metal-organic compounds
Bis(dicyanamido-κN)[tris(3-aminopropyl)amine-κ4N]nickel(II)
aSchool of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
*Correspondence e-mail: liubaoshu@126.com
In the title complex, [Ni(C2N3)2(C9H24N4)], the NiII atom is coordinated in a distorted octahedral geometry by one tris(3-aminopropyl)amine (trisapa) ligand and two dicyanamide (dca) ligands [one of them disordered in a 0.681 (19):0319 (19) ratio]. Intermolecular N—H⋯N hydrogen bonds involving the N atoms of the dca anions and the trisapa amine H atoms result in the formation of a three-dimensional network.
Related literature
For magnetic properties and structural types of dicyanamide complexes, see: Batten (2005); Batten & Murray (2003); Batten et al. (1998); Ghosh et al. (2011); Ion et al. (2013); Manson et al. (1999); Mastropietro et al. (2013); Turner et al. (2011). For dicyanamide complexes with multidentate see: Sadhukhan et al. (2011); Fondo et al. (2011); Bhar et al. (2011). For dicyanamide complexes with polyamines as co-ligands, see: Khan et al. (2011). For Ni—N bond lengths in aliphatic amine nickel complexes, see: Cho et al. (2002); Brezina et al. (1999) and in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, see: Li et al. (2002).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536813015651/bg2508sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813015651/bg2508Isup2.hkl
A 4 ml ethanol solution of tris(3-aminopropyl)amine(0.10 mmol, 18.83 mg) and a 4 ml e thanol solution of nickel nitrate(0.10 mmol, 29.08 mg) were mixed and stirred for 5 min, the mixed solution was pale-blue. To the mixture was added a 2 ml aqueous solution of sodium dicyanamide (0.20 mmol, 17.81 mg). After stirred for another 5 min, the solution was filtered and the filtrate was slowly evaporated in air. After one week, blue block crystals of I were isolated in 34% yield. Anal: Calculated for C13H24N10Ni: C 41.18%, H 6.38%, N 36.95%. Found C 40.86%, H 6.47%, N 37.07%.
One of the dicyanamide units is disordered in two halves, which were refined with restraints (both metric as in displacement factors). The corresponding occupation factors refined to 0.681/0.319 (19). The amine H atom were found from difference maps and refined freely with a final N—H range 0.80 (2) Å - 0.92 (2) Å. Remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.98 Å and Uiso(H) = 1.2 × U(Host) .
Recently, dicyanamide complexes have attracted considerable interest because of their fascinating magnetic properties and diverse structural types (Turner et al., 2011; Batten et al., 2005; Batten et al., 2003). For example, the binary transition metal dicyanamide complexes display long-range magnetic ordering, with the nature of the ordering dependent on the particular metal ion involved. Thus the Cr (47 K) and Mn (16 K) compounds are antiferromagnets (Manson et al., 1999), while the Co (9 K) and Ni systems (21 K) are ferromagents (Batten et al., 1998). It is well known that the structure and the magnetic property of the complexes are related to the nature of the co-ligands (Ghosh et al., 2011; Mastropietro et al., 2013; Ion et al., 2013). Although a great effort is focused on studies of dicyanamide complexes with multidentate
(Sadhukhan et al., 2011; Fondo et al., 2011; Bhar et al., 2011), few dicyanamide complexes with polyamines as co-ligands have been reported recently (Khan et al., 2011). To further study the effect of the nature of co-ligands on the structures and properties of dicyanamide complexes, we herein report the synthesis and of the title new nickel dicyanamide complex [Ni(trisapa)(C2N3)2] (I).The nickel ion in I is coordinated by four N atoms from the tris(3-aminopropyl) amine and two terminal N atoms from two dicyanamide anions to form a distorted octahedral geometry, in which the equatorial plane is formed by the three N atoms(N2, N3, N4) of tris(3-aminopropyl)amine and one nitrile N atom (N8) of a monodentate (disordered) dicyanamide, where the disorder atoms are C12 and C12', N9 and N9', C13 and C13' respectively. The two apical sites are occupied by one trisapa N atom(N1) and one nitrile N atom (N5) of another monodentate dicyanamide (Fig. 1). Table. 2 shows the intermolecular hydrogen interactions between the uncoordinated N atoms of dicyanamide anions and the amine H atoms of trisapa, responsible of the construction of a three-dimensional network (Fig. 2). The Ni—N (trisapa) distances (2.100 (2)–2.196 (1) Å) are rather different, with values similar to the corresponding distances in the aliphatic amine nickel complexes (Cho et al., 2002; Brezina et al., 1999). The apical Ni—N (dicyanamide) distance(2.145 (1) Å) is slightly longer than the basal Ni—N(dicyanamide) distance(2.090 (2) Å). These distances in I are comparable to the corresponding ones in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, Li et al., 2002). In I, N—Ni—N cis angles range from 89.36 (7)° to 90.37 (6)° (basal-basal) and 84.32 (6)° to 95.61 (6)° (basal-apical), indicating that the distortion from an ideal octahedral geometry in I is not serious.
For magnetic properties and structural types of dicyanamide complexes, see: Batten (2005); Batten & Murray (2003); Batten et al. (1998); Ghosh et al. (2011); Ion et al. (2013); Manson et al. (1999); Mastropietro et al. (2013); Turner et al. (2011). For dicyanamide complexes with multidentate
see: Sadhukhan et al. (2011); Fondo et al. (2011); Bhar et al. (2011) and for dicyanamide complexes with polyamines as co-ligands, see: Khan et al. (2011). For Ni—N bond lengths in aliphatic amine nickel complexes, see: Cho et al. (2002); Brezina et al. (1999) and in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, see: Li et al. (2002).Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the molecule of I showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. In open bonds, the minor disordered part of the molecule. H atoms not shown, for clarity. | |
Fig. 2. Three dimensional network in I formed by hydrogen-bonding interactions. |
[Ni(C2N3)2(C9H24N4)] | F(000) = 800 |
Mr = 379.13 | Dx = 1.453 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5066 reflections |
a = 10.171 (1) Å | θ = 2.3–27.7° |
b = 11.3960 (11) Å | µ = 1.14 mm−1 |
c = 15.5305 (15) Å | T = 213 K |
β = 105.660 (2)° | Block, blue |
V = 1733.3 (3) Å3 | 0.17 × 0.09 × 0.05 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 4056 independent reflections |
Radiation source: fine-focus sealed tube | 3403 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 27.8°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −11→13 |
Tmin = 0.830, Tmax = 0.945 | k = −14→14 |
12722 measured reflections | l = −20→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0475P)2 + 0.0784P] where P = (Fo2 + 2Fc2)/3 |
4056 reflections | (Δ/σ)max = 0.006 |
269 parameters | Δρmax = 0.38 e Å−3 |
20 restraints | Δρmin = −0.32 e Å−3 |
[Ni(C2N3)2(C9H24N4)] | V = 1733.3 (3) Å3 |
Mr = 379.13 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.171 (1) Å | µ = 1.14 mm−1 |
b = 11.3960 (11) Å | T = 213 K |
c = 15.5305 (15) Å | 0.17 × 0.09 × 0.05 mm |
β = 105.660 (2)° |
Bruker SMART APEX CCD area-detector diffractometer | 4056 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 3403 reflections with I > 2σ(I) |
Tmin = 0.830, Tmax = 0.945 | Rint = 0.024 |
12722 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 20 restraints |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.38 e Å−3 |
4056 reflections | Δρmin = −0.32 e Å−3 |
269 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.75943 (2) | 0.944842 (17) | 0.199688 (12) | 0.01927 (8) | |
N1 | 0.78081 (14) | 0.76691 (11) | 0.25612 (9) | 0.0232 (3) | |
N2 | 0.63129 (16) | 0.88585 (14) | 0.07694 (9) | 0.0274 (3) | |
H2C | 0.541 (2) | 0.8859 (18) | 0.0774 (13) | 0.034 (5)* | |
H2D | 0.636 (2) | 0.9404 (16) | 0.0450 (14) | 0.024 (5)* | |
N3 | 0.58711 (15) | 0.98960 (13) | 0.24394 (10) | 0.0230 (3) | |
H3C | 0.605 (2) | 1.0556 (15) | 0.2735 (13) | 0.020 (5)* | |
H3D | 0.525 (2) | 1.0082 (19) | 0.1927 (15) | 0.035 (5)* | |
N4 | 0.88525 (17) | 1.02601 (14) | 0.31382 (11) | 0.0296 (3) | |
H4C | 0.921 (2) | 1.0799 (19) | 0.2941 (15) | 0.038 (6)* | |
H4D | 0.829 (2) | 1.0540 (17) | 0.3450 (16) | 0.038 (6)* | |
N5 | 0.73577 (17) | 1.11767 (13) | 0.14290 (10) | 0.0325 (3) | |
N6 | 0.6910 (2) | 1.31289 (14) | 0.07638 (12) | 0.0460 (4) | |
N7 | 0.7027 (2) | 1.38147 (16) | −0.07076 (12) | 0.0514 (5) | |
N8 | 0.93047 (16) | 0.91772 (14) | 0.15190 (11) | 0.0336 (3) | |
N10 | 1.32388 (17) | 0.95680 (15) | 0.08290 (11) | 0.0370 (4) | |
C1 | 0.7900 (2) | 0.67980 (16) | 0.18584 (13) | 0.0344 (4) | |
H1A | 0.8050 | 0.6020 | 0.2137 | 0.041* | |
H1B | 0.8709 | 0.6988 | 0.1656 | 0.041* | |
C2 | 0.6680 (2) | 0.67200 (16) | 0.10390 (13) | 0.0373 (4) | |
H2A | 0.6733 | 0.5982 | 0.0726 | 0.045* | |
H2B | 0.5842 | 0.6700 | 0.1235 | 0.045* | |
C3 | 0.6591 (2) | 0.77285 (18) | 0.03917 (12) | 0.0372 (4) | |
H3A | 0.7453 | 0.7786 | 0.0227 | 0.045* | |
H3B | 0.5864 | 0.7567 | −0.0154 | 0.045* | |
C4 | 0.67169 (19) | 0.72696 (15) | 0.29801 (12) | 0.0304 (4) | |
H4A | 0.7062 | 0.7383 | 0.3628 | 0.037* | |
H4B | 0.6595 | 0.6423 | 0.2876 | 0.037* | |
C5 | 0.53150 (19) | 0.78395 (14) | 0.26810 (12) | 0.0285 (4) | |
H5A | 0.5000 | 0.7812 | 0.2027 | 0.034* | |
H5B | 0.4674 | 0.7378 | 0.2914 | 0.034* | |
C6 | 0.5276 (2) | 0.90978 (15) | 0.29799 (13) | 0.0318 (4) | |
H6A | 0.4328 | 0.9326 | 0.2925 | 0.038* | |
H6B | 0.5786 | 0.9166 | 0.3611 | 0.038* | |
C7 | 0.91496 (19) | 0.75441 (16) | 0.32628 (13) | 0.0336 (4) | |
H7A | 0.9885 | 0.7577 | 0.2965 | 0.040* | |
H7B | 0.9179 | 0.6764 | 0.3533 | 0.040* | |
C8 | 0.9448 (2) | 0.84521 (17) | 0.40100 (12) | 0.0374 (4) | |
H8A | 0.8609 | 0.8602 | 0.4188 | 0.045* | |
H8B | 1.0125 | 0.8130 | 0.4530 | 0.045* | |
C9 | 0.9974 (2) | 0.96002 (16) | 0.37472 (13) | 0.0350 (4) | |
H9A | 1.0369 | 1.0069 | 0.4284 | 0.042* | |
H9B | 1.0693 | 0.9446 | 0.3450 | 0.042* | |
C10 | 0.71677 (18) | 1.20685 (15) | 0.10710 (11) | 0.0271 (4) | |
C11 | 0.6993 (2) | 1.34348 (16) | −0.00333 (13) | 0.0342 (4) | |
N9 | 1.0877 (5) | 0.8948 (10) | 0.0568 (4) | 0.066 (2) | 0.681 (19) |
C12 | 1.0075 (9) | 0.9122 (9) | 0.1113 (6) | 0.0352 (18) | 0.681 (19) |
C13 | 1.2146 (8) | 0.9299 (11) | 0.0737 (6) | 0.0328 (15) | 0.681 (19) |
N9' | 1.1203 (14) | 0.8524 (7) | 0.1020 (17) | 0.063 (4) | 0.319 (19) |
C12' | 1.027 (2) | 0.8940 (19) | 0.1275 (14) | 0.048 (6) | 0.319 (19) |
C13' | 1.2234 (14) | 0.915 (2) | 0.0963 (13) | 0.031 (3) | 0.319 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01766 (12) | 0.02156 (12) | 0.01955 (12) | −0.00006 (8) | 0.00666 (8) | 0.00235 (7) |
N1 | 0.0205 (7) | 0.0213 (6) | 0.0279 (7) | 0.0009 (5) | 0.0069 (5) | 0.0020 (5) |
N2 | 0.0251 (8) | 0.0366 (8) | 0.0214 (7) | −0.0007 (6) | 0.0077 (6) | 0.0019 (6) |
N3 | 0.0240 (7) | 0.0213 (7) | 0.0256 (7) | 0.0011 (6) | 0.0100 (6) | 0.0000 (6) |
N4 | 0.0286 (8) | 0.0293 (8) | 0.0288 (8) | −0.0061 (7) | 0.0039 (6) | 0.0000 (6) |
N5 | 0.0375 (9) | 0.0319 (8) | 0.0303 (8) | 0.0003 (7) | 0.0131 (7) | 0.0089 (6) |
N6 | 0.0673 (13) | 0.0314 (8) | 0.0454 (10) | 0.0115 (8) | 0.0256 (9) | 0.0137 (7) |
N7 | 0.0540 (12) | 0.0509 (11) | 0.0462 (10) | −0.0011 (9) | 0.0080 (9) | 0.0253 (9) |
N8 | 0.0250 (8) | 0.0422 (8) | 0.0369 (8) | −0.0008 (7) | 0.0139 (7) | 0.0003 (7) |
N10 | 0.0255 (9) | 0.0523 (10) | 0.0350 (9) | −0.0021 (7) | 0.0113 (7) | −0.0009 (7) |
C1 | 0.0341 (10) | 0.0251 (9) | 0.0456 (11) | 0.0076 (7) | 0.0135 (8) | −0.0032 (7) |
C2 | 0.0378 (11) | 0.0320 (9) | 0.0435 (10) | −0.0030 (8) | 0.0134 (8) | −0.0172 (8) |
C3 | 0.0337 (10) | 0.0519 (11) | 0.0271 (9) | −0.0036 (9) | 0.0103 (8) | −0.0150 (8) |
C4 | 0.0333 (10) | 0.0267 (8) | 0.0323 (9) | −0.0058 (7) | 0.0106 (7) | 0.0050 (7) |
C5 | 0.0291 (9) | 0.0268 (8) | 0.0337 (9) | −0.0078 (7) | 0.0156 (7) | −0.0030 (7) |
C6 | 0.0398 (11) | 0.0269 (8) | 0.0366 (10) | −0.0033 (8) | 0.0241 (8) | −0.0021 (7) |
C7 | 0.0253 (9) | 0.0320 (9) | 0.0397 (10) | 0.0043 (7) | 0.0022 (8) | 0.0099 (8) |
C8 | 0.0323 (10) | 0.0454 (11) | 0.0281 (9) | −0.0045 (8) | −0.0029 (7) | 0.0113 (8) |
C9 | 0.0279 (10) | 0.0427 (11) | 0.0292 (9) | −0.0070 (8) | −0.0013 (7) | 0.0043 (7) |
C10 | 0.0255 (9) | 0.0330 (9) | 0.0248 (8) | −0.0011 (7) | 0.0104 (7) | 0.0034 (7) |
C11 | 0.0291 (10) | 0.0302 (9) | 0.0405 (10) | 0.0000 (7) | 0.0046 (8) | 0.0097 (8) |
N9 | 0.039 (2) | 0.117 (5) | 0.051 (3) | −0.030 (2) | 0.029 (2) | −0.044 (3) |
C12 | 0.023 (3) | 0.045 (5) | 0.040 (2) | −0.003 (2) | 0.013 (2) | −0.012 (2) |
C13 | 0.031 (2) | 0.050 (4) | 0.021 (3) | −0.0063 (18) | 0.0128 (17) | −0.008 (3) |
N9' | 0.055 (5) | 0.040 (4) | 0.117 (10) | −0.004 (3) | 0.062 (6) | −0.018 (4) |
C12' | 0.021 (6) | 0.018 (4) | 0.107 (14) | −0.006 (4) | 0.021 (8) | −0.005 (6) |
C13' | 0.034 (5) | 0.044 (6) | 0.025 (8) | 0.003 (4) | 0.025 (5) | −0.005 (6) |
Ni1—N8 | 2.090 (2) | C1—H1A | 0.9800 |
Ni1—N4 | 2.100 (2) | C1—H1B | 0.9800 |
Ni1—N2 | 2.108 (1) | C2—C3 | 1.513 (3) |
Ni1—N3 | 2.111 (1) | C2—H2A | 0.9800 |
Ni1—N5 | 2.145 (1) | C2—H2B | 0.9800 |
Ni1—N1 | 2.196 (1) | C3—H3A | 0.9800 |
N1—C1 | 1.497 (2) | C3—H3B | 0.9800 |
N1—C4 | 1.501 (2) | C4—C5 | 1.521 (3) |
N1—C7 | 1.506 (2) | C4—H4A | 0.9800 |
N2—C3 | 1.474 (2) | C4—H4B | 0.9800 |
N2—H2C | 0.92 (2) | C5—C6 | 1.511 (2) |
N2—H2D | 0.80 (2) | C5—H5A | 0.9800 |
N3—C6 | 1.474 (2) | C5—H5B | 0.9800 |
N3—H3C | 0.87 (2) | C6—H6A | 0.9800 |
N3—H3D | 0.90 (2) | C6—H6B | 0.9800 |
N4—C9 | 1.476 (2) | C7—C8 | 1.523 (3) |
N4—H4C | 0.82 (2) | C7—H7A | 0.9800 |
N4—H4D | 0.90 (3) | C7—H7B | 0.9800 |
N5—C10 | 1.150 (2) | C8—C9 | 1.511 (3) |
N6—C10 | 1.300 (2) | C8—H8A | 0.9800 |
N6—C11 | 1.311 (3) | C8—H8B | 0.9800 |
N7—C11 | 1.142 (3) | C9—H9A | 0.9800 |
N8—C12 | 1.132 (6) | C9—H9B | 0.9800 |
N8—C12' | 1.18 (1) | N9—C13 | 1.309 (8) |
N10—C13 | 1.124 (7) | N9—C12 | 1.339 (7) |
N10—C13' | 1.20 (1) | N9'—C12' | 1.22 (2) |
C1—C2 | 1.522 (3) | N9'—C13' | 1.29 (2) |
N8—Ni1—N4 | 89.36 (7) | C1—C2—H2B | 108.8 |
N8—Ni1—N2 | 90.14 (6) | H2A—C2—H2B | 107.7 |
N4—Ni1—N2 | 172.26 (6) | N2—C3—C2 | 112.5 (1) |
N8—Ni1—N3 | 174.36 (6) | N2—C3—H3A | 109.1 |
N4—Ni1—N3 | 89.38 (7) | C2—C3—H3A | 109.1 |
N2—Ni1—N3 | 90.37 (6) | N2—C3—H3B | 109.1 |
N8—Ni1—N5 | 90.09 (6) | C2—C3—H3B | 109.1 |
N4—Ni1—N5 | 85.28 (6) | H3A—C3—H3B | 107.8 |
N2—Ni1—N5 | 87.00 (6) | N1—C4—C5 | 118.7 (1) |
N3—Ni1—N5 | 84.32 (6) | N1—C4—H4A | 107.6 |
N8—Ni1—N1 | 90.16 (6) | C5—C4—H4A | 107.6 |
N4—Ni1—N1 | 95.61 (6) | N1—C4—H4B | 107.6 |
N2—Ni1—N1 | 92.11 (6) | C5—C4—H4B | 107.6 |
N3—Ni1—N1 | 95.43 (5) | H4A—C4—H4B | 107.1 |
N5—Ni1—N1 | 179.08 (6) | C6—C5—C4 | 114.3 (2) |
C1—N1—C4 | 108.3 (1) | C6—C5—H5A | 108.7 |
C1—N1—C7 | 104.0 (1) | C4—C5—H5A | 108.7 |
C4—N1—C7 | 106.8 (1) | C6—C5—H5B | 108.7 |
C1—N1—Ni1 | 109.9 (1) | C4—C5—H5B | 108.7 |
C4—N1—Ni1 | 116.6 (1) | H5A—C5—H5B | 107.6 |
C7—N1—Ni1 | 110.4 (1) | N3—C6—C5 | 111.2 (1) |
C3—N2—Ni1 | 120.0 (1) | N3—C6—H6A | 109.4 |
C3—N2—H2C | 108 (1) | C5—C6—H6A | 109.4 |
Ni1—N2—H2C | 112 (1) | N3—C6—H6B | 109.4 |
C3—N2—H2D | 112 (1) | C5—C6—H6B | 109.4 |
Ni1—N2—H2D | 101 (1) | H6A—C6—H6B | 108.0 |
H2C—N2—H2D | 103 (2) | N1—C7—C8 | 116.3 (2) |
C6—N3—Ni1 | 122.8 (1) | N1—C7—H7A | 108.2 |
C6—N3—H3C | 107 (1) | C8—C7—H7A | 108.2 |
Ni1—N3—H3C | 108 (1) | N1—C7—H7B | 108.2 |
C6—N3—H3D | 111 (1) | C8—C7—H7B | 108.2 |
Ni1—N3—H3D | 102 (1) | H7A—C7—H7B | 107.4 |
H3C—N3—H3D | 105 (2) | C9—C8—C7 | 113.3 (2) |
C9—N4—Ni1 | 120.4 (1) | C9—C8—H8A | 108.9 |
C9—N4—H4C | 106 (2) | C7—C8—H8A | 108.9 |
Ni1—N4—H4C | 104 (2) | C9—C8—H8B | 108.9 |
C9—N4—H4D | 109 (1) | C7—C8—H8B | 108.9 |
Ni1—N4—H4D | 106 (1) | H8A—C8—H8B | 107.7 |
H4C—N4—H4D | 111 (2) | N4—C9—C8 | 110.2 (2) |
C10—N5—Ni1 | 175.1 (2) | N4—C9—H9A | 109.6 |
C10—N6—C11 | 122.4 (2) | C8—C9—H9A | 109.6 |
C12—N8—Ni1 | 166.7 (6) | N4—C9—H9B | 109.6 |
C12'—N8—Ni1 | 175 (1) | C8—C9—H9B | 109.6 |
N1—C1—C2 | 116.8 (2) | H9A—C9—H9B | 108.1 |
N1—C1—H1A | 108.1 | N5—C10—N6 | 172.1 (2) |
C2—C1—H1A | 108.1 | N7—C11—N6 | 172.9 (2) |
N1—C1—H1B | 108.1 | C13—N9—C12 | 124.3 (7) |
C2—C1—H1B | 108.1 | N8—C12—N9 | 172.3 (9) |
H1A—C1—H1B | 107.3 | N10—C13—N9 | 175 (1) |
C3—C2—C1 | 113.6 (2) | C12'—N9'—C13' | 122 (2) |
C3—C2—H2A | 108.8 | N8—C12'—N9' | 170 (2) |
C1—C2—H2A | 108.8 | N10—C13'—N9' | 169 (2) |
C3—C2—H2B | 108.8 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···N10i | 0.92 (2) | 2.38 (2) | 3.255 (2) | 160 (2) |
N2—H2D···N10ii | 0.80 (2) | 2.43 (2) | 3.193 (2) | 158 (2) |
N3—H3D···N10i | 0.90 (2) | 2.36 (2) | 3.154 (2) | 148 (2) |
N4—H4D···N7iii | 0.90 (3) | 2.19 (3) | 3.094 (3) | 176 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+2, −z; (iii) x, −y+5/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C2N3)2(C9H24N4)] |
Mr | 379.13 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 213 |
a, b, c (Å) | 10.171 (1), 11.3960 (11), 15.5305 (15) |
β (°) | 105.660 (2) |
V (Å3) | 1733.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.17 × 0.09 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.830, 0.945 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12722, 4056, 3403 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.655 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.079, 1.07 |
No. of reflections | 4056 |
No. of parameters | 269 |
No. of restraints | 20 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.38, −0.32 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···N10i | 0.92 (2) | 2.38 (2) | 3.255 (2) | 160 (2) |
N2—H2D···N10ii | 0.80 (2) | 2.43 (2) | 3.193 (2) | 158 (2) |
N3—H3D···N10i | 0.90 (2) | 2.36 (2) | 3.154 (2) | 148 (2) |
N4—H4D···N7iii | 0.90 (3) | 2.19 (3) | 3.094 (3) | 176 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+2, −z; (iii) x, −y+5/2, z+1/2. |
Acknowledgements
This project was supported by the National Natural Science Foundation of China. (NSFC 20571086).
References
Batten, S. R. (2005). J. Solid State Chem. 178, 2475–2479. Web of Science CrossRef CAS Google Scholar
Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Robson, R. (1998). J. Chem. Soc. Chem. Commun. pp. 439–440. CrossRef Google Scholar
Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130. Web of Science CrossRef CAS Google Scholar
Bhar, K., Chattopadhyay, S., Khan, S., Kumar, R. K., Maji, T. K., Ribas, J. & Ghosh, B. K. (2011). Inorg. Chim. Acta, 370, 492–498. Web of Science CSD CrossRef CAS Google Scholar
Brezina, F., Travnlcek, Z., Sindelar, Z., Pastorek, R. & Marek, J. (1999). Transition Met. Chem. 24, 459–462. CAS Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cho, J., Lee, U. & Kim, J. C. (2002). Transition Met. Chem. 27, 429–432. Web of Science CSD CrossRef CAS Google Scholar
Fondo, M., Garclá-Deibe, A. M., Ocampo, N., Vicente, R., Sanmartlń, J. & Sanũdo, C. (2011). Inorg. Chim. Acta, 373, 73–78. Web of Science CrossRef CAS Google Scholar
Ghosh, T., Chattopadhyay, T., Das, S., Mondal, S., Suresh, E., Zangrando, E. & Das, D. (2011). Cryst. Growth Des. 11, 3198–3205. Web of Science CSD CrossRef CAS Google Scholar
Ion, A. E., Nica, S., Madalan, A. M., Lloret, F., Julve, M. & Andruh, M. (2013). CrystEngComm, 15, 294–301. Web of Science CSD CrossRef CAS Google Scholar
Khan, S., Bhar, K., Adarsh, N. N., Mitra, P., Ribas, J. & Ghosh, B. K. (2011). J. Mol. Struct. 1004, 138–145. Web of Science CSD CrossRef CAS Google Scholar
Li, B. L., Ding, J. G., Lang, J. P., Xu, Z. & Chen, J. T. (2002). J. Mol. Struct. 616, 175–179. Web of Science CSD CrossRef CAS Google Scholar
Manson, J. L., Kmety, C. R., Epstein, A. J. & Miller, J. S. (1999). Inorg. Chem. 38, 2552–2553. Web of Science CrossRef CAS Google Scholar
Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281. Web of Science CSD CrossRef CAS Google Scholar
Sadhukhan, D., Ray, A., Butcher, R. J., Gómez Garclá, C. J., Dede, B. & Mitra, S. (2011). Inorg. Chim. Acta, 376, 245–254. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, D. R., Chesman, A. S. R., Murray, K. S., Deacon, G. B. & Batten, S. R. (2011). J. Chem. Soc. Chem. Commun. pp. 10189–10210. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, dicyanamide complexes have attracted considerable interest because of their fascinating magnetic properties and diverse structural types (Turner et al., 2011; Batten et al., 2005; Batten et al., 2003). For example, the binary transition metal dicyanamide complexes display long-range magnetic ordering, with the nature of the ordering dependent on the particular metal ion involved. Thus the Cr (47 K) and Mn (16 K) compounds are antiferromagnets (Manson et al., 1999), while the Co (9 K) and Ni systems (21 K) are ferromagents (Batten et al., 1998). It is well known that the structure and the magnetic property of the complexes are related to the nature of the co-ligands (Ghosh et al., 2011; Mastropietro et al., 2013; Ion et al., 2013). Although a great effort is focused on studies of dicyanamide complexes with multidentate schiff bases (Sadhukhan et al., 2011; Fondo et al., 2011; Bhar et al., 2011), few dicyanamide complexes with polyamines as co-ligands have been reported recently (Khan et al., 2011). To further study the effect of the nature of co-ligands on the structures and properties of dicyanamide complexes, we herein report the synthesis and crystal structure of the title new nickel dicyanamide complex [Ni(trisapa)(C2N3)2] (I).
The nickel ion in I is coordinated by four N atoms from the tris(3-aminopropyl) amine and two terminal N atoms from two dicyanamide anions to form a distorted octahedral geometry, in which the equatorial plane is formed by the three N atoms(N2, N3, N4) of tris(3-aminopropyl)amine and one nitrile N atom (N8) of a monodentate (disordered) dicyanamide, where the disorder atoms are C12 and C12', N9 and N9', C13 and C13' respectively. The two apical sites are occupied by one trisapa N atom(N1) and one nitrile N atom (N5) of another monodentate dicyanamide (Fig. 1). Table. 2 shows the intermolecular hydrogen interactions between the uncoordinated N atoms of dicyanamide anions and the amine H atoms of trisapa, responsible of the construction of a three-dimensional network (Fig. 2). The Ni—N (trisapa) distances (2.100 (2)–2.196 (1) Å) are rather different, with values similar to the corresponding distances in the aliphatic amine nickel complexes (Cho et al., 2002; Brezina et al., 1999). The apical Ni—N (dicyanamide) distance(2.145 (1) Å) is slightly longer than the basal Ni—N(dicyanamide) distance(2.090 (2) Å). These distances in I are comparable to the corresponding ones in [Ni(tn)2{C2N3}](ClO4)(tn is trimethylenediamine, Li et al., 2002). In I, N—Ni—N cis angles range from 89.36 (7)° to 90.37 (6)° (basal-basal) and 84.32 (6)° to 95.61 (6)° (basal-apical), indicating that the distortion from an ideal octahedral geometry in I is not serious.