metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(dicyanamido-κN)[tris­­(3-amino­propyl)amine-κ4N]nickel(II)

aSchool of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
*Correspondence e-mail: liubaoshu@126.com

(Received 26 May 2013; accepted 5 June 2013; online 15 June 2013)

In the title complex, [Ni(C2N3)2(C9H24N4)], the NiII atom is coordinated in a distorted octa­hedral geometry by one tris­(3-amino­prop­yl)amine (tris­apa) ligand and two dicyanamide (dca) ligands [one of them disordered in a 0.681 (19):0319 (19) ratio]. Inter­molecular N—H⋯N hydrogen bonds involving the N atoms of the dca anions and the tris­apa amine H atoms result in the formation of a three-dimensional network.

Related literature

For magnetic properties and structural types of dicyanamide complexes, see: Batten (2005[Batten, S. R. (2005). J. Solid State Chem. 178, 2475-2479.]); Batten & Murray (2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]); Batten et al. (1998[Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Robson, R. (1998). J. Chem. Soc. Chem. Commun. pp. 439-440.]); Ghosh et al. (2011[Ghosh, T., Chattopadhyay, T., Das, S., Mondal, S., Suresh, E., Zangrando, E. & Das, D. (2011). Cryst. Growth Des. 11, 3198-3205.]); Ion et al. (2013[Ion, A. E., Nica, S., Madalan, A. M., Lloret, F., Julve, M. & Andruh, M. (2013). CrystEngComm, 15, 294-301.]); Manson et al. (1999[Manson, J. L., Kmety, C. R., Epstein, A. J. & Miller, J. S. (1999). Inorg. Chem. 38, 2552-2553.]); Mastropietro et al. (2013[Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270-281.]); Turner et al. (2011[Turner, D. R., Chesman, A. S. R., Murray, K. S., Deacon, G. B. & Batten, S. R. (2011). J. Chem. Soc. Chem. Commun. pp. 10189-10210.]). For dicyanamide complexes with multidentate Schiff bases, see: Sadhukhan et al. (2011[Sadhukhan, D., Ray, A., Butcher, R. J., Gómez Garclá, C. J., Dede, B. & Mitra, S. (2011). Inorg. Chim. Acta, 376, 245-254.]); Fondo et al. (2011[Fondo, M., Garclá-Deibe, A. M., Ocampo, N., Vicente, R., Sanmartlń, J. & Sanũdo, C. (2011). Inorg. Chim. Acta, 373, 73-78.]); Bhar et al. (2011[Bhar, K., Chattopadhyay, S., Khan, S., Kumar, R. K., Maji, T. K., Ribas, J. & Ghosh, B. K. (2011). Inorg. Chim. Acta, 370, 492-498.]). For dicyanamide complexes with polyamines as co-ligands, see: Khan et al. (2011[Khan, S., Bhar, K., Adarsh, N. N., Mitra, P., Ribas, J. & Ghosh, B. K. (2011). J. Mol. Struct. 1004, 138-145.]). For Ni—N bond lengths in aliphatic amine nickel complexes, see: Cho et al. (2002[Cho, J., Lee, U. & Kim, J. C. (2002). Transition Met. Chem. 27, 429-432.]); Brezina et al. (1999[Brezina, F., Travnlcek, Z., Sindelar, Z., Pastorek, R. & Marek, J. (1999). Transition Met. Chem. 24, 459-462.]) and in [Ni(tn)2{C2N3}](ClO4)(tn is tri­methyl­enedi­amine, see: Li et al. (2002[Li, B. L., Ding, J. G., Lang, J. P., Xu, Z. & Chen, J. T. (2002). J. Mol. Struct. 616, 175-179.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2N3)2(C9H24N4)]

  • Mr = 379.13

  • Monoclinic, P 21 /c

  • a = 10.171 (1) Å

  • b = 11.3960 (11) Å

  • c = 15.5305 (15) Å

  • β = 105.660 (2)°

  • V = 1733.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 213 K

  • 0.17 × 0.09 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.945

  • 12722 measured reflections

  • 4056 independent reflections

  • 3403 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.079

  • S = 1.07

  • 4056 reflections

  • 269 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯N10i 0.92 (2) 2.38 (2) 3.255 (2) 160 (2)
N2—H2D⋯N10ii 0.80 (2) 2.43 (2) 3.193 (2) 158 (2)
N3—H3D⋯N10i 0.90 (2) 2.36 (2) 3.154 (2) 148 (2)
N4—H4D⋯N7iii 0.90 (3) 2.19 (3) 3.094 (3) 176 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+2, -z; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, dicyanamide complexes have attracted considerable interest because of their fascinating magnetic properties and diverse structural types (Turner et al., 2011; Batten et al., 2005; Batten et al., 2003). For example, the binary transition metal dicyanamide complexes display long-range magnetic ordering, with the nature of the ordering dependent on the particular metal ion involved. Thus the Cr (47 K) and Mn (16 K) compounds are antiferromagnets (Manson et al., 1999), while the Co (9 K) and Ni systems (21 K) are ferromagents (Batten et al., 1998). It is well known that the structure and the magnetic property of the complexes are related to the nature of the co-ligands (Ghosh et al., 2011; Mastropietro et al., 2013; Ion et al., 2013). Although a great effort is focused on studies of dicyanamide complexes with multidentate schiff bases (Sadhukhan et al., 2011; Fondo et al., 2011; Bhar et al., 2011), few dicyanamide complexes with polyamines as co-ligands have been reported recently (Khan et al., 2011). To further study the effect of the nature of co-ligands on the structures and properties of dicyanamide complexes, we herein report the synthesis and crystal structure of the title new nickel dicyanamide complex [Ni(trisapa)(C2N3)2] (I).

The nickel ion in I is coordinated by four N atoms from the tris(3-aminopropyl) amine and two terminal N atoms from two dicyanamide anions to form a distorted octahedral geometry, in which the equatorial plane is formed by the three N atoms(N2, N3, N4) of tris(3-aminopropyl)amine and one nitrile N atom (N8) of a monodentate (disordered) dicyanamide, where the disorder atoms are C12 and C12', N9 and N9', C13 and C13' respectively. The two apical sites are occupied by one trisapa N atom(N1) and one nitrile N atom (N5) of another monodentate dicyanamide (Fig. 1). Table. 2 shows the intermolecular hydrogen interactions between the uncoordinated N atoms of dicyanamide anions and the amine H atoms of trisapa, responsible of the construction of a three-dimensional network (Fig. 2). The Ni—N (trisapa) distances (2.100 (2)–2.196 (1) Å) are rather different, with values similar to the corresponding distances in the aliphatic amine nickel complexes (Cho et al., 2002; Brezina et al., 1999). The apical Ni—N (dicyanamide) distance(2.145 (1) Å) is slightly longer than the basal Ni—N(dicyanamide) distance(2.090 (2) Å). These distances in I are comparable to the corresponding ones in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, Li et al., 2002). In I, N—Ni—N cis angles range from 89.36 (7)° to 90.37 (6)° (basal-basal) and 84.32 (6)° to 95.61 (6)° (basal-apical), indicating that the distortion from an ideal octahedral geometry in I is not serious.

Related literature top

For magnetic properties and structural types of dicyanamide complexes, see: Batten (2005); Batten & Murray (2003); Batten et al. (1998); Ghosh et al. (2011); Ion et al. (2013); Manson et al. (1999); Mastropietro et al. (2013); Turner et al. (2011). For dicyanamide complexes with multidentate Schiff bases, see: Sadhukhan et al. (2011); Fondo et al. (2011); Bhar et al. (2011) and for dicyanamide complexes with polyamines as co-ligands, see: Khan et al. (2011). For Ni—N bond lengths in aliphatic amine nickel complexes, see: Cho et al. (2002); Brezina et al. (1999) and in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, see: Li et al. (2002).

Experimental top

A 4 ml ethanol solution of tris(3-aminopropyl)amine(0.10 mmol, 18.83 mg) and a 4 ml e thanol solution of nickel nitrate(0.10 mmol, 29.08 mg) were mixed and stirred for 5 min, the mixed solution was pale-blue. To the mixture was added a 2 ml aqueous solution of sodium dicyanamide (0.20 mmol, 17.81 mg). After stirred for another 5 min, the solution was filtered and the filtrate was slowly evaporated in air. After one week, blue block crystals of I were isolated in 34% yield. Anal: Calculated for C13H24N10Ni: C 41.18%, H 6.38%, N 36.95%. Found C 40.86%, H 6.47%, N 37.07%.

Refinement top

One of the dicyanamide units is disordered in two halves, which were refined with restraints (both metric as in displacement factors). The corresponding occupation factors refined to 0.681/0.319 (19). The amine H atom were found from difference maps and refined freely with a final N—H range 0.80 (2) Å - 0.92 (2) Å. Remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.98 Å and Uiso(H) = 1.2 × U(Host) .

Structure description top

Recently, dicyanamide complexes have attracted considerable interest because of their fascinating magnetic properties and diverse structural types (Turner et al., 2011; Batten et al., 2005; Batten et al., 2003). For example, the binary transition metal dicyanamide complexes display long-range magnetic ordering, with the nature of the ordering dependent on the particular metal ion involved. Thus the Cr (47 K) and Mn (16 K) compounds are antiferromagnets (Manson et al., 1999), while the Co (9 K) and Ni systems (21 K) are ferromagents (Batten et al., 1998). It is well known that the structure and the magnetic property of the complexes are related to the nature of the co-ligands (Ghosh et al., 2011; Mastropietro et al., 2013; Ion et al., 2013). Although a great effort is focused on studies of dicyanamide complexes with multidentate schiff bases (Sadhukhan et al., 2011; Fondo et al., 2011; Bhar et al., 2011), few dicyanamide complexes with polyamines as co-ligands have been reported recently (Khan et al., 2011). To further study the effect of the nature of co-ligands on the structures and properties of dicyanamide complexes, we herein report the synthesis and crystal structure of the title new nickel dicyanamide complex [Ni(trisapa)(C2N3)2] (I).

The nickel ion in I is coordinated by four N atoms from the tris(3-aminopropyl) amine and two terminal N atoms from two dicyanamide anions to form a distorted octahedral geometry, in which the equatorial plane is formed by the three N atoms(N2, N3, N4) of tris(3-aminopropyl)amine and one nitrile N atom (N8) of a monodentate (disordered) dicyanamide, where the disorder atoms are C12 and C12', N9 and N9', C13 and C13' respectively. The two apical sites are occupied by one trisapa N atom(N1) and one nitrile N atom (N5) of another monodentate dicyanamide (Fig. 1). Table. 2 shows the intermolecular hydrogen interactions between the uncoordinated N atoms of dicyanamide anions and the amine H atoms of trisapa, responsible of the construction of a three-dimensional network (Fig. 2). The Ni—N (trisapa) distances (2.100 (2)–2.196 (1) Å) are rather different, with values similar to the corresponding distances in the aliphatic amine nickel complexes (Cho et al., 2002; Brezina et al., 1999). The apical Ni—N (dicyanamide) distance(2.145 (1) Å) is slightly longer than the basal Ni—N(dicyanamide) distance(2.090 (2) Å). These distances in I are comparable to the corresponding ones in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, Li et al., 2002). In I, N—Ni—N cis angles range from 89.36 (7)° to 90.37 (6)° (basal-basal) and 84.32 (6)° to 95.61 (6)° (basal-apical), indicating that the distortion from an ideal octahedral geometry in I is not serious.

For magnetic properties and structural types of dicyanamide complexes, see: Batten (2005); Batten & Murray (2003); Batten et al. (1998); Ghosh et al. (2011); Ion et al. (2013); Manson et al. (1999); Mastropietro et al. (2013); Turner et al. (2011). For dicyanamide complexes with multidentate Schiff bases, see: Sadhukhan et al. (2011); Fondo et al. (2011); Bhar et al. (2011) and for dicyanamide complexes with polyamines as co-ligands, see: Khan et al. (2011). For Ni—N bond lengths in aliphatic amine nickel complexes, see: Cho et al. (2002); Brezina et al. (1999) and in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, see: Li et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of I showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. In open bonds, the minor disordered part of the molecule. H atoms not shown, for clarity.
[Figure 2] Fig. 2. Three dimensional network in I formed by hydrogen-bonding interactions.
Bis(dicyanamido-κN)[tris(3-aminopropyl)amine-κ4N]nickel(II) top
Crystal data top
[Ni(C2N3)2(C9H24N4)]F(000) = 800
Mr = 379.13Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5066 reflections
a = 10.171 (1) Åθ = 2.3–27.7°
b = 11.3960 (11) ŵ = 1.14 mm1
c = 15.5305 (15) ÅT = 213 K
β = 105.660 (2)°Block, blue
V = 1733.3 (3) Å30.17 × 0.09 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4056 independent reflections
Radiation source: fine-focus sealed tube3403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1113
Tmin = 0.830, Tmax = 0.945k = 1414
12722 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.0784P]
where P = (Fo2 + 2Fc2)/3
4056 reflections(Δ/σ)max = 0.006
269 parametersΔρmax = 0.38 e Å3
20 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C2N3)2(C9H24N4)]V = 1733.3 (3) Å3
Mr = 379.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.171 (1) ŵ = 1.14 mm1
b = 11.3960 (11) ÅT = 213 K
c = 15.5305 (15) Å0.17 × 0.09 × 0.05 mm
β = 105.660 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4056 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3403 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.945Rint = 0.024
12722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02720 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.38 e Å3
4056 reflectionsΔρmin = 0.32 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.75943 (2)0.944842 (17)0.199688 (12)0.01927 (8)
N10.78081 (14)0.76691 (11)0.25612 (9)0.0232 (3)
N20.63129 (16)0.88585 (14)0.07694 (9)0.0274 (3)
H2C0.541 (2)0.8859 (18)0.0774 (13)0.034 (5)*
H2D0.636 (2)0.9404 (16)0.0450 (14)0.024 (5)*
N30.58711 (15)0.98960 (13)0.24394 (10)0.0230 (3)
H3C0.605 (2)1.0556 (15)0.2735 (13)0.020 (5)*
H3D0.525 (2)1.0082 (19)0.1927 (15)0.035 (5)*
N40.88525 (17)1.02601 (14)0.31382 (11)0.0296 (3)
H4C0.921 (2)1.0799 (19)0.2941 (15)0.038 (6)*
H4D0.829 (2)1.0540 (17)0.3450 (16)0.038 (6)*
N50.73577 (17)1.11767 (13)0.14290 (10)0.0325 (3)
N60.6910 (2)1.31289 (14)0.07638 (12)0.0460 (4)
N70.7027 (2)1.38147 (16)0.07076 (12)0.0514 (5)
N80.93047 (16)0.91772 (14)0.15190 (11)0.0336 (3)
N101.32388 (17)0.95680 (15)0.08290 (11)0.0370 (4)
C10.7900 (2)0.67980 (16)0.18584 (13)0.0344 (4)
H1A0.80500.60200.21370.041*
H1B0.87090.69880.16560.041*
C20.6680 (2)0.67200 (16)0.10390 (13)0.0373 (4)
H2A0.67330.59820.07260.045*
H2B0.58420.67000.12350.045*
C30.6591 (2)0.77285 (18)0.03917 (12)0.0372 (4)
H3A0.74530.77860.02270.045*
H3B0.58640.75670.01540.045*
C40.67169 (19)0.72696 (15)0.29801 (12)0.0304 (4)
H4A0.70620.73830.36280.037*
H4B0.65950.64230.28760.037*
C50.53150 (19)0.78395 (14)0.26810 (12)0.0285 (4)
H5A0.50000.78120.20270.034*
H5B0.46740.73780.29140.034*
C60.5276 (2)0.90978 (15)0.29799 (13)0.0318 (4)
H6A0.43280.93260.29250.038*
H6B0.57860.91660.36110.038*
C70.91496 (19)0.75441 (16)0.32628 (13)0.0336 (4)
H7A0.98850.75770.29650.040*
H7B0.91790.67640.35330.040*
C80.9448 (2)0.84521 (17)0.40100 (12)0.0374 (4)
H8A0.86090.86020.41880.045*
H8B1.01250.81300.45300.045*
C90.9974 (2)0.96002 (16)0.37472 (13)0.0350 (4)
H9A1.03691.00690.42840.042*
H9B1.06930.94460.34500.042*
C100.71677 (18)1.20685 (15)0.10710 (11)0.0271 (4)
C110.6993 (2)1.34348 (16)0.00333 (13)0.0342 (4)
N91.0877 (5)0.8948 (10)0.0568 (4)0.066 (2)0.681 (19)
C121.0075 (9)0.9122 (9)0.1113 (6)0.0352 (18)0.681 (19)
C131.2146 (8)0.9299 (11)0.0737 (6)0.0328 (15)0.681 (19)
N9'1.1203 (14)0.8524 (7)0.1020 (17)0.063 (4)0.319 (19)
C12'1.027 (2)0.8940 (19)0.1275 (14)0.048 (6)0.319 (19)
C13'1.2234 (14)0.915 (2)0.0963 (13)0.031 (3)0.319 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01766 (12)0.02156 (12)0.01955 (12)0.00006 (8)0.00666 (8)0.00235 (7)
N10.0205 (7)0.0213 (6)0.0279 (7)0.0009 (5)0.0069 (5)0.0020 (5)
N20.0251 (8)0.0366 (8)0.0214 (7)0.0007 (6)0.0077 (6)0.0019 (6)
N30.0240 (7)0.0213 (7)0.0256 (7)0.0011 (6)0.0100 (6)0.0000 (6)
N40.0286 (8)0.0293 (8)0.0288 (8)0.0061 (7)0.0039 (6)0.0000 (6)
N50.0375 (9)0.0319 (8)0.0303 (8)0.0003 (7)0.0131 (7)0.0089 (6)
N60.0673 (13)0.0314 (8)0.0454 (10)0.0115 (8)0.0256 (9)0.0137 (7)
N70.0540 (12)0.0509 (11)0.0462 (10)0.0011 (9)0.0080 (9)0.0253 (9)
N80.0250 (8)0.0422 (8)0.0369 (8)0.0008 (7)0.0139 (7)0.0003 (7)
N100.0255 (9)0.0523 (10)0.0350 (9)0.0021 (7)0.0113 (7)0.0009 (7)
C10.0341 (10)0.0251 (9)0.0456 (11)0.0076 (7)0.0135 (8)0.0032 (7)
C20.0378 (11)0.0320 (9)0.0435 (10)0.0030 (8)0.0134 (8)0.0172 (8)
C30.0337 (10)0.0519 (11)0.0271 (9)0.0036 (9)0.0103 (8)0.0150 (8)
C40.0333 (10)0.0267 (8)0.0323 (9)0.0058 (7)0.0106 (7)0.0050 (7)
C50.0291 (9)0.0268 (8)0.0337 (9)0.0078 (7)0.0156 (7)0.0030 (7)
C60.0398 (11)0.0269 (8)0.0366 (10)0.0033 (8)0.0241 (8)0.0021 (7)
C70.0253 (9)0.0320 (9)0.0397 (10)0.0043 (7)0.0022 (8)0.0099 (8)
C80.0323 (10)0.0454 (11)0.0281 (9)0.0045 (8)0.0029 (7)0.0113 (8)
C90.0279 (10)0.0427 (11)0.0292 (9)0.0070 (8)0.0013 (7)0.0043 (7)
C100.0255 (9)0.0330 (9)0.0248 (8)0.0011 (7)0.0104 (7)0.0034 (7)
C110.0291 (10)0.0302 (9)0.0405 (10)0.0000 (7)0.0046 (8)0.0097 (8)
N90.039 (2)0.117 (5)0.051 (3)0.030 (2)0.029 (2)0.044 (3)
C120.023 (3)0.045 (5)0.040 (2)0.003 (2)0.013 (2)0.012 (2)
C130.031 (2)0.050 (4)0.021 (3)0.0063 (18)0.0128 (17)0.008 (3)
N9'0.055 (5)0.040 (4)0.117 (10)0.004 (3)0.062 (6)0.018 (4)
C12'0.021 (6)0.018 (4)0.107 (14)0.006 (4)0.021 (8)0.005 (6)
C13'0.034 (5)0.044 (6)0.025 (8)0.003 (4)0.025 (5)0.005 (6)
Geometric parameters (Å, º) top
Ni1—N82.090 (2)C1—H1A0.9800
Ni1—N42.100 (2)C1—H1B0.9800
Ni1—N22.108 (1)C2—C31.513 (3)
Ni1—N32.111 (1)C2—H2A0.9800
Ni1—N52.145 (1)C2—H2B0.9800
Ni1—N12.196 (1)C3—H3A0.9800
N1—C11.497 (2)C3—H3B0.9800
N1—C41.501 (2)C4—C51.521 (3)
N1—C71.506 (2)C4—H4A0.9800
N2—C31.474 (2)C4—H4B0.9800
N2—H2C0.92 (2)C5—C61.511 (2)
N2—H2D0.80 (2)C5—H5A0.9800
N3—C61.474 (2)C5—H5B0.9800
N3—H3C0.87 (2)C6—H6A0.9800
N3—H3D0.90 (2)C6—H6B0.9800
N4—C91.476 (2)C7—C81.523 (3)
N4—H4C0.82 (2)C7—H7A0.9800
N4—H4D0.90 (3)C7—H7B0.9800
N5—C101.150 (2)C8—C91.511 (3)
N6—C101.300 (2)C8—H8A0.9800
N6—C111.311 (3)C8—H8B0.9800
N7—C111.142 (3)C9—H9A0.9800
N8—C121.132 (6)C9—H9B0.9800
N8—C12'1.18 (1)N9—C131.309 (8)
N10—C131.124 (7)N9—C121.339 (7)
N10—C13'1.20 (1)N9'—C12'1.22 (2)
C1—C21.522 (3)N9'—C13'1.29 (2)
N8—Ni1—N489.36 (7)C1—C2—H2B108.8
N8—Ni1—N290.14 (6)H2A—C2—H2B107.7
N4—Ni1—N2172.26 (6)N2—C3—C2112.5 (1)
N8—Ni1—N3174.36 (6)N2—C3—H3A109.1
N4—Ni1—N389.38 (7)C2—C3—H3A109.1
N2—Ni1—N390.37 (6)N2—C3—H3B109.1
N8—Ni1—N590.09 (6)C2—C3—H3B109.1
N4—Ni1—N585.28 (6)H3A—C3—H3B107.8
N2—Ni1—N587.00 (6)N1—C4—C5118.7 (1)
N3—Ni1—N584.32 (6)N1—C4—H4A107.6
N8—Ni1—N190.16 (6)C5—C4—H4A107.6
N4—Ni1—N195.61 (6)N1—C4—H4B107.6
N2—Ni1—N192.11 (6)C5—C4—H4B107.6
N3—Ni1—N195.43 (5)H4A—C4—H4B107.1
N5—Ni1—N1179.08 (6)C6—C5—C4114.3 (2)
C1—N1—C4108.3 (1)C6—C5—H5A108.7
C1—N1—C7104.0 (1)C4—C5—H5A108.7
C4—N1—C7106.8 (1)C6—C5—H5B108.7
C1—N1—Ni1109.9 (1)C4—C5—H5B108.7
C4—N1—Ni1116.6 (1)H5A—C5—H5B107.6
C7—N1—Ni1110.4 (1)N3—C6—C5111.2 (1)
C3—N2—Ni1120.0 (1)N3—C6—H6A109.4
C3—N2—H2C108 (1)C5—C6—H6A109.4
Ni1—N2—H2C112 (1)N3—C6—H6B109.4
C3—N2—H2D112 (1)C5—C6—H6B109.4
Ni1—N2—H2D101 (1)H6A—C6—H6B108.0
H2C—N2—H2D103 (2)N1—C7—C8116.3 (2)
C6—N3—Ni1122.8 (1)N1—C7—H7A108.2
C6—N3—H3C107 (1)C8—C7—H7A108.2
Ni1—N3—H3C108 (1)N1—C7—H7B108.2
C6—N3—H3D111 (1)C8—C7—H7B108.2
Ni1—N3—H3D102 (1)H7A—C7—H7B107.4
H3C—N3—H3D105 (2)C9—C8—C7113.3 (2)
C9—N4—Ni1120.4 (1)C9—C8—H8A108.9
C9—N4—H4C106 (2)C7—C8—H8A108.9
Ni1—N4—H4C104 (2)C9—C8—H8B108.9
C9—N4—H4D109 (1)C7—C8—H8B108.9
Ni1—N4—H4D106 (1)H8A—C8—H8B107.7
H4C—N4—H4D111 (2)N4—C9—C8110.2 (2)
C10—N5—Ni1175.1 (2)N4—C9—H9A109.6
C10—N6—C11122.4 (2)C8—C9—H9A109.6
C12—N8—Ni1166.7 (6)N4—C9—H9B109.6
C12'—N8—Ni1175 (1)C8—C9—H9B109.6
N1—C1—C2116.8 (2)H9A—C9—H9B108.1
N1—C1—H1A108.1N5—C10—N6172.1 (2)
C2—C1—H1A108.1N7—C11—N6172.9 (2)
N1—C1—H1B108.1C13—N9—C12124.3 (7)
C2—C1—H1B108.1N8—C12—N9172.3 (9)
H1A—C1—H1B107.3N10—C13—N9175 (1)
C3—C2—C1113.6 (2)C12'—N9'—C13'122 (2)
C3—C2—H2A108.8N8—C12'—N9'170 (2)
C1—C2—H2A108.8N10—C13'—N9'169 (2)
C3—C2—H2B108.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···N10i0.92 (2)2.38 (2)3.255 (2)160 (2)
N2—H2D···N10ii0.80 (2)2.43 (2)3.193 (2)158 (2)
N3—H3D···N10i0.90 (2)2.36 (2)3.154 (2)148 (2)
N4—H4D···N7iii0.90 (3)2.19 (3)3.094 (3)176 (2)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z; (iii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2N3)2(C9H24N4)]
Mr379.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)213
a, b, c (Å)10.171 (1), 11.3960 (11), 15.5305 (15)
β (°) 105.660 (2)
V3)1733.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.17 × 0.09 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.830, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
12722, 4056, 3403
Rint0.024
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.07
No. of reflections4056
No. of parameters269
No. of restraints20
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···N10i0.92 (2)2.38 (2)3.255 (2)160 (2)
N2—H2D···N10ii0.80 (2)2.43 (2)3.193 (2)158 (2)
N3—H3D···N10i0.90 (2)2.36 (2)3.154 (2)148 (2)
N4—H4D···N7iii0.90 (3)2.19 (3)3.094 (3)176 (2)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z; (iii) x, y+5/2, z+1/2.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China. (NSFC 20571086).

References

First citationBatten, S. R. (2005). J. Solid State Chem. 178, 2475–2479.  Web of Science CrossRef CAS Google Scholar
First citationBatten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Robson, R. (1998). J. Chem. Soc. Chem. Commun. pp. 439–440.  CrossRef Google Scholar
First citationBatten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.  Web of Science CrossRef CAS Google Scholar
First citationBhar, K., Chattopadhyay, S., Khan, S., Kumar, R. K., Maji, T. K., Ribas, J. & Ghosh, B. K. (2011). Inorg. Chim. Acta, 370, 492–498.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrezina, F., Travnlcek, Z., Sindelar, Z., Pastorek, R. & Marek, J. (1999). Transition Met. Chem. 24, 459–462.  CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, J., Lee, U. & Kim, J. C. (2002). Transition Met. Chem. 27, 429–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationFondo, M., Garclá-Deibe, A. M., Ocampo, N., Vicente, R., Sanmartlń, J. & Sanũdo, C. (2011). Inorg. Chim. Acta, 373, 73–78.  Web of Science CrossRef CAS Google Scholar
First citationGhosh, T., Chattopadhyay, T., Das, S., Mondal, S., Suresh, E., Zangrando, E. & Das, D. (2011). Cryst. Growth Des. 11, 3198–3205.  Web of Science CSD CrossRef CAS Google Scholar
First citationIon, A. E., Nica, S., Madalan, A. M., Lloret, F., Julve, M. & Andruh, M. (2013). CrystEngComm, 15, 294–301.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, S., Bhar, K., Adarsh, N. N., Mitra, P., Ribas, J. & Ghosh, B. K. (2011). J. Mol. Struct. 1004, 138–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, B. L., Ding, J. G., Lang, J. P., Xu, Z. & Chen, J. T. (2002). J. Mol. Struct. 616, 175–179.  Web of Science CSD CrossRef CAS Google Scholar
First citationManson, J. L., Kmety, C. R., Epstein, A. J. & Miller, J. S. (1999). Inorg. Chem. 38, 2552–2553.  Web of Science CrossRef CAS Google Scholar
First citationMastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationSadhukhan, D., Ray, A., Butcher, R. J., Gómez Garclá, C. J., Dede, B. & Mitra, S. (2011). Inorg. Chim. Acta, 376, 245–254.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, D. R., Chesman, A. S. R., Murray, K. S., Deacon, G. B. & Batten, S. R. (2011). J. Chem. Soc. Chem. Commun. pp. 10189–10210.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds