metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-nicotinamide-κ2N1:O;κ2O:N1-bis­­[aqua­bis­­(3-chloro­benzoato-κ2O,O′)cadmium]

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bAksaray University, Department of Physics, 68100, Aksaray, Turkey, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 6 June 2013; accepted 7 June 2013; online 15 June 2013)

In the centrosymmetric dinuclear title compound, [Cd2(C7H4ClO2)4(C6H6N2O)2(H2O)2], the CdII atom is coord­inated by one N atom from one bridging nicotinamide ligand and one O atom from another symmetry-related bridging nicotinamide ligand, four O atoms from two 3-chloro­benzoate ligands and one water mol­ecule in an irregular geometry. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 6.98 (12) and 2.42 (13)°, while the benzene rings are oriented at a dihedral angle of 4.33 (6)°. Inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ inter­actions, indicated by short centroid–centroid distances [3.892 (1) Å between the pyridine rings and 3.683 (1) Å between the benzene rings] further stabilize the structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For the nicotinic acid derivative N,N-di­ethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365-m1366.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m651-m652.], 2010a[Hökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m784-m785.],b[Hökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010b). Acta Cryst. E66, m1135-m1136.]); Necefoğlu et al. (2011a[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, m887-m888.],b[Necefoğlu, H., Özbek, F. E., Öztürk, V., Adıgüzel, V. & Hökelek, T. (2011b). Acta Cryst. E67, m1128-m1129.]); Greenaway et al. (1984[Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C7H4ClO2)4(C6H6N2O)2(H2O)2]

  • Mr = 1127.32

  • Triclinic, [P \overline 1]

  • a = 7.5835 (2) Å

  • b = 12.3652 (3) Å

  • c = 12.4893 (3) Å

  • α = 66.878 (2)°

  • β = 78.678 (3)°

  • γ = 83.222 (3)°

  • V = 1055.02 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 296 K

  • 0.38 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.689, Tmax = 0.853

  • 18369 measured reflections

  • 4310 independent reflections

  • 4106 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.052

  • S = 1.09

  • 4310 reflections

  • 296 parameters

  • 103 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.3234 (14)
Cd1—O2 2.4800 (13)
Cd1—O3 2.5447 (15)
Cd1—O4 2.3110 (16)
Cd1—O5i 2.3175 (12)
Cd1—O6 2.3019 (14)
Cd1—N1 2.3384 (14)
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O3i 0.83 (3) 2.26 (2) 3.026 (2) 155 (2)
N2—H22⋯O2ii 0.83 (2) 2.09 (2) 2.913 (2) 170 (2)
O6—H61⋯O1iii 0.85 (4) 2.15 (4) 2.897 (2) 146 (3)
O6—H62⋯O3iii 0.81 (3) 1.94 (3) 2.710 (2) 158 (3)
C8—H8⋯O5i 0.93 2.43 3.158 (2) 135
C10—H10⋯O2ii 0.93 2.54 3.403 (3) 154
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), consists of dimeric units located around a crystallographic symmetry center and made up of two Cd cations, four 3-chlorobenzoate (CB) anions, which act in bidentate modes, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Both of the CdII centres are seven-coordinated, and the two monomeric units are bridged through the two nicotinamide (NA) ligands about an inversion center. The Cd1···Cd1a [symmetry code: (a) 1 - x, - y, 1 - z] distance is 7.1647 (3)Å. In the molecule, two Cd—O bond distances [2.4800 (13)Å and 2.5447 (15)Å] are significantly longer than the other four, and the average Cd—O bond length is 2.3798 (14)Å (Table 1). The Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C14/O4) by -0.2003 (1)Å and -0.3909 (1)Å, respectively.

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and C (C15—C20) are 6.98 (12)° and 2.42 (13)°, respectively, while those between rings A, B (N1/C8—C12) and C are A/B = 80.48 (7)°, A/C = 4.33 (6)°, B/C = 81.80 (7)°.

In (I), the O1-Cd1-O2 and O3-Cd1-O4 angles are 54.22 (4)° and 53.32 (5) °, respectively. The corresponding O—M—O (where M is a metal) angles are 57.75 (2)° in [Cu(C7H5O2F)(C7H4O2F)2(C6H6N2O)2], (II) (Necefoğlu et al., 2011a), 60.32 (4)° in [Co(C8H7O3)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2010a), 59.02 (8)° in [Zn(C8H8NO2)2(C6H6N2O)2].H2O, (IV) (Hökelek et al., 2009a), 60.03 (6)° in [Zn(C9H10NO2)2(C6H6N2O)2(H2O)2], (V) (Hökelek et al., 2009b), 57.53 (5)°, 56.19 (5)° and 59.04 (4)° in [Zn(C8H7O3)2(C6H6N2O)2], (VI) (Hökelek et al., 2010b), 57.61 (8)° in [Mn2(C7H4O2Br)4(C6H6N2O)2(H2O)2], (VII) (Necefoğlu et al., 2011b) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(VIII); Greenaway et al., 1984].

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds link the molecules into a three dimensional network (Table 2), in which they may be effective in the stabilization of the structure. The π···π contacts between the pyridine rings and between the benzene rings, Cg2—Cg2i and Cg1—Cg3ii [symmetry codes: (i) 2 - x, - y, - z; (ii) 1 - x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are the centroids of the rings A (C2—C7), B (N1/C8—C12) and C (C15—C20), respectively] may further stabilize the structure, with centroid-centroid distances of 3.892 (1)Å and 3.683 (1)Å, respectively.

Related literature top

For niacin, see: Krishnamachari (1974). For the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (2009a,b); Hökelek et al. (2010a,b); Necefoğlu et al. (2011a,b); Greenaway et al. (1984).

Experimental top

The title compound was prepared by the reaction of 3CdSO4.8H2O (1.283 g, 5 mmol) in H2O (50 ml) and nicotinamide (1.220 g, 10 mmol) in H2O (50 ml) with sodium 3-chlorobenzoate (1.790 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving colorless single crystals.

Refinement top

Atoms H61, H62 (for H2O) and H21, H22 (for NH2) were located in a difference Fourier map and were freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), consists of dimeric units located around a crystallographic symmetry center and made up of two Cd cations, four 3-chlorobenzoate (CB) anions, which act in bidentate modes, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Both of the CdII centres are seven-coordinated, and the two monomeric units are bridged through the two nicotinamide (NA) ligands about an inversion center. The Cd1···Cd1a [symmetry code: (a) 1 - x, - y, 1 - z] distance is 7.1647 (3)Å. In the molecule, two Cd—O bond distances [2.4800 (13)Å and 2.5447 (15)Å] are significantly longer than the other four, and the average Cd—O bond length is 2.3798 (14)Å (Table 1). The Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C14/O4) by -0.2003 (1)Å and -0.3909 (1)Å, respectively.

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and C (C15—C20) are 6.98 (12)° and 2.42 (13)°, respectively, while those between rings A, B (N1/C8—C12) and C are A/B = 80.48 (7)°, A/C = 4.33 (6)°, B/C = 81.80 (7)°.

In (I), the O1-Cd1-O2 and O3-Cd1-O4 angles are 54.22 (4)° and 53.32 (5) °, respectively. The corresponding O—M—O (where M is a metal) angles are 57.75 (2)° in [Cu(C7H5O2F)(C7H4O2F)2(C6H6N2O)2], (II) (Necefoğlu et al., 2011a), 60.32 (4)° in [Co(C8H7O3)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2010a), 59.02 (8)° in [Zn(C8H8NO2)2(C6H6N2O)2].H2O, (IV) (Hökelek et al., 2009a), 60.03 (6)° in [Zn(C9H10NO2)2(C6H6N2O)2(H2O)2], (V) (Hökelek et al., 2009b), 57.53 (5)°, 56.19 (5)° and 59.04 (4)° in [Zn(C8H7O3)2(C6H6N2O)2], (VI) (Hökelek et al., 2010b), 57.61 (8)° in [Mn2(C7H4O2Br)4(C6H6N2O)2(H2O)2], (VII) (Necefoğlu et al., 2011b) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(VIII); Greenaway et al., 1984].

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds link the molecules into a three dimensional network (Table 2), in which they may be effective in the stabilization of the structure. The π···π contacts between the pyridine rings and between the benzene rings, Cg2—Cg2i and Cg1—Cg3ii [symmetry codes: (i) 2 - x, - y, - z; (ii) 1 - x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are the centroids of the rings A (C2—C7), B (N1/C8—C12) and C (C15—C20), respectively] may further stabilize the structure, with centroid-centroid distances of 3.892 (1)Å and 3.683 (1)Å, respectively.

For niacin, see: Krishnamachari (1974). For the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (2009a,b); Hökelek et al. (2010a,b); Necefoğlu et al. (2011a,b); Greenaway et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 1 - x, - y, 1 - z].
Di-µ-nicotinamide-κ2N1:O;κ2O:N1-bis[aquabis(3-chlorobenzoato-κ2O,O')cadmium] top
Crystal data top
[Cd2(C7H4ClO2)4(C6H6N2O)2(H2O)2]Z = 1
Mr = 1127.32F(000) = 560
Triclinic, P1Dx = 1.774 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5835 (2) ÅCell parameters from 9868 reflections
b = 12.3652 (3) Åθ = 2.7–28.4°
c = 12.4893 (3) ŵ = 1.33 mm1
α = 66.878 (2)°T = 296 K
β = 78.678 (3)°Block, colorless
γ = 83.222 (3)°0.38 × 0.24 × 0.12 mm
V = 1055.02 (5) Å3
Data collection top
Bruker SMART BREEZE CCD
diffractometer
4310 independent reflections
Radiation source: fine-focus sealed tube4106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.689, Tmax = 0.853k = 1515
18369 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.3773P]
where P = (Fo2 + 2Fc2)/3
4310 reflections(Δ/σ)max = 0.002
296 parametersΔρmax = 0.50 e Å3
103 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cd2(C7H4ClO2)4(C6H6N2O)2(H2O)2]γ = 83.222 (3)°
Mr = 1127.32V = 1055.02 (5) Å3
Triclinic, P1Z = 1
a = 7.5835 (2) ÅMo Kα radiation
b = 12.3652 (3) ŵ = 1.33 mm1
c = 12.4893 (3) ÅT = 296 K
α = 66.878 (2)°0.38 × 0.24 × 0.12 mm
β = 78.678 (3)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
4310 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
4106 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.853Rint = 0.020
18369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020103 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.50 e Å3
4310 reflectionsΔρmin = 0.31 e Å3
296 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.460563 (15)0.713174 (9)0.502386 (11)0.02850 (5)
Cl10.20058 (11)1.03333 (7)0.11806 (6)0.0761 (2)
Cl20.76396 (11)0.40476 (8)1.09335 (6)0.0821 (2)
O10.53731 (18)0.68689 (12)0.32444 (12)0.0428 (3)
O20.31326 (17)0.81613 (13)0.32598 (12)0.0409 (3)
O30.7424 (2)0.58157 (12)0.54856 (12)0.0454 (3)
O40.5701 (2)0.64166 (16)0.67878 (14)0.0635 (5)
O50.35989 (16)1.12711 (11)0.55996 (14)0.0421 (3)
O60.2965 (2)0.54660 (13)0.57771 (15)0.0428 (3)
H610.340 (4)0.488 (3)0.631 (3)0.086 (11)*
H620.266 (4)0.523 (2)0.532 (2)0.059 (8)*
N10.22851 (19)0.80844 (12)0.59063 (13)0.0305 (3)
N20.0768 (2)1.19067 (14)0.60728 (15)0.0359 (3)
H210.110 (3)1.259 (2)0.5826 (19)0.040 (6)*
H220.033 (3)1.1805 (19)0.6266 (19)0.040 (6)*
C10.4252 (2)0.76332 (15)0.27256 (16)0.0322 (4)
C20.4302 (2)0.79357 (16)0.14374 (16)0.0342 (4)
C30.3235 (3)0.88734 (17)0.08028 (17)0.0386 (4)
H30.24530.93000.11810.046*
C40.3347 (3)0.91633 (19)0.03919 (18)0.0476 (5)
C50.4493 (4)0.8553 (3)0.0977 (2)0.0640 (7)
H50.45610.87660.17850.077*
C60.5542 (4)0.7616 (3)0.0341 (2)0.0681 (7)
H60.63180.71920.07250.082*
C70.5445 (3)0.7307 (2)0.0856 (2)0.0497 (5)
H70.61520.66720.12750.060*
C80.2617 (2)0.91606 (15)0.57989 (16)0.0312 (4)
H80.37620.94340.54450.037*
C90.1366 (2)0.98948 (14)0.61809 (15)0.0271 (3)
C100.0336 (2)0.94833 (16)0.67092 (17)0.0354 (4)
H100.12250.99510.69710.042*
C110.0685 (3)0.83632 (17)0.68393 (18)0.0415 (4)
H110.18130.80630.72000.050*
C120.0650 (2)0.76927 (15)0.64305 (17)0.0351 (4)
H120.03980.69390.65240.042*
C130.1971 (2)1.10895 (15)0.59403 (15)0.0297 (3)
C140.6964 (3)0.57773 (16)0.65218 (17)0.0386 (4)
C150.7945 (2)0.49355 (16)0.74759 (17)0.0346 (4)
C160.7431 (3)0.48946 (19)0.86197 (18)0.0429 (4)
H160.65060.53970.87900.051*
C170.8306 (3)0.4102 (2)0.94991 (19)0.0494 (5)
C180.9655 (3)0.3336 (2)0.9270 (2)0.0538 (5)
H181.02160.27930.98760.065*
C191.0164 (3)0.3383 (2)0.8131 (2)0.0527 (5)
H191.10860.28770.79650.063*
C200.9308 (3)0.41792 (17)0.72359 (18)0.0404 (4)
H200.96520.42050.64700.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02751 (7)0.02414 (7)0.03423 (8)0.00202 (5)0.00289 (5)0.01339 (5)
Cl10.0897 (5)0.0728 (4)0.0522 (4)0.0005 (4)0.0339 (3)0.0001 (3)
Cl20.0835 (5)0.1212 (6)0.0423 (3)0.0194 (4)0.0211 (3)0.0333 (4)
O10.0440 (7)0.0409 (7)0.0385 (7)0.0112 (6)0.0088 (6)0.0123 (6)
O20.0344 (7)0.0516 (8)0.0382 (7)0.0078 (6)0.0040 (5)0.0224 (6)
O30.0644 (9)0.0350 (7)0.0377 (8)0.0055 (6)0.0119 (6)0.0122 (6)
O40.0594 (10)0.0753 (11)0.0474 (9)0.0313 (9)0.0172 (8)0.0197 (8)
O50.0267 (6)0.0326 (7)0.0697 (10)0.0027 (5)0.0032 (6)0.0273 (7)
O60.0511 (8)0.0310 (7)0.0461 (9)0.0080 (6)0.0020 (7)0.0172 (7)
N10.0301 (7)0.0272 (7)0.0351 (8)0.0009 (5)0.0029 (6)0.0146 (6)
N20.0293 (8)0.0296 (8)0.0502 (10)0.0022 (6)0.0013 (7)0.0201 (7)
C10.0283 (8)0.0334 (9)0.0335 (9)0.0042 (7)0.0019 (7)0.0117 (7)
C20.0309 (8)0.0385 (9)0.0321 (9)0.0056 (7)0.0004 (7)0.0133 (7)
C30.0379 (9)0.0408 (10)0.0366 (10)0.0029 (8)0.0055 (8)0.0140 (8)
C40.0524 (12)0.0499 (11)0.0354 (11)0.0120 (9)0.0107 (9)0.0065 (9)
C50.0791 (17)0.0805 (17)0.0312 (11)0.0132 (14)0.0016 (11)0.0206 (11)
C60.0763 (18)0.0812 (18)0.0502 (14)0.0032 (14)0.0068 (12)0.0384 (14)
C70.0484 (12)0.0561 (13)0.0443 (12)0.0056 (10)0.0013 (9)0.0240 (10)
C80.0249 (8)0.0310 (8)0.0389 (10)0.0014 (6)0.0020 (7)0.0176 (7)
C90.0259 (8)0.0270 (8)0.0295 (8)0.0012 (6)0.0030 (6)0.0134 (7)
C100.0284 (8)0.0366 (9)0.0406 (10)0.0002 (7)0.0045 (7)0.0191 (8)
C110.0306 (9)0.0411 (10)0.0489 (12)0.0095 (7)0.0088 (8)0.0178 (9)
C120.0357 (9)0.0282 (8)0.0403 (10)0.0048 (7)0.0020 (7)0.0127 (7)
C130.0273 (8)0.0300 (8)0.0342 (9)0.0005 (6)0.0021 (7)0.0167 (7)
C140.0415 (10)0.0341 (9)0.0385 (10)0.0038 (8)0.0101 (8)0.0098 (8)
C150.0317 (9)0.0337 (9)0.0380 (10)0.0029 (7)0.0055 (7)0.0127 (8)
C160.0375 (10)0.0509 (11)0.0425 (11)0.0084 (8)0.0089 (8)0.0220 (9)
C170.0425 (11)0.0649 (14)0.0395 (11)0.0019 (10)0.0117 (9)0.0173 (10)
C180.0424 (11)0.0559 (13)0.0525 (13)0.0086 (9)0.0170 (10)0.0078 (10)
C190.0398 (11)0.0489 (12)0.0624 (14)0.0113 (9)0.0064 (10)0.0184 (11)
C200.0382 (10)0.0390 (10)0.0414 (11)0.0016 (8)0.0000 (8)0.0155 (8)
Geometric parameters (Å, º) top
Cd1—O12.3234 (14)C3—H30.9300
Cd1—O22.4800 (13)C4—C51.373 (4)
Cd1—O32.5447 (15)C5—C61.383 (4)
Cd1—O42.3110 (16)C5—H50.9300
Cd1—O5i2.3175 (12)C6—H60.9300
Cd1—O62.3019 (14)C7—C61.379 (3)
Cd1—N12.3384 (14)C7—H70.9300
Cd1—C12.7496 (18)C8—H80.9300
Cl1—C41.739 (2)C9—C81.383 (2)
Cl2—C171.740 (2)C9—C101.385 (2)
O1—C11.257 (2)C9—C131.497 (2)
O2—C11.257 (2)C10—C111.381 (3)
O3—C141.256 (2)C10—H100.9300
O4—C141.247 (3)C11—H110.9300
O5—Cd1i2.3175 (12)C12—C111.380 (3)
O5—C131.241 (2)C12—H120.9300
O6—H610.85 (3)C15—C141.499 (3)
O6—H620.82 (3)C15—C161.387 (3)
N1—C81.333 (2)C15—C201.380 (3)
N1—C121.332 (2)C16—C171.377 (3)
N2—C131.317 (2)C16—H160.9300
N2—H210.83 (2)C17—C181.376 (3)
N2—H220.83 (2)C18—H180.9300
C1—C21.496 (3)C19—C181.378 (3)
C2—C71.386 (3)C19—H190.9300
C3—C21.392 (3)C20—C191.382 (3)
C3—C41.378 (3)C20—H200.9300
O1—Cd1—O254.22 (4)C4—C3—H3120.3
O1—Cd1—O382.45 (4)C3—C4—Cl1119.17 (18)
O1—Cd1—N1137.15 (5)C5—C4—Cl1119.11 (18)
O1—Cd1—C127.07 (5)C5—C4—C3121.7 (2)
O2—Cd1—O3136.12 (4)C4—C5—C6118.8 (2)
O2—Cd1—C127.20 (5)C4—C5—H5120.6
O3—Cd1—C1109.10 (5)C6—C5—H5120.6
O4—Cd1—O1135.63 (5)C5—C6—H6119.7
O4—Cd1—O2169.88 (5)C7—C6—C5120.5 (2)
O4—Cd1—O353.32 (5)C7—C6—H6119.7
O4—Cd1—O5i88.27 (6)C2—C7—H7119.8
O4—Cd1—N187.04 (5)C6—C7—C2120.4 (2)
O4—Cd1—C1162.39 (6)C6—C7—H7119.8
O5i—Cd1—O193.65 (5)N1—C8—C9124.08 (15)
O5i—Cd1—O288.64 (5)N1—C8—H8118.0
O5i—Cd1—O387.51 (4)C9—C8—H8118.0
O5i—Cd1—N190.96 (5)C8—C9—C10117.80 (15)
O5i—Cd1—C190.09 (5)C8—C9—C13116.21 (15)
O6—Cd1—O189.05 (5)C10—C9—C13125.95 (15)
O6—Cd1—O296.40 (6)C9—C10—H10120.7
O6—Cd1—O388.63 (5)C11—C10—C9118.53 (16)
O6—Cd1—O486.82 (7)C11—C10—H10120.7
O6—Cd1—O5i174.96 (6)C10—C11—H11120.2
O6—Cd1—N189.95 (5)C12—C11—C10119.61 (16)
O6—Cd1—C194.24 (6)C12—C11—H11120.2
N1—Cd1—O283.38 (5)N1—C12—C11122.44 (16)
N1—Cd1—O3140.36 (5)N1—C12—H12118.8
N1—Cd1—C1110.52 (5)C11—C12—H12118.8
C1—O1—Cd195.71 (11)O5—C13—N2122.76 (16)
C1—O2—Cd188.42 (11)O5—C13—C9117.92 (15)
C14—O3—Cd186.39 (12)N2—C13—C9119.30 (15)
C14—O4—Cd197.51 (13)O3—C14—C15119.50 (18)
C13—O5—Cd1i136.29 (11)O4—C14—O3121.95 (18)
Cd1—O6—H62118.6 (19)O4—C14—C15118.55 (18)
Cd1—O6—H61115 (2)C16—C15—C14119.32 (17)
H62—O6—H61108 (3)C20—C15—C14120.79 (18)
C8—N1—Cd1115.65 (11)C20—C15—C16119.86 (18)
C12—N1—Cd1126.66 (11)C15—C16—H16120.4
C12—N1—C8117.53 (15)C17—C16—C15119.19 (19)
C13—N2—H21117.5 (16)C17—C16—H16120.4
C13—N2—H22123.5 (15)C16—C17—Cl2118.88 (17)
H21—N2—H22118 (2)C18—C17—C16121.3 (2)
O1—C1—O2121.43 (17)C18—C17—Cl2119.75 (17)
O1—C1—C2118.66 (16)C17—C18—C19119.2 (2)
O1—C1—Cd157.23 (10)C17—C18—H18120.4
O2—C1—Cd164.37 (10)C19—C18—H18120.4
O2—C1—C2119.89 (16)C18—C19—C20120.2 (2)
C2—C1—Cd1172.93 (12)C18—C19—H19119.9
C3—C2—C1120.25 (17)C20—C19—H19119.9
C7—C2—C1120.45 (17)C15—C20—C19120.2 (2)
C7—C2—C3119.28 (18)C15—C20—H20119.9
C2—C3—H3120.3C19—C20—H20119.9
C4—C3—C2119.33 (19)
O2—Cd1—O1—C12.65 (10)Cd1—O1—C1—O24.98 (18)
O3—Cd1—O1—C1170.02 (11)Cd1—O1—C1—C2173.31 (13)
O4—Cd1—O1—C1174.29 (11)Cd1—O2—C1—O14.64 (17)
O5i—Cd1—O1—C183.03 (11)Cd1—O2—C1—C2173.62 (14)
O6—Cd1—O1—C1101.24 (11)Cd1—O3—C14—O48.9 (2)
N1—Cd1—O1—C112.33 (14)Cd1—O3—C14—C15170.72 (15)
O1—Cd1—O2—C12.64 (10)Cd1—O4—C14—O39.8 (2)
O3—Cd1—O2—C17.87 (13)Cd1—O4—C14—C15169.75 (14)
O4—Cd1—O2—C1165.1 (3)Cd1i—O5—C13—N23.1 (3)
O5i—Cd1—O2—C192.85 (11)Cd1i—O5—C13—C9175.50 (12)
O6—Cd1—O2—C186.82 (11)C12—N1—C8—C91.0 (3)
N1—Cd1—O2—C1176.03 (11)Cd1—N1—C12—C11174.35 (15)
O1—Cd1—O3—C14171.24 (11)C8—N1—C12—C111.0 (3)
O2—Cd1—O3—C14179.82 (10)O1—C1—C2—C3172.19 (17)
O4—Cd1—O3—C145.05 (11)O1—C1—C2—C76.0 (3)
O5i—Cd1—O3—C1494.75 (11)O2—C1—C2—C36.1 (3)
O6—Cd1—O3—C1482.01 (11)O2—C1—C2—C7175.64 (18)
N1—Cd1—O3—C146.26 (14)C1—C2—C7—C6177.4 (2)
C1—Cd1—O3—C14176.02 (10)C3—C2—C7—C60.8 (3)
O1—Cd1—O4—C140.16 (19)C4—C3—C2—C1177.72 (17)
O2—Cd1—O4—C14165.6 (3)C4—C3—C2—C70.5 (3)
O3—Cd1—O4—C145.11 (12)C2—C3—C4—Cl1179.81 (15)
O5i—Cd1—O4—C1493.29 (14)C2—C3—C4—C50.2 (3)
O6—Cd1—O4—C1485.54 (14)Cl1—C4—C5—C6179.3 (2)
N1—Cd1—O4—C14175.66 (14)C3—C4—C5—C60.7 (4)
C1—Cd1—O4—C148.5 (3)C2—C7—C6—C50.4 (4)
O1—Cd1—N1—C895.81 (14)C4—C5—C6—C70.4 (4)
O1—Cd1—N1—C1279.59 (17)C10—C9—C8—N10.1 (3)
O2—Cd1—N1—C887.92 (13)C13—C9—C8—N1177.73 (16)
O2—Cd1—N1—C1287.48 (15)C8—C9—C10—C110.8 (3)
O3—Cd1—N1—C887.85 (14)C13—C9—C10—C11178.40 (18)
O3—Cd1—N1—C1296.76 (16)C8—C9—C13—O511.4 (2)
O4—Cd1—N1—C888.82 (13)C8—C9—C13—N2167.21 (17)
O4—Cd1—N1—C1295.78 (16)C10—C9—C13—O5170.94 (18)
O5i—Cd1—N1—C80.60 (13)C10—C9—C13—N210.4 (3)
O5i—Cd1—N1—C12176.00 (15)C9—C10—C11—C120.8 (3)
O6—Cd1—N1—C8175.64 (13)N1—C12—C11—C100.1 (3)
O6—Cd1—N1—C128.96 (15)C16—C15—C14—O3179.91 (18)
C1—Cd1—N1—C889.86 (13)C16—C15—C14—O40.3 (3)
C1—Cd1—N1—C1285.54 (15)C20—C15—C14—O32.0 (3)
O1—Cd1—C1—O2175.29 (18)C20—C15—C14—O4177.61 (19)
O2—Cd1—C1—O1175.29 (18)C14—C15—C16—C17178.51 (19)
O3—Cd1—C1—O110.47 (12)C20—C15—C16—C170.6 (3)
O3—Cd1—C1—O2174.24 (10)C14—C15—C20—C19178.02 (18)
O4—Cd1—C1—O113.3 (3)C16—C15—C20—C190.1 (3)
O4—Cd1—C1—O2171.40 (18)C15—C16—C17—Cl2179.44 (16)
O5i—Cd1—C1—O197.86 (11)C15—C16—C17—C181.2 (3)
O5i—Cd1—C1—O286.85 (11)Cl2—C17—C18—C19179.63 (18)
O6—Cd1—C1—O179.54 (11)C16—C17—C18—C191.4 (4)
O6—Cd1—C1—O295.75 (11)C20—C19—C18—C171.0 (4)
N1—Cd1—C1—O1171.08 (10)C15—C20—C19—C180.3 (3)
N1—Cd1—C1—O24.21 (12)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3i0.83 (3)2.26 (2)3.026 (2)155 (2)
N2—H22···O2ii0.83 (2)2.09 (2)2.913 (2)170 (2)
O6—H61···O1iii0.85 (4)2.15 (4)2.897 (2)146 (3)
O6—H62···O3iii0.81 (3)1.94 (3)2.710 (2)158 (3)
C8—H8···O5i0.932.433.158 (2)135
C10—H10···O2ii0.932.543.403 (3)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(C7H4ClO2)4(C6H6N2O)2(H2O)2]
Mr1127.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5835 (2), 12.3652 (3), 12.4893 (3)
α, β, γ (°)66.878 (2), 78.678 (3), 83.222 (3)
V3)1055.02 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.38 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART BREEZE CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.689, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
18369, 4310, 4106
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.09
No. of reflections4310
No. of parameters296
No. of restraints103
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.31

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cd1—O12.3234 (14)Cd1—O5i2.3175 (12)
Cd1—O22.4800 (13)Cd1—O62.3019 (14)
Cd1—O32.5447 (15)Cd1—N12.3384 (14)
Cd1—O42.3110 (16)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3i0.83 (3)2.26 (2)3.026 (2)155 (2)
N2—H22···O2ii0.83 (2)2.09 (2)2.913 (2)170 (2)
O6—H61···O1iii0.85 (4)2.15 (4)2.897 (2)146 (3)
O6—H62···O3iii0.81 (3)1.94 (3)2.710 (2)158 (3)
C8—H8···O5i0.932.433.158 (2)135
C10—H10···O2ii0.932.543.403 (3)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Aksaray University Science and Technology Application and Research Center, Aksaray, Turkey, for use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010b). Acta Cryst. E66, m1135–m1136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m784–m785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Adıgüzel, V. & Hökelek, T. (2011b). Acta Cryst. E67, m1128–m1129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, m887–m888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds