A0.2941 (6)0.9947 (9)0.4667 (4)0.0396 (16)0.615 (3)
C18A0.4150 (3)1.0459 (4)0.43689 (18)0.0403 (11)0.615 (3)
C19A0.4771 (4)0.9553 (5)0.39306 (19)0.0470 (14)0.615 (3)
C20A0.4300 (4)0.8172 (5)0.3761 (2)0.0543 (14)0.615 (3)
C21A0.3143 (5)0.7684 (5)0.4041 (2)0.0500 (16)0.615 (3)
C22A0.2230 (4)0.7339 (5)0.5920 (2)0.0505 (10)0.615 (3)
C23A0.3217 (4)0.6142 (5)0.5810 (2)0.0505 (10)0.615 (3)
C24A0.3129 (6)0.5098 (6)0.5380 (2)0.0505 (10)0.615 (3)
C24B0.3213 (17)0.999 (2)0.4606 (8)0.060 (2)0.385 (3)
C17B0.2961 (4)0.5016 (5)0.5314 (2)0.085 (4)0.385 (3)
C18B0.4132 (4)0.4561 (4)0.5598 (2)0.0480 (19)0.385 (3)
C19B0.4774 (3)0.5477 (5)0.6067 (2)0.058 (2)0.385 (3)
C20B0.4245 (4)0.6848 (5)0.6252 (2)0.063 (3)0.385 (3)
N2B0.1125 (8)0.7634 (8)0.4574 (4)0.039 (2)0.385 (3)
C2B0.1184 (10)0.6892 (9)0.5210 (5)0.038 (3)0.385 (3)
C16B0.2432 (3)0.6387 (5)0.5499 (2)0.0393 (19)0.385 (3)
C23B0.3136 (8)0.8876 (10)0.4214 (4)0.060 (2)0.385 (3)
C21B0.3074 (4)0.7303 (4)0.5968 (2)0.059 (3)0.385 (3)
C22B0.2197 (8)0.7681 (9)0.4076 (4)0.060 (2)0.385 (3)
H60.005200.378500.732500.0580*
H70.197500.452100.771800.0620*
H80.314300.632100.710500.0590*
H90.229000.738200.611300.0540*
H50.091200.483500.632900.0530*
H22B0.267300.832000.591300.0610*0.615 (3)
H23A0.397300.617500.608900.0610*0.615 (3)
H24A0.238900.502400.509000.0610*0.615 (3)
H24B0.380200.438200.534300.0610*0.615 (3)
H110.227100.760800.387200.0530*
H120.310500.862500.285900.0580*
H130.193001.040800.224700.0600*
H140.008401.117300.265900.0590*
H150.094401.013700.366100.0510*
H17A0.249201.056900.498300.0480*0.615 (3)
H18A0.449201.141500.448200.0490*0.615 (3)
H19A0.555900.988000.373300.0560*0.615 (3)
H20A0.476200.754700.345300.0650*0.615 (3)
H21A0.281300.672600.392300.0600*0.615 (3)
H22A0.185900.720800.638500.0610*0.615 (3)
H17B0.252300.439000.499300.1020*0.385 (3)
H18B0.449400.362500.547200.0570*0.385 (3)
H19B0.557400.516700.626100.0700*0.385 (3)
H20B0.468300.747400.657200.0760*0.385 (3)
H21B0.271300.823900.609400.0710*0.385 (3)
H22C0.265100.670600.408500.0730*0.385 (3)
H22D0.183500.782000.360700.0730*0.385 (3)
H23B0.388000.878000.393300.0730*0.385 (3)
H24C0.253001.021500.491400.0730*0.385 (3)
H24D0.395601.061700.459500.0730*0.385 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0465 (10)0.0351 (10)0.0414 (11)0.0013 (8)0.0027 (9)0.0000 (8)
N2A0.046 (2)0.028 (3)0.032 (3)0.004 (2)0.0003 (18)0.0005 (16)
C10.0441 (13)0.0320 (12)0.0449 (13)0.0033 (9)0.0037 (10)0.0038 (9)
C2A0.049 (3)0.029 (3)0.030 (3)0.005 (2)0.003 (2)0.0054 (18)
C30.0446 (13)0.0327 (12)0.0432 (13)0.0008 (9)0.0022 (10)0.0040 (9)
C40.0460 (13)0.0309 (11)0.0413 (12)0.0001 (9)0.0022 (10)0.0008 (9)
C50.0513 (14)0.0391 (12)0.0409 (12)0.0048 (10)0.0069 (10)0.0014 (10)
C60.0609 (16)0.0417 (13)0.0433 (13)0.0056 (11)0.0074 (11)0.0063 (10)
C70.0666 (16)0.0457 (14)0.0422 (13)0.0032 (12)0.0094 (12)0.0021 (11)
C80.0518 (14)0.0391 (13)0.0559 (15)0.0005 (11)0.0143 (12)0.0039 (11)
C90.0502 (14)0.0319 (12)0.0540 (14)0.0001 (10)0.0025 (11)0.0034 (10)
C100.0455 (13)0.0305 (11)0.0411 (12)0.0009 (9)0.0034 (10)0.0004 (9)
C110.0456 (13)0.0334 (12)0.0533 (14)0.0013 (10)0.0012 (11)0.0001 (10)
C120.0486 (14)0.0419 (13)0.0539 (14)0.0003 (11)0.0080 (11)0.0054 (11)
C130.0610 (15)0.0465 (14)0.0413 (13)0.0024 (12)0.0080 (11)0.0011 (11)
C140.0612 (16)0.0450 (14)0.0418 (13)0.0069 (12)0.0030 (11)0.0060 (11)
C150.0500 (13)0.0384 (12)0.0401 (12)0.0043 (10)0.0033 (10)0.0009 (10)
C16A0.0321 (19)0.041 (2)0.0270 (18)0.0065 (16)0.0013 (15)0.0007 (15)
C17A0.030 (3)0.038 (2)0.051 (3)0.005 (2)0.010 (2)0.000 (2)
C18A0.0308 (19)0.050 (2)0.040 (2)0.0044 (17)0.0001 (15)0.0003 (17)
C19A0.041 (2)0.059 (3)0.041 (2)0.0007 (18)0.0045 (16)0.0068 (18)
C20A0.050 (2)0.063 (3)0.050 (2)0.000 (2)0.0207 (19)0.020 (2)
C21A0.064 (3)0.048 (3)0.038 (2)0.006 (2)0.003 (2)0.0151 (18)
C22A0.0504 (16)0.061 (2)0.0401 (14)0.0030 (14)0.0057 (13)0.0122 (12)
C23A0.0504 (16)0.061 (2)0.0401 (14)0.0030 (14)0.0057 (13)0.0122 (12)
C24A0.0504 (16)0.061 (2)0.0401 (14)0.0030 (14)0.0057 (13)0.0122 (12)
C24B0.060 (4)0.073 (4)0.048 (3)0.007 (3)0.011 (3)0.010 (2)
C17B0.080 (7)0.040 (5)0.136 (10)0.013 (5)0.001 (7)0.001 (5)
C18B0.033 (3)0.066 (4)0.045 (3)0.002 (3)0.002 (3)0.004 (3)
C19B0.060 (4)0.055 (4)0.060 (4)0.009 (3)0.029 (3)0.015 (3)
C20B0.058 (4)0.069 (5)0.062 (4)0.004 (4)0.031 (4)0.018 (4)
N2B0.053 (4)0.036 (4)0.029 (4)0.008 (3)0.001 (3)0.003 (3)
C2B0.052 (4)0.024 (5)0.039 (5)0.005 (4)0.004 (4)0.000 (3)
C16B0.037 (3)0.050 (4)0.031 (3)0.014 (3)0.003 (3)0.008 (3)
C23B0.060 (4)0.073 (4)0.048 (3)0.007 (3)0.011 (3)0.010 (2)
C21B0.085 (6)0.052 (4)0.040 (4)0.007 (4)0.004 (4)0.018 (3)
C22B0.060 (4)0.073 (4)0.048 (3)0.007 (3)0.011 (3)0.010 (2)
Geometric parameters (Å, º) top
N1—C11.353 (3)C20A—C21A1.389 (6)
N1—C31.334 (3)C20B—C21B1.390 (6)
N2A—C2A1.373 (7)C22A—C23A1.496 (6)
N2A—C31.361 (6)C22B—C23B1.468 (12)
N2A—C22A1.461 (6)C23A—C24A1.254 (6)
N2B—C2B1.401 (12)C23B—C24B1.255 (19)
N2B—C22B1.477 (11)C5—H50.9500
N2B—C11.296 (8)C6—H60.9500
C1—C2A1.445 (7)C7—H70.9500
C1—C101.467 (3)C8—H80.9500
C2A—C16A1.469 (7)C9—H90.9500
C2B—C31.426 (10)C11—H110.9500
C2B—C16B1.477 (11)C12—H120.9500
C3—C41.471 (3)C13—H130.9500
C4—C51.395 (3)C14—H140.9500
C4—C91.392 (3)C15—H150.9500
C5—C61.387 (3)C17A—H17A0.9500
C6—C71.383 (4)C17B—H17B0.9500
C7—C81.382 (4)C18A—H18A0.9500
C8—C91.384 (4)C18B—H18B0.9500
C10—C111.397 (3)C19A—H19A0.9500
C10—C151.394 (3)C19B—H19B0.9500
C11—C121.384 (3)C20A—H20A0.9500
C12—C131.381 (3)C20B—H20B0.9500
C13—C141.382 (3)C21A—H21A0.9500
C14—C151.385 (3)C21B—H21B0.9500
C16A—C17A1.339 (9)C22A—H22A0.9900
C16A—C21A1.406 (6)C22A—H22B0.9900
C16B—C17B1.390 (6)C22B—H22C0.9900
C16B—C21B1.390 (6)C22B—H22D0.9900
C17A—C18A1.457 (7)C23A—H23A0.9500
C17B—C18B1.390 (6)C23B—H23B0.9500
C18A—C19A1.341 (5)C24A—H24A0.9500
C18B—C19B1.390 (6)C24A—H24B0.9500
C19A—C20A1.367 (6)C24B—H24C0.9500
C19B—C20B1.390 (6)C24B—H24D0.9500
C1—N1—C3107.06 (18)C6—C5—H5120.00
C2A—N2A—C3105.9 (4)C5—C6—H6120.00
C2A—N2A—C22A124.1 (5)C7—C6—H6120.00
C3—N2A—C22A129.4 (3)C6—C7—H7120.00
C2B—N2B—C22B124.0 (8)C8—C7—H7120.00
C1—N2B—C2B105.6 (7)C7—C8—H8120.00
C1—N2B—C22B130.0 (7)C9—C8—H8120.00
N1—C1—C2A107.2 (3)C4—C9—H9119.00
N2B—C1—C10122.9 (4)C8—C9—H9119.00
N1—C1—C10122.26 (19)C10—C11—H11120.00
N1—C1—N2B112.2 (4)C12—C11—H11120.00
C2A—C1—C10130.0 (3)C11—C12—H12120.00
N2A—C2A—C1106.6 (5)C13—C12—H12120.00
N2A—C2A—C16A122.1 (5)C12—C13—H13120.00
C1—C2A—C16A131.1 (4)C14—C13—H13120.00
N2B—C2B—C3106.7 (7)C13—C14—H14120.00
C3—C2B—C16B132.1 (7)C15—C14—H14120.00
N2B—C2B—C16B120.8 (8)C10—C15—H15120.00
C2B—C3—C4129.6 (4)C14—C15—H15120.00
N1—C3—C4122.82 (19)C16A—C17A—H17A120.00
N1—C3—C2B105.6 (4)C18A—C17A—H17A120.00
N1—C3—N2A112.5 (2)C16B—C17B—H17B120.00
N2A—C3—C4123.8 (2)C18B—C17B—H17B120.00
C5—C4—C9118.0 (2)C17A—C18A—H18A121.00
C3—C4—C5122.63 (19)C19A—C18A—H18A121.00
C3—C4—C9119.34 (19)C17B—C18B—H18B120.00
C4—C5—C6120.6 (2)C19B—C18B—H18B120.00
C5—C6—C7120.5 (2)C18A—C19A—H19A119.00
C6—C7—C8119.4 (2)C20A—C19A—H19A119.00
C7—C8—C9120.2 (2)C18B—C19B—H19B120.00
C4—C9—C8121.2 (2)C20B—C19B—H19B120.00
C11—C10—C15118.1 (2)C19A—C20A—H20A120.00
C1—C10—C11119.59 (19)C21A—C20A—H20A120.00
C1—C10—C15122.34 (19)C19B—C20B—H20B120.00
C10—C11—C12120.9 (2)C21B—C20B—H20B120.00
C11—C12—C13120.3 (2)C16A—C21A—H21A120.00
C12—C13—C14119.5 (2)C20A—C21A—H21A120.00
C13—C14—C15120.5 (2)C20B—C21B—H21B120.00
C10—C15—C14120.7 (2)C16B—C21B—H21B120.00
C17A—C16A—C21A119.3 (5)N2A—C22A—H22B108.00
C2A—C16A—C21A120.5 (4)N2A—C22A—H22A108.00
C2A—C16A—C17A120.3 (4)H22A—C22A—H22B107.00
C2B—C16B—C17B121.1 (5)C23A—C22A—H22A108.00
C17B—C16B—C21B120.0 (3)C23A—C22A—H22B108.00
C2B—C16B—C21B118.9 (5)N2B—C22B—H22D109.00
C16A—C17A—C18A120.4 (6)H22C—C22B—H22D108.00
C16B—C17B—C18B120.0 (4)C23B—C22B—H22C109.00
C17A—C18A—C19A118.6 (4)C23B—C22B—H22D109.00
C17B—C18B—C19B120.0 (4)N2B—C22B—H22C109.00
C18A—C19A—C20A121.7 (4)C22A—C23A—H23A117.00
C18B—C19B—C20B120.0 (3)C24A—C23A—H23A117.00
C19A—C20A—C21A119.8 (4)C22B—C23B—H23B112.00
C19B—C20B—C21B120.0 (4)C24B—C23B—H23B112.00
C16A—C21A—C20A120.2 (4)H24A—C24A—H24B120.00
C16B—C21B—C20B120.0 (4)C23A—C24A—H24A120.00
N2A—C22A—C23A115.9 (4)C23A—C24A—H24B120.00
N2B—C22B—C23B113.7 (7)C23B—C24B—H24C120.00
C22A—C23A—C24A125.4 (4)C23B—C24B—H24D120.00
C22B—C23B—C24B136.7 (11)H24C—C24B—H24D120.00
C4—C5—H5120.00
C3—N1—C1—C2A8.2 (3)N1—C3—C4—C5150.5 (2)
C3—N1—C1—C10179.56 (17)N2A—C3—C4—C9139.5 (3)
C1—N1—C3—N2A9.1 (3)C9—C4—C5—C61.4 (3)
C1—N1—C3—C4178.39 (17)C3—C4—C5—C6179.5 (2)
C3—N2A—C22A—C23A105.6 (5)C5—C4—C9—C81.2 (3)
C2A—N2A—C3—N16.0 (4)C3—C4—C9—C8179.6 (2)
C22A—N2A—C3—N1165.4 (4)C4—C5—C6—C70.7 (3)
C2A—N2A—C3—C4175.2 (3)C5—C6—C7—C80.1 (4)
C22A—N2A—C3—C43.8 (6)C6—C7—C8—C90.2 (4)
C3—N2A—C2A—C16A174.0 (4)C7—C8—C9—C40.4 (4)
C3—N2A—C2A—C10.6 (5)C1—C10—C11—C12179.6 (2)
C22A—N2A—C2A—C1171.4 (4)C11—C10—C15—C140.5 (3)
C2A—N2A—C22A—C23A84.4 (6)C1—C10—C15—C14179.8 (2)
C22A—N2A—C2A—C16A14.0 (8)C15—C10—C11—C121.1 (3)
N1—C1—C10—C1123.1 (3)C10—C11—C12—C130.8 (4)
N1—C1—C2A—N2A4.7 (4)C11—C12—C13—C140.1 (4)
C2A—C1—C10—C1514.0 (4)C12—C13—C14—C150.7 (4)
C2A—C1—C10—C11166.6 (3)C13—C14—C15—C100.4 (3)
N1—C1—C2A—C16A178.7 (5)C2A—C16A—C17A—C18A179.2 (5)
C10—C1—C2A—N2A176.1 (3)C17A—C16A—C21A—C20A0.6 (7)
C10—C1—C2A—C16A9.9 (7)C21A—C16A—C17A—C18A1.0 (8)
N1—C1—C10—C15156.25 (19)C2A—C16A—C21A—C20A179.6 (4)
N2A—C2A—C16A—C17A86.4 (7)C16A—C17A—C18A—C19A0.6 (8)
N2A—C2A—C16A—C21A93.4 (6)C17A—C18A—C19A—C20A0.2 (6)
C1—C2A—C16A—C21A79.8 (6)C18A—C19A—C20A—C21A0.6 (6)
C1—C2A—C16A—C17A100.4 (7)C19A—C20A—C21A—C16A0.2 (6)
N1—C3—C4—C928.6 (3)N2A—C22A—C23A—C24A8.4 (7)
N2A—C3—C4—C541.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C4–C9 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17A—H17A···N1i0.952.453.246 (8)141
C24A—H24A···N2A0.952.542.882 (8)101
C21A—H21A···Cg3ii0.952.983.888 (5)160
C21B—H21B···Cg4i0.952.993.914 (4)163
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H20N2
Mr336.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.362 (3), 8.938 (2), 19.387 (5)
β (°) 90.340 (5)
V3)1795.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.14 × 0.14 × 0.003
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
Tmin, Tmax0.990, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17127, 3168, 2442
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.183, 1.04
No. of reflections3168
No. of parameters299
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C4–C9 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17A—H17A···N1i0.952.453.246 (8)141
C21A—H21A···Cg3ii0.952.983.888 (5)160
C21B—H21B···Cg4i0.952.993.914 (4)163
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

Manchester Metropolitan University, Erciyes University and Granada University are gratefully acknowledged for supporting this study. The authors also thank José Romero Garzón, Centro de Instrumentación Científica, Universidad de Granada, for the data collection.

References

First citationAkkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013). Acta Cryst. E69, o527–o528.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBanfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Maurizio Fermeglia, M., Paneni, M. S. & Sabrina Pric, S. (2006). J. Antimicrob. Chemother. 58, 76–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBogle, R. G., Whitley, G. S., Soo, S. C., Johnstone, A. P. & Vallance, P. (1994). Br. J. Pharmacol. 111, 1257–1261.  CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastaño, T., Encinas, A., Pérez, C., Castro, A., Campillo, N. E. & Gil, C. (2008). Bioorg. Med. Chem. 16, 6193–6206.  Web of Science PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, J. R. (2010). Pharmacophore, 1, 167–177.  CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474–o475.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A. E., Santoyo-Gonzalez, F. & Elremaily, M. A. A. (2013b). Acta Cryst. E69, o875–o876.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o988-o989
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds