organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,4-Di­nitro­benzyl­­idene)-2,2-di­phenyl­hydrazine

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla 72570, Puebla, Pue., Mexico, and bFacultad de Química, Universidad Nacional Autónoma de Mexico, 04510 México DF, Mexico
*Correspondence e-mail: ruthmelendrez@gmail.com

(Received 21 May 2013; accepted 24 May 2013; online 8 June 2013)

In the crystal of the title compound, C19H14N4O4, the asymmetric unit consists of two discrete mol­ecules. The C=N bonds in both mol­ecules show an E conformation. The dihedral angles between the C atoms of the 2,4-dinitrobenzene rings and the C=N—N planes are 13.52 (9) and 13.82 (9)° for the two mol­ecules. In the crystal, C—H⋯O hydrogen bonds, mainly between the phenyl ring and the nitro group along the b axis.

Related literature

For the synthesis and related structures, see: Vicini et al. (2002[Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553-564.]); Rollas et al. (2002[Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Il Farmaco, 57, 171-174.]); Mendoza et al. (2012[Mendoza, A., Meléndrez-Luevano, R., Cabrera-Vivas, B. M., Acoltzi-X, C. & Flores-Alamo, M. (2012). Acta Cryst. E68, o3238.]). For applications of hydrazones, see: Angell et al. (2006[Angell, S. E., Rogers, C. W., Zhang, Y., Wolf, M. O. & Jones, W. E. (2006). Coord. Chem. Rev. 250, 1829-1841.]); Clulow et al. (2008[Clulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049-12062.]); Motherwell & Ramsay (2007[Motherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N4O4

  • Mr = 362.34

  • Triclinic, [P \overline 1]

  • a = 7.0288 (6) Å

  • b = 13.5001 (7) Å

  • c = 17.9271 (11) Å

  • α = 91.878 (5)°

  • β = 93.431 (6)°

  • γ = 91.548 (6)°

  • V = 1696.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.59 × 0.38 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.955, Tmax = 0.988

  • 13303 measured reflections

  • 6694 independent reflections

  • 3465 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.079

  • S = 1.01

  • 6694 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11A—H11A⋯O2Ai 0.93 2.59 3.306 (2) 134
C11B—H11B⋯O2Bi 0.93 2.72 3.370 (2) 128
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Several applications of hydrazones in the industry, environmental technology, biology have been reported (Angell et al., 2006). The hydrazone structure is directly related with its activity (Rollas et al., 2002). Different aldehydes have been used in the condensation reaction in order to get hydrazone compounds with antibacterial and antifungal activity. It was suggested that these compounds have a better antimicrobial activity when they contain functional groups like –NO2 and –Cl (Vicini et al., 2002).

The asymmetric unit consist of two discrete molecules of the (E)-1-(2,4-dinitrobenzylidene)-2,2-diphenylhydrazine I, Both A and B molecules show an E configuration on each of the C=N groups with diphenylhydrazine group opposite to 2,4-dinitrophenyl ring, similar to the observed in (E)-1-(4-nitrobenzylidene)-2,2-diphenylhydrazine (Mendoza et al., 2012). The molecule A shows a non planar structure for a phenyl ring next to N—N group, with dihedral angles N1A—N2A—C8A—C9A and N1A—N2A—C14A—C19A of 21.3 (2) and 68.4 (2)° respectively (Table 1) analogously the non planarity structure for a phenyl ring next to N—N group in molecule B is observed by the N1B—N2B—C8B—C9B and N1B—N2B—C14B—C19B dihedral angles of 15.2 (2) and 96.7 (2)° respectively. The N—N average distance [1.3527 Å] is shorter than found in free diphenylhydrazine [1.418 Å] (Clulow et al., 2008) and similar to related structure with 2,4 dinitrophenyl hydrazone group [1.383 (4) Å] (Motherwell & Ramsay, 2007). The dihedral angle for 2,4-dinitrophenyl rings and C=N—N planes are 12.6 (2) and 12.5 (2) ° for molecule A and B respectively. The imine bond distances C7A—N1A 1.2888 (19) Å in molecule A and C7B—N1B 1.293 (2) Å in molecule B are typical for a C=N bond.

The crystal packing (Table 1) is stabilized by intermolecular C—H···O contacts.

Related literature top

For the synthesis and related structures, see: Vicini et al. (2002); Rollas et al. (2002); Mendoza et al. (2012). For applications of hydrazones, see: Angell et al. (2006); Clulow et al. (2008); Motherwell & Ramsay, (2007).

Experimental top

280 mg (1.53 mmol) N,N-diphenylhydrazine was dissolved in ethanol and acetic acid (0.5 ml) was added slowly into this solution while stirring. 300 mg (1.53 mmol) of 2,4-Dinitrobenzaldehyde was added drop by drop into the above solution with strong stirring and the resulting mixture was kept at atmospheric temperature until the solution became dark red transparent. After one hour and a quarter a precipitate appeared. The mixture was separated with filtration in vacuo and the precipitate was washed three times with cold methanol. Recrystallization was performed three times with acetonitrile, to obtain dark red crystals for X-ray analysis. Dark red crystals; yield 78%; m.p.=174–177 °C; UV λmax = 443.36 nm. FT IR (film): (cm-1): 3119 n(C—H), 1683, 1600 n(C=N), 1513 n(Ph—NO2). 1H NMR (400 MHz, (CD3)2CO: (d/ p.p.m.): 8.73 (d, 1H, J = 2.32 Hz), 8.62 (d, 1H, J = 8.8 Hz), 8.50 (dd, 1H J= 2.32 Hz; J= 8.8 Hz), 7.68 (s, 1H), 7.55–7.51 (m, 4H), 7.35–7.27 (m, 6H). 13C NMR (400 MHz, (CD3)2CO: (d/ p.p.m.): 140.07, 139.05, 136.10, 135.02, 130.14, 128.78, 128.20, 126.88, 126.05, 122.49, 120.62. MS—EI: m/z = 362 M+. C19H14N4O4.

Refinement top

All H atoms were found in a difference map. H atoms were placed in geometrical idealized positions and were refined as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C).

Structure description top

Several applications of hydrazones in the industry, environmental technology, biology have been reported (Angell et al., 2006). The hydrazone structure is directly related with its activity (Rollas et al., 2002). Different aldehydes have been used in the condensation reaction in order to get hydrazone compounds with antibacterial and antifungal activity. It was suggested that these compounds have a better antimicrobial activity when they contain functional groups like –NO2 and –Cl (Vicini et al., 2002).

The asymmetric unit consist of two discrete molecules of the (E)-1-(2,4-dinitrobenzylidene)-2,2-diphenylhydrazine I, Both A and B molecules show an E configuration on each of the C=N groups with diphenylhydrazine group opposite to 2,4-dinitrophenyl ring, similar to the observed in (E)-1-(4-nitrobenzylidene)-2,2-diphenylhydrazine (Mendoza et al., 2012). The molecule A shows a non planar structure for a phenyl ring next to N—N group, with dihedral angles N1A—N2A—C8A—C9A and N1A—N2A—C14A—C19A of 21.3 (2) and 68.4 (2)° respectively (Table 1) analogously the non planarity structure for a phenyl ring next to N—N group in molecule B is observed by the N1B—N2B—C8B—C9B and N1B—N2B—C14B—C19B dihedral angles of 15.2 (2) and 96.7 (2)° respectively. The N—N average distance [1.3527 Å] is shorter than found in free diphenylhydrazine [1.418 Å] (Clulow et al., 2008) and similar to related structure with 2,4 dinitrophenyl hydrazone group [1.383 (4) Å] (Motherwell & Ramsay, 2007). The dihedral angle for 2,4-dinitrophenyl rings and C=N—N planes are 12.6 (2) and 12.5 (2) ° for molecule A and B respectively. The imine bond distances C7A—N1A 1.2888 (19) Å in molecule A and C7B—N1B 1.293 (2) Å in molecule B are typical for a C=N bond.

The crystal packing (Table 1) is stabilized by intermolecular C—H···O contacts.

For the synthesis and related structures, see: Vicini et al. (2002); Rollas et al. (2002); Mendoza et al. (2012). For applications of hydrazones, see: Angell et al. (2006); Clulow et al. (2008); Motherwell & Ramsay, (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.
(E)- 1-(2,4-Dinitrobenzylidene)-2,2-diphenylhydrazine top
Crystal data top
C19H14N4O4Z = 4
Mr = 362.34F(000) = 752
Triclinic, P1Dx = 1.419 Mg m3
a = 7.0288 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5001 (7) ÅCell parameters from 4321 reflections
c = 17.9271 (11) Åθ = 3.4–26.0°
α = 91.878 (5)°µ = 0.10 mm1
β = 93.431 (6)°T = 298 K
γ = 91.548 (6)°Prism, red
V = 1696.4 (2) Å30.59 × 0.38 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
6694 independent reflections
Graphite monochromator3465 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.028
ω scansθmax = 26.1°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 87
Tmin = 0.955, Tmax = 0.988k = 1316
13303 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0255P)2]
where P = (Fo2 + 2Fc2)/3
6694 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.2 e Å3
Crystal data top
C19H14N4O4γ = 91.548 (6)°
Mr = 362.34V = 1696.4 (2) Å3
Triclinic, P1Z = 4
a = 7.0288 (6) ÅMo Kα radiation
b = 13.5001 (7) ŵ = 0.10 mm1
c = 17.9271 (11) ÅT = 298 K
α = 91.878 (5)°0.59 × 0.38 × 0.12 mm
β = 93.431 (6)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
6694 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
3465 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.988Rint = 0.028
13303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
6694 reflectionsΔρmin = 0.2 e Å3
487 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.3668 (2)0.02195 (12)0.81399 (8)0.0351 (4)
C2A0.3795 (2)0.12554 (12)0.81250 (8)0.0351 (4)
C3A0.3529 (2)0.18098 (12)0.87481 (8)0.0410 (4)
H3A0.36390.24950.87250.049*
C4A0.3103 (2)0.13346 (13)0.93960 (8)0.0412 (4)
C5A0.2958 (2)0.03170 (13)0.94464 (9)0.0475 (5)
H5A0.26690.00010.98930.057*
C6A0.3250 (2)0.02177 (13)0.88257 (8)0.0448 (4)
H6A0.31660.09040.88620.054*
C7A0.3967 (2)0.04206 (13)0.75145 (9)0.0416 (4)
H7A0.40050.01660.70270.05*
C8A0.4850 (2)0.29930 (12)0.73592 (9)0.0380 (4)
C9A0.5557 (2)0.32258 (13)0.80812 (9)0.0443 (4)
H9A0.58020.27250.84140.053*
C10A0.5895 (2)0.42039 (15)0.83049 (10)0.0528 (5)
H10A0.63630.43580.87920.063*
C11A0.5552 (3)0.49555 (14)0.78203 (12)0.0597 (5)
H11A0.57810.56140.79770.072*
C12A0.4870 (3)0.47210 (14)0.71041 (11)0.0573 (5)
H12A0.46410.52250.67720.069*
C13A0.4517 (2)0.37495 (13)0.68692 (10)0.0493 (5)
H13A0.40540.36010.6380.059*
C14A0.4312 (3)0.17046 (12)0.63452 (9)0.0436 (4)
C15A0.5912 (3)0.17379 (13)0.59397 (10)0.0556 (5)
H15A0.70880.19360.61690.067*
C16A0.5746 (3)0.14724 (15)0.51853 (11)0.0667 (6)
H16A0.68180.150.49050.08*
C17A0.4022 (4)0.11692 (15)0.48480 (11)0.0685 (6)
H17A0.39260.09830.43430.082*
C18A0.2445 (3)0.11405 (15)0.52541 (10)0.0679 (6)
H18A0.12730.09330.50250.082*
C19A0.2574 (3)0.14172 (14)0.60044 (10)0.0563 (5)
H19A0.14890.14090.62770.068*
N1A0.41773 (19)0.13568 (10)0.76728 (7)0.0412 (4)
N2A0.4450 (2)0.19996 (10)0.71228 (7)0.0460 (4)
N3A0.4219 (2)0.18328 (11)0.74490 (8)0.0446 (4)
N4A0.2742 (2)0.19203 (14)1.00492 (9)0.0588 (4)
O1A0.4180 (2)0.14424 (10)0.68499 (7)0.0713 (4)
O2A0.4573 (2)0.27067 (10)0.75110 (7)0.0690 (4)
O3A0.2800 (2)0.28198 (11)0.99918 (7)0.0854 (5)
O4A0.2412 (2)0.14791 (11)1.06275 (7)0.0868 (5)
C1B1.0722 (2)0.48446 (12)0.81436 (8)0.0360 (4)
C2B1.0599 (2)0.38024 (12)0.81056 (8)0.0362 (4)
C3B1.1091 (2)0.32368 (13)0.87149 (9)0.0437 (4)
H3B1.09860.25490.86750.052*
C4B1.1730 (2)0.36977 (13)0.93732 (9)0.0431 (4)
C5B1.1862 (2)0.47202 (13)0.94478 (9)0.0472 (5)
H5B1.22840.50310.99010.057*
C6B1.1357 (2)0.52650 (13)0.88409 (9)0.0462 (5)
H6B1.14410.59530.88950.055*
C7B1.0249 (2)0.54984 (13)0.75336 (9)0.0418 (4)
H7B1.0060.52570.70420.05*
C8B0.9320 (2)0.80531 (12)0.73992 (9)0.0388 (4)
C9B0.8888 (2)0.82648 (13)0.81281 (9)0.0457 (5)
H9B0.88250.7760.84670.055*
C10B0.8550 (2)0.92275 (14)0.83500 (10)0.0538 (5)
H10B0.82780.9370.88430.065*
C11B0.8608 (2)0.99803 (14)0.78533 (11)0.0578 (5)
H11B0.8381.06280.80090.069*
C12B0.9002 (3)0.97709 (14)0.71319 (11)0.0549 (5)
H12B0.9031.02780.67940.066*
C13B0.9361 (2)0.88092 (13)0.68955 (10)0.0482 (5)
H13B0.96280.86720.64010.058*
C14B0.9507 (3)0.67717 (12)0.63857 (9)0.0427 (4)
C15B1.1080 (3)0.66776 (14)0.59758 (10)0.0567 (5)
H15B1.22940.68030.620.068*
C16B1.0852 (3)0.63946 (15)0.52263 (11)0.0677 (6)
H16B1.19140.63390.49440.081*
C17B0.9074 (4)0.61979 (15)0.49027 (11)0.0685 (6)
H17B0.89270.60.440.082*
C18B0.7515 (3)0.62890 (16)0.53095 (11)0.0694 (6)
H18B0.63050.61520.50850.083*
C19B0.7723 (3)0.65841 (14)0.60565 (10)0.0562 (5)
H19B0.66540.66550.63340.067*
N1B1.01036 (19)0.64297 (11)0.77055 (7)0.0423 (4)
N2B0.9722 (2)0.70762 (10)0.71597 (7)0.0464 (4)
N3B0.99175 (19)0.32343 (12)0.74256 (8)0.0462 (4)
N4B1.2312 (2)0.31012 (14)1.00096 (9)0.0610 (5)
O1B0.9506 (2)0.36593 (10)0.68571 (7)0.0697 (4)
O2B0.9778 (2)0.23333 (10)0.74548 (7)0.0749 (4)
O3B1.2219 (2)0.22001 (11)0.99330 (8)0.0905 (5)
O4B1.2854 (2)0.35333 (11)1.05901 (7)0.0901 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0376 (10)0.0321 (10)0.0351 (9)0.0016 (8)0.0020 (7)0.0028 (8)
C2A0.0374 (10)0.0326 (10)0.0348 (9)0.0022 (8)0.0020 (7)0.0018 (8)
C3A0.0477 (11)0.0318 (10)0.0430 (10)0.0044 (8)0.0008 (8)0.0051 (9)
C4A0.0549 (12)0.0377 (11)0.0304 (9)0.0075 (9)0.0021 (8)0.0077 (8)
C5A0.0645 (13)0.0428 (12)0.0344 (10)0.0035 (9)0.0010 (8)0.0039 (9)
C6A0.0660 (13)0.0305 (10)0.0377 (10)0.0005 (9)0.0036 (8)0.0008 (8)
C7A0.0545 (12)0.0338 (11)0.0365 (10)0.0010 (8)0.0022 (8)0.0034 (8)
C8A0.0429 (11)0.0321 (10)0.0395 (10)0.0000 (8)0.0043 (8)0.0072 (9)
C9A0.0516 (12)0.0378 (12)0.0439 (11)0.0003 (9)0.0039 (8)0.0046 (9)
C10A0.0499 (13)0.0520 (13)0.0559 (12)0.0037 (10)0.0062 (9)0.0088 (11)
C11A0.0595 (14)0.0357 (12)0.0846 (15)0.0021 (10)0.0140 (11)0.0042 (12)
C12A0.0649 (14)0.0379 (13)0.0707 (14)0.0035 (10)0.0090 (10)0.0150 (11)
C13A0.0572 (13)0.0409 (12)0.0499 (11)0.0004 (9)0.0013 (9)0.0089 (10)
C14A0.0618 (13)0.0313 (10)0.0375 (10)0.0030 (9)0.0005 (9)0.0074 (8)
C15A0.0662 (14)0.0489 (13)0.0523 (12)0.0005 (10)0.0063 (10)0.0056 (10)
C16A0.0890 (18)0.0579 (14)0.0563 (14)0.0077 (12)0.0275 (12)0.0038 (11)
C17A0.111 (2)0.0536 (14)0.0410 (12)0.0023 (13)0.0057 (13)0.0003 (10)
C18A0.0920 (18)0.0619 (15)0.0474 (13)0.0137 (12)0.0101 (11)0.0053 (11)
C19A0.0671 (14)0.0579 (14)0.0437 (11)0.0080 (10)0.0036 (9)0.0064 (10)
N1A0.0517 (9)0.0342 (9)0.0375 (8)0.0021 (7)0.0003 (6)0.0072 (7)
N2A0.0691 (11)0.0348 (9)0.0336 (8)0.0071 (7)0.0006 (7)0.0058 (7)
N3A0.0510 (10)0.0381 (10)0.0448 (9)0.0026 (7)0.0079 (7)0.0020 (8)
N4A0.0820 (13)0.0540 (12)0.0399 (10)0.0132 (9)0.0016 (8)0.0081 (9)
O1A0.1278 (13)0.0501 (9)0.0383 (7)0.0053 (8)0.0231 (7)0.0027 (7)
O2A0.1049 (12)0.0346 (9)0.0691 (9)0.0124 (7)0.0155 (7)0.0033 (7)
O3A0.1557 (16)0.0426 (9)0.0587 (9)0.0129 (9)0.0137 (9)0.0140 (8)
O4A0.1535 (15)0.0685 (11)0.0396 (8)0.0074 (10)0.0179 (8)0.0064 (8)
C1B0.0402 (11)0.0340 (11)0.0345 (9)0.0021 (8)0.0068 (7)0.0026 (8)
C2B0.0395 (10)0.0354 (10)0.0339 (9)0.0030 (8)0.0038 (7)0.0022 (8)
C3B0.0516 (12)0.0352 (11)0.0452 (11)0.0066 (9)0.0070 (8)0.0042 (9)
C4B0.0538 (12)0.0420 (12)0.0351 (10)0.0103 (9)0.0069 (8)0.0083 (9)
C5B0.0643 (13)0.0458 (12)0.0317 (10)0.0033 (9)0.0039 (8)0.0017 (9)
C6B0.0635 (13)0.0340 (11)0.0409 (10)0.0002 (9)0.0032 (8)0.0002 (9)
C7B0.0538 (12)0.0366 (11)0.0349 (9)0.0008 (8)0.0020 (8)0.0031 (9)
C8B0.0406 (11)0.0339 (11)0.0414 (10)0.0024 (8)0.0027 (7)0.0046 (9)
C9B0.0490 (12)0.0419 (12)0.0460 (11)0.0007 (9)0.0008 (8)0.0024 (9)
C10B0.0548 (13)0.0503 (13)0.0556 (12)0.0033 (10)0.0030 (9)0.0098 (10)
C11B0.0521 (13)0.0383 (12)0.0818 (15)0.0026 (9)0.0021 (10)0.0079 (11)
C12B0.0593 (13)0.0368 (12)0.0689 (14)0.0008 (9)0.0005 (10)0.0126 (11)
C13B0.0557 (12)0.0423 (12)0.0466 (11)0.0039 (9)0.0006 (8)0.0067 (10)
C14B0.0629 (13)0.0317 (10)0.0343 (10)0.0052 (9)0.0050 (9)0.0068 (8)
C15B0.0675 (14)0.0511 (13)0.0512 (12)0.0017 (10)0.0044 (10)0.0021 (10)
C16B0.0894 (18)0.0611 (15)0.0548 (14)0.0069 (12)0.0220 (12)0.0021 (11)
C17B0.109 (2)0.0566 (14)0.0399 (12)0.0101 (13)0.0019 (13)0.0022 (10)
C18B0.0815 (17)0.0714 (16)0.0530 (13)0.0022 (12)0.0137 (11)0.0016 (12)
C19B0.0649 (14)0.0565 (13)0.0473 (12)0.0032 (10)0.0021 (10)0.0032 (10)
N1B0.0517 (9)0.0372 (9)0.0382 (8)0.0025 (7)0.0024 (6)0.0059 (7)
N2B0.0725 (11)0.0360 (9)0.0311 (8)0.0110 (8)0.0003 (7)0.0069 (7)
N3B0.0502 (10)0.0421 (11)0.0461 (9)0.0024 (8)0.0040 (7)0.0042 (8)
N4B0.0870 (13)0.0562 (12)0.0406 (10)0.0167 (10)0.0008 (8)0.0087 (9)
O1B0.1135 (12)0.0541 (9)0.0390 (7)0.0086 (8)0.0118 (7)0.0014 (7)
O2B0.1153 (13)0.0330 (9)0.0734 (10)0.0007 (8)0.0151 (8)0.0063 (7)
O3B0.1567 (16)0.0456 (10)0.0692 (10)0.0218 (10)0.0085 (9)0.0147 (9)
O4B0.1533 (16)0.0728 (11)0.0427 (9)0.0195 (10)0.0149 (9)0.0048 (8)
Geometric parameters (Å, º) top
C1A—C6A1.397 (2)C1B—C6B1.399 (2)
C1A—C2A1.403 (2)C1B—C2B1.406 (2)
C1A—C7A1.459 (2)C1B—C7B1.456 (2)
C2A—C3A1.3839 (19)C2B—C3B1.386 (2)
C2A—N3A1.469 (2)C2B—N3B1.467 (2)
C3A—C4A1.361 (2)C3B—C4B1.362 (2)
C3A—H3A0.93C3B—H3B0.93
C4A—C5A1.381 (2)C4B—C5B1.383 (2)
C4A—N4A1.4650 (19)C4B—N4B1.463 (2)
C5A—C6A1.369 (2)C5B—C6B1.368 (2)
C5A—H5A0.93C5B—H5B0.93
C6A—H6A0.93C6B—H6B0.93
C7A—N1A1.2888 (19)C7B—N1B1.293 (2)
C7A—H7A0.93C7B—H7B0.93
C8A—C9A1.381 (2)C8B—C9B1.382 (2)
C8A—C13A1.384 (2)C8B—C13B1.386 (2)
C8A—N2A1.409 (2)C8B—N2B1.414 (2)
C9A—C10A1.378 (2)C9B—C10B1.378 (2)
C9A—H9A0.93C9B—H9B0.93
C10A—C11A1.374 (2)C10B—C11B1.374 (2)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.368 (2)C11B—C12B1.361 (2)
C11A—H11A0.93C11B—H11B0.93
C12A—C13A1.376 (2)C12B—C13B1.387 (2)
C12A—H12A0.93C12B—H12B0.93
C13A—H13A0.93C13B—H13B0.93
C14A—C19A1.373 (2)C14B—C19B1.367 (2)
C14A—C15A1.376 (2)C14B—C15B1.370 (2)
C14A—N2A1.434 (2)C14B—N2B1.432 (2)
C15A—C16A1.385 (2)C15B—C16B1.384 (2)
C15A—H15A0.93C15B—H15B0.93
C16A—C17A1.368 (3)C16B—C17B1.362 (3)
C16A—H16A0.93C16B—H16B0.93
C17A—C18A1.362 (3)C17B—C18B1.359 (3)
C17A—H17A0.93C17B—H17B0.93
C18A—C19A1.381 (2)C18B—C19B1.383 (2)
C18A—H18A0.93C18B—H18B0.93
C19A—H19A0.93C19B—H19B0.93
N1A—N2A1.3534 (16)N1B—N2B1.3521 (16)
N3A—O1A1.2110 (15)N3B—O1B1.2097 (16)
N3A—O2A1.2195 (16)N3B—O2B1.2207 (17)
N4A—O4A1.2162 (19)N4B—O4B1.2121 (19)
N4A—O3A1.2173 (19)N4B—O3B1.2193 (19)
C6A—C1A—C2A115.60 (14)C6B—C1B—C2B115.16 (15)
C6A—C1A—C7A118.58 (15)C6B—C1B—C7B118.81 (16)
C2A—C1A—C7A125.81 (15)C2B—C1B—C7B126.02 (15)
C3A—C2A—C1A122.35 (15)C3B—C2B—C1B122.16 (15)
C3A—C2A—N3A114.98 (14)C3B—C2B—N3B115.05 (15)
C1A—C2A—N3A122.67 (14)C1B—C2B—N3B122.78 (14)
C4A—C3A—C2A118.84 (15)C4B—C3B—C2B119.39 (17)
C4A—C3A—H3A120.6C4B—C3B—H3B120.3
C2A—C3A—H3A120.6C2B—C3B—H3B120.3
C3A—C4A—C5A121.56 (15)C3B—C4B—C5B121.14 (16)
C3A—C4A—N4A119.13 (16)C3B—C4B—N4B119.48 (17)
C5A—C4A—N4A119.29 (16)C5B—C4B—N4B119.38 (17)
C6A—C5A—C4A118.61 (16)C6B—C5B—C4B118.54 (17)
C6A—C5A—H5A120.7C6B—C5B—H5B120.7
C4A—C5A—H5A120.7C4B—C5B—H5B120.7
C5A—C6A—C1A123.03 (16)C5B—C6B—C1B123.59 (17)
C5A—C6A—H6A118.5C5B—C6B—H6B118.2
C1A—C6A—H6A118.5C1B—C6B—H6B118.2
N1A—C7A—C1A116.49 (15)N1B—C7B—C1B117.04 (15)
N1A—C7A—H7A121.8N1B—C7B—H7B121.5
C1A—C7A—H7A121.8C1B—C7B—H7B121.5
C9A—C8A—C13A119.23 (17)C9B—C8B—C13B119.49 (17)
C9A—C8A—N2A120.69 (15)C9B—C8B—N2B120.98 (15)
C13A—C8A—N2A120.08 (15)C13B—C8B—N2B119.52 (15)
C10A—C9A—C8A119.67 (16)C10B—C9B—C8B119.67 (17)
C10A—C9A—H9A120.2C10B—C9B—H9B120.2
C8A—C9A—H9A120.2C8B—C9B—H9B120.2
C11A—C10A—C9A121.12 (18)C11B—C10B—C9B120.93 (18)
C11A—C10A—H10A119.4C11B—C10B—H10B119.5
C9A—C10A—H10A119.4C9B—C10B—H10B119.5
C12A—C11A—C10A119.00 (19)C12B—C11B—C10B119.50 (19)
C12A—C11A—H11A120.5C12B—C11B—H11B120.3
C10A—C11A—H11A120.5C10B—C11B—H11B120.3
C11A—C12A—C13A120.86 (18)C11B—C12B—C13B120.72 (18)
C11A—C12A—H12A119.6C11B—C12B—H12B119.6
C13A—C12A—H12A119.6C13B—C12B—H12B119.6
C12A—C13A—C8A120.11 (18)C8B—C13B—C12B119.66 (17)
C12A—C13A—H13A119.9C8B—C13B—H13B120.2
C8A—C13A—H13A119.9C12B—C13B—H13B120.2
C19A—C14A—C15A120.34 (17)C19B—C14B—C15B120.19 (18)
C19A—C14A—N2A119.85 (16)C19B—C14B—N2B119.65 (17)
C15A—C14A—N2A119.78 (16)C15B—C14B—N2B120.16 (17)
C14A—C15A—C16A119.11 (18)C14B—C15B—C16B119.62 (19)
C14A—C15A—H15A120.4C14B—C15B—H15B120.2
C16A—C15A—H15A120.4C16B—C15B—H15B120.2
C17A—C16A—C15A120.6 (2)C17B—C16B—C15B120.0 (2)
C17A—C16A—H16A119.7C17B—C16B—H16B120
C15A—C16A—H16A119.7C15B—C16B—H16B120
C18A—C17A—C16A119.8 (2)C18B—C17B—C16B120.4 (2)
C18A—C17A—H17A120.1C18B—C17B—H17B119.8
C16A—C17A—H17A120.1C16B—C17B—H17B119.8
C17A—C18A—C19A120.44 (19)C17B—C18B—C19B120.2 (2)
C17A—C18A—H18A119.8C17B—C18B—H18B119.9
C19A—C18A—H18A119.8C19B—C18B—H18B119.9
C14A—C19A—C18A119.64 (18)C14B—C19B—C18B119.65 (19)
C14A—C19A—H19A120.2C14B—C19B—H19B120.2
C18A—C19A—H19A120.2C18B—C19B—H19B120.2
C7A—N1A—N2A120.05 (14)C7B—N1B—N2B119.66 (14)
N1A—N2A—C8A115.78 (13)N1B—N2B—C8B116.16 (13)
N1A—N2A—C14A122.80 (14)N1B—N2B—C14B122.32 (14)
C8A—N2A—C14A121.41 (13)C8B—N2B—C14B121.11 (13)
O1A—N3A—O2A121.87 (15)O1B—N3B—O2B121.78 (16)
O1A—N3A—C2A119.95 (14)O1B—N3B—C2B120.07 (15)
O2A—N3A—C2A118.17 (14)O2B—N3B—C2B118.16 (15)
O4A—N4A—O3A123.09 (16)O4B—N4B—O3B123.35 (17)
O4A—N4A—C4A118.02 (17)O4B—N4B—C4B117.89 (18)
O3A—N4A—C4A118.88 (17)O3B—N4B—C4B118.76 (18)
C6A—C1A—C2A—C3A0.1 (2)C6B—C1B—C2B—C3B0.6 (2)
C7A—C1A—C2A—C3A178.63 (15)C7B—C1B—C2B—C3B179.58 (15)
C6A—C1A—C2A—N3A179.84 (14)C6B—C1B—C2B—N3B178.50 (14)
C7A—C1A—C2A—N3A1.4 (2)C7B—C1B—C2B—N3B1.3 (2)
C1A—C2A—C3A—C4A0.9 (2)C1B—C2B—C3B—C4B0.5 (2)
N3A—C2A—C3A—C4A179.06 (14)N3B—C2B—C3B—C4B179.67 (15)
C2A—C3A—C4A—C5A0.9 (2)C2B—C3B—C4B—C5B1.3 (3)
C2A—C3A—C4A—N4A177.51 (14)C2B—C3B—C4B—N4B177.95 (14)
C3A—C4A—C5A—C6A0.1 (3)C3B—C4B—C5B—C6B0.8 (3)
N4A—C4A—C5A—C6A178.28 (15)N4B—C4B—C5B—C6B178.37 (14)
C4A—C5A—C6A—C1A0.7 (3)C4B—C5B—C6B—C1B0.4 (3)
C2A—C1A—C6A—C5A0.7 (2)C2B—C1B—C6B—C5B1.1 (2)
C7A—C1A—C6A—C5A179.55 (15)C7B—C1B—C6B—C5B179.12 (15)
C6A—C1A—C7A—N1A12.6 (2)C6B—C1B—C7B—N1B12.5 (2)
C2A—C1A—C7A—N1A166.14 (15)C2B—C1B—C7B—N1B167.26 (16)
C13A—C8A—C9A—C10A0.8 (2)C13B—C8B—C9B—C10B1.6 (2)
N2A—C8A—C9A—C10A178.48 (16)N2B—C8B—C9B—C10B178.39 (15)
C8A—C9A—C10A—C11A0.4 (3)C8B—C9B—C10B—C11B1.0 (3)
C9A—C10A—C11A—C12A0.2 (3)C9B—C10B—C11B—C12B0.1 (3)
C10A—C11A—C12A—C13A0.4 (3)C10B—C11B—C12B—C13B0.6 (3)
C11A—C12A—C13A—C8A0.0 (3)C9B—C8B—C13B—C12B1.2 (2)
C9A—C8A—C13A—C12A0.6 (2)N2B—C8B—C13B—C12B178.84 (15)
N2A—C8A—C13A—C12A178.65 (16)C11B—C12B—C13B—C8B0.0 (3)
C19A—C14A—C15A—C16A0.4 (3)C19B—C14B—C15B—C16B0.2 (3)
N2A—C14A—C15A—C16A178.53 (16)N2B—C14B—C15B—C16B179.22 (16)
C14A—C15A—C16A—C17A0.8 (3)C14B—C15B—C16B—C17B0.9 (3)
C15A—C16A—C17A—C18A0.9 (3)C15B—C16B—C17B—C18B0.8 (3)
C16A—C17A—C18A—C19A0.1 (3)C16B—C17B—C18B—C19B0.1 (3)
C15A—C14A—C19A—C18A1.4 (3)C15B—C14B—C19B—C18B0.7 (3)
N2A—C14A—C19A—C18A179.54 (17)N2B—C14B—C19B—C18B179.92 (17)
C17A—C18A—C19A—C14A1.3 (3)C17B—C18B—C19B—C14B0.8 (3)
C1A—C7A—N1A—N2A179.63 (13)C1B—C7B—N1B—N2B178.10 (13)
C7A—N1A—N2A—C8A174.03 (15)C7B—N1B—N2B—C8B171.41 (15)
C7A—N1A—N2A—C14A7.1 (2)C7B—N1B—N2B—C14B1.3 (2)
C9A—C8A—N2A—N1A21.3 (2)C9B—C8B—N2B—N1B15.2 (2)
C13A—C8A—N2A—N1A157.96 (14)C13B—C8B—N2B—N1B164.80 (14)
C9A—C8A—N2A—C14A159.80 (16)C9B—C8B—N2B—C14B157.63 (15)
C13A—C8A—N2A—C14A20.9 (2)C13B—C8B—N2B—C14B22.4 (2)
C19A—C14A—N2A—N1A68.4 (2)C19B—C14B—N2B—N1B96.7 (2)
C15A—C14A—N2A—N1A113.47 (18)C15B—C14B—N2B—N1B83.9 (2)
C19A—C14A—N2A—C8A110.43 (18)C19B—C14B—N2B—C8B75.7 (2)
C15A—C14A—N2A—C8A67.7 (2)C15B—C14B—N2B—C8B103.7 (2)
C3A—C2A—N3A—O1A168.42 (15)C3B—C2B—N3B—O1B177.83 (14)
C1A—C2A—N3A—O1A11.5 (2)C1B—C2B—N3B—O1B3.0 (2)
C3A—C2A—N3A—O2A10.4 (2)C3B—C2B—N3B—O2B2.4 (2)
C1A—C2A—N3A—O2A169.66 (15)C1B—C2B—N3B—O2B176.76 (15)
C3A—C4A—N4A—O4A178.13 (17)C3B—C4B—N4B—O4B179.18 (17)
C5A—C4A—N4A—O4A3.4 (2)C5B—C4B—N4B—O4B1.6 (2)
C3A—C4A—N4A—O3A1.2 (2)C3B—C4B—N4B—O3B0.4 (3)
C5A—C4A—N4A—O3A177.22 (17)C5B—C4B—N4B—O3B178.81 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11A···O2Ai0.932.593.306 (2)134
C11B—H11B···O2Bi0.932.723.370 (2)128
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H14N4O4
Mr362.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0288 (6), 13.5001 (7), 17.9271 (11)
α, β, γ (°)91.878 (5), 93.431 (6), 91.548 (6)
V3)1696.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.59 × 0.38 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur (Atlas, Gemini)
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.955, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13303, 6694, 3465
Rint0.028
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.079, 1.01
No. of reflections6694
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.2

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11A···O2Ai0.932.593.306 (2)134.2
C11B—H11B···O2Bi0.932.723.370 (2)127.7
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful for financial support (project No. CAVB-NAT13-G). MFA is indebted to Dr A. L. Maldonado-Hermenegildo for useful comments.

References

First citationAngell, S. E., Rogers, C. W., Zhang, Y., Wolf, M. O. & Jones, W. E. (2006). Coord. Chem. Rev. 250, 1829–1841.  Web of Science CrossRef CAS Google Scholar
First citationClulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049–12062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMendoza, A., Meléndrez-Luevano, R., Cabrera-Vivas, B. M., Acoltzi-X, C. & Flores-Alamo, M. (2012). Acta Cryst. E68, o3238.  CSD CrossRef IUCr Journals Google Scholar
First citationMotherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRollas, S., Gulerman, N. & Erdeniz, H. (2002). Il Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553–564.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds