organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-2-(4-Chloro­phen­yl)ethen­yl]-5,5-di­methyl­cyclo­hex-2-en-1-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 1 June 2013; accepted 11 June 2013; online 19 June 2013)

In the title compound, C16H17ClO, the cyclo­hexene ring adopts a half-chair conformation and the best plane through the six ring atoms makes a dihedral angle of 6.69 (7)° with the chlorophenyl ring. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric R22(20) dimers. The dimers are linked into an infinite chains along the b-axis direction by further C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of cyclo­hexa­none derivatives, see: Puetz et al.(2003[Puetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Appl. No. 20030096811.]); Rajveer et al. (2010[Rajveer, Ch., Stephenrathinaraj, B., Sudharshini, S., Kumaraswamy, D., Shreshtha, B. & Choudhury, P. K. (2010). Res. J. Pharm. Biol. Chem. Sci. 1, 99-107.]). For a related structure, see: Hema et al. (2006[Hema, R., Parthasarathi, V., Ravikumar, K., Pandiarajan, K. & Murugavel, K. (2006). Acta Cryst. E62, o703-o705.]). For conformational analysis, see: Allinger (1977[Allinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127-8134.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17ClO

  • Mr = 260.75

  • Monoclinic, P 21 /n

  • a = 13.7630 (4) Å

  • b = 6.0841 (2) Å

  • c = 17.5003 (6) Å

  • β = 105.726 (2)°

  • V = 1410.54 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.951

  • 13158 measured reflections

  • 3552 independent reflections

  • 2611 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.03

  • 3552 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.41 3.301 (2) 159
C14—H14B⋯O1ii 0.97 2.57 3.4299 (18) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cyclohexanone derivatives have potent pharmacological activity in the treatment of a broad spectrum of medical conditions (Puetz et al., 2003). The cyclohexanone moiety constitutes an important structural feature in several antiinflammatory, analgesic, local anesthetic and antihistaminic drugs (Rajveer et al., 2010). In view of different applications of this class of compounds, we have undertaken a single-crystal structure determination of the title compound.

Molecules of the title compound, C16H17ClO, (Fig.1) are linked by pairs of intermolecular (C2—H2···O1) hydrogen bonds (Fig. 2) into centrosymmetric R22(20) dimers and these dimers are linked into an infinite chains by pairs of (C14—H14B···O1) hydrogen bonds, which propagate in the b axis direction. The cyclohexene ring (C9—C14) adopts a half-chair conformation and makes a dihedral angle of 6.69 (7)° with the phenyl ring (C1—C6).

Related literature top

For the pharmacological activity of cyclohexanone derivatives, see: Puetz et al.(2003); Rajveer et al. (2010). For a related structure, see: Hema et al. (2006). For conformational analysis, see: Allinger (1977); Cremer & Pople (1975).

Experimental top

A mixture of isophorone (0.01 mol), 4-chlorobezaldehyde (0.01 mol) and sodium hydroxide solution (10 mL, 10%) in ethanol (25 mL) was stirred at room temperature until the starting material disappeared. The resulting mixture was poured into crushed ice and the precipitate was filtered off, dried and recrystallized from ethanol. Yield=90%, Melting point=84–86°C.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.92 Å to 0.97 Å refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Structure description top

Cyclohexanone derivatives have potent pharmacological activity in the treatment of a broad spectrum of medical conditions (Puetz et al., 2003). The cyclohexanone moiety constitutes an important structural feature in several antiinflammatory, analgesic, local anesthetic and antihistaminic drugs (Rajveer et al., 2010). In view of different applications of this class of compounds, we have undertaken a single-crystal structure determination of the title compound.

Molecules of the title compound, C16H17ClO, (Fig.1) are linked by pairs of intermolecular (C2—H2···O1) hydrogen bonds (Fig. 2) into centrosymmetric R22(20) dimers and these dimers are linked into an infinite chains by pairs of (C14—H14B···O1) hydrogen bonds, which propagate in the b axis direction. The cyclohexene ring (C9—C14) adopts a half-chair conformation and makes a dihedral angle of 6.69 (7)° with the phenyl ring (C1—C6).

For the pharmacological activity of cyclohexanone derivatives, see: Puetz et al.(2003); Rajveer et al. (2010). For a related structure, see: Hema et al. (2006). For conformational analysis, see: Allinger (1977); Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down a axis. H-atoms not involved in H-bonds have been excluded for clarity.
3-[(E)-2-(4-Chlorophenyl)ethenyl]-5,5-dimethylcyclohex-2-en-1-one top
Crystal data top
C16H17ClOF(000) = 552
Mr = 260.75Dx = 1.228 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.7630 (4) ÅCell parameters from 3552 reflections
b = 6.0841 (2) Åθ = 1.7–28.5°
c = 17.5003 (6) ŵ = 0.26 mm1
β = 105.726 (2)°T = 293 K
V = 1410.54 (8) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3552 independent reflections
Radiation source: fine-focus sealed tube2611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1718
Tmin = 0.927, Tmax = 0.951k = 88
13158 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.2499P]
where P = (Fo2 + 2Fc2)/3
3552 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H17ClOV = 1410.54 (8) Å3
Mr = 260.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.7630 (4) ŵ = 0.26 mm1
b = 6.0841 (2) ÅT = 293 K
c = 17.5003 (6) Å0.30 × 0.25 × 0.20 mm
β = 105.726 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3552 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2611 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.951Rint = 0.022
13158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3552 reflectionsΔρmin = 0.33 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25679 (10)0.3118 (3)0.46901 (9)0.0552 (4)
C20.30278 (13)0.1202 (3)0.50163 (9)0.0631 (4)
H20.30080.07660.55210.076*
C30.35172 (13)0.0062 (3)0.45851 (9)0.0600 (4)
H30.38310.13560.48070.072*
C40.35569 (10)0.0537 (2)0.38278 (8)0.0490 (3)
C50.30813 (11)0.2484 (3)0.35197 (9)0.0572 (4)
H50.30950.29270.30140.069*
C60.25905 (12)0.3775 (3)0.39444 (9)0.0592 (4)
H60.22780.50760.37290.071*
C70.40805 (11)0.0754 (2)0.33556 (8)0.0518 (3)
H70.40650.02020.28570.062*
C80.45744 (11)0.2628 (2)0.35633 (8)0.0531 (3)
H80.45740.32110.40550.064*
C90.51163 (10)0.3859 (2)0.30951 (8)0.0471 (3)
C100.56090 (11)0.5706 (2)0.33930 (8)0.0529 (3)
H100.55680.61890.38870.063*
C110.62046 (10)0.6992 (2)0.29819 (8)0.0505 (3)
C120.63343 (11)0.6046 (3)0.22279 (9)0.0575 (4)
H12A0.69150.50760.23530.069*
H12B0.64720.72300.19010.069*
C130.54145 (11)0.4765 (2)0.17534 (8)0.0508 (3)
C140.51482 (11)0.3025 (2)0.22953 (8)0.0527 (3)
H14A0.44940.24060.20300.063*
H14B0.56400.18470.23710.063*
C150.56696 (15)0.3622 (3)0.10559 (10)0.0780 (5)
H15A0.51030.27600.07710.117*
H15B0.62440.26820.12510.117*
H15C0.58230.47070.07070.117*
C160.45296 (13)0.6332 (3)0.14473 (10)0.0704 (5)
H16A0.47150.74440.11240.106*
H16B0.43580.70120.18890.106*
H16C0.39580.55270.11370.106*
O10.65928 (9)0.87306 (19)0.32485 (7)0.0688 (3)
Cl10.19413 (4)0.47224 (9)0.52256 (3)0.08168 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0494 (7)0.0594 (9)0.0550 (8)0.0006 (7)0.0112 (6)0.0115 (7)
C20.0715 (10)0.0726 (11)0.0450 (8)0.0080 (8)0.0157 (7)0.0013 (7)
C30.0696 (9)0.0585 (9)0.0504 (8)0.0135 (7)0.0139 (7)0.0063 (7)
C40.0477 (7)0.0489 (8)0.0500 (7)0.0014 (6)0.0124 (6)0.0008 (6)
C50.0621 (8)0.0566 (9)0.0551 (8)0.0045 (7)0.0192 (7)0.0078 (7)
C60.0598 (8)0.0542 (9)0.0627 (9)0.0087 (7)0.0150 (7)0.0033 (7)
C70.0558 (8)0.0525 (8)0.0481 (7)0.0004 (6)0.0155 (6)0.0010 (6)
C80.0572 (8)0.0558 (8)0.0468 (7)0.0018 (7)0.0150 (6)0.0011 (6)
C90.0470 (7)0.0471 (7)0.0458 (7)0.0024 (6)0.0100 (5)0.0007 (6)
C100.0564 (8)0.0568 (8)0.0448 (7)0.0035 (7)0.0126 (6)0.0069 (6)
C110.0441 (6)0.0506 (8)0.0526 (8)0.0005 (6)0.0059 (6)0.0008 (6)
C120.0507 (8)0.0647 (9)0.0602 (9)0.0044 (7)0.0206 (6)0.0052 (7)
C130.0545 (7)0.0525 (8)0.0464 (7)0.0003 (6)0.0155 (6)0.0027 (6)
C140.0625 (8)0.0456 (7)0.0499 (8)0.0012 (6)0.0153 (6)0.0048 (6)
C150.0945 (13)0.0874 (13)0.0605 (10)0.0114 (10)0.0356 (9)0.0178 (9)
C160.0686 (10)0.0708 (11)0.0614 (9)0.0072 (9)0.0000 (8)0.0082 (8)
O10.0740 (7)0.0596 (7)0.0712 (7)0.0183 (6)0.0170 (6)0.0110 (5)
Cl10.0819 (3)0.0909 (4)0.0745 (3)0.0193 (2)0.0250 (2)0.0201 (2)
Geometric parameters (Å, º) top
C1—C61.373 (2)C10—C111.457 (2)
C1—C21.375 (2)C10—H100.9300
C1—Cl11.7356 (15)C11—O11.2192 (17)
C2—C31.375 (2)C11—C121.494 (2)
C2—H20.9300C12—C131.526 (2)
C3—C41.390 (2)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.390 (2)C13—C161.525 (2)
C4—C71.463 (2)C13—C151.526 (2)
C5—C61.378 (2)C13—C141.531 (2)
C5—H50.9300C14—H14A0.9700
C6—H60.9300C14—H14B0.9700
C7—C81.327 (2)C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C91.4560 (19)C15—H15C0.9600
C8—H80.9300C16—H16A0.9600
C9—C101.342 (2)C16—H16B0.9600
C9—C141.5006 (19)C16—H16C0.9600
C6—C1—C2121.00 (14)C10—C11—C12116.55 (12)
C6—C1—Cl1119.47 (12)C11—C12—C13113.41 (12)
C2—C1—Cl1119.53 (12)C11—C12—H12A108.9
C3—C2—C1119.04 (14)C13—C12—H12A108.9
C3—C2—H2120.5C11—C12—H12B108.9
C1—C2—H2120.5C13—C12—H12B108.9
C2—C3—C4121.89 (14)H12A—C12—H12B107.7
C2—C3—H3119.1C16—C13—C15109.80 (14)
C4—C3—H3119.1C16—C13—C12109.72 (13)
C3—C4—C5117.22 (13)C15—C13—C12109.33 (13)
C3—C4—C7123.38 (13)C16—C13—C14110.34 (13)
C5—C4—C7119.39 (13)C15—C13—C14109.04 (13)
C6—C5—C4121.67 (14)C12—C13—C14108.58 (12)
C6—C5—H5119.2C9—C14—C13114.60 (12)
C4—C5—H5119.2C9—C14—H14A108.6
C1—C6—C5119.18 (14)C13—C14—H14A108.6
C1—C6—H6120.4C9—C14—H14B108.6
C5—C6—H6120.4C13—C14—H14B108.6
C8—C7—C4126.92 (14)H14A—C14—H14B107.6
C8—C7—H7116.5C13—C15—H15A109.5
C4—C7—H7116.5C13—C15—H15B109.5
C7—C8—C9126.19 (14)H15A—C15—H15B109.5
C7—C8—H8116.9C13—C15—H15C109.5
C9—C8—H8116.9H15A—C15—H15C109.5
C10—C9—C8119.59 (13)H15B—C15—H15C109.5
C10—C9—C14120.39 (13)C13—C16—H16A109.5
C8—C9—C14119.99 (12)C13—C16—H16B109.5
C9—C10—C11123.40 (13)H16A—C16—H16B109.5
C9—C10—H10118.3C13—C16—H16C109.5
C11—C10—H10118.3H16A—C16—H16C109.5
O1—C11—C10121.60 (14)H16B—C16—H16C109.5
O1—C11—C12121.83 (14)
C6—C1—C2—C30.1 (2)C8—C9—C10—C11177.38 (13)
Cl1—C1—C2—C3179.65 (12)C14—C9—C10—C110.7 (2)
C1—C2—C3—C40.3 (3)C9—C10—C11—O1175.58 (14)
C2—C3—C4—C50.2 (2)C9—C10—C11—C125.8 (2)
C2—C3—C4—C7179.28 (14)O1—C11—C12—C13147.07 (14)
C3—C4—C5—C60.1 (2)C10—C11—C12—C1334.32 (19)
C7—C4—C5—C6179.07 (13)C11—C12—C13—C1666.81 (17)
C2—C1—C6—C50.1 (2)C11—C12—C13—C15172.71 (14)
Cl1—C1—C6—C5179.41 (11)C11—C12—C13—C1453.85 (17)
C4—C5—C6—C10.2 (2)C10—C9—C14—C1321.6 (2)
C3—C4—C7—C80.4 (2)C8—C9—C14—C13160.34 (12)
C5—C4—C7—C8179.51 (14)C16—C13—C14—C972.87 (16)
C4—C7—C8—C9178.10 (13)C15—C13—C14—C9166.46 (13)
C7—C8—C9—C10178.00 (15)C12—C13—C14—C947.41 (16)
C7—C8—C9—C140.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.413.301 (2)159
C14—H14B···O1ii0.972.573.4299 (18)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H17ClO
Mr260.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.7630 (4), 6.0841 (2), 17.5003 (6)
β (°) 105.726 (2)
V3)1410.54 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.927, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
13158, 3552, 2611
Rint0.022
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.03
No. of reflections3552
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.413.301 (2)159
C14—H14B···O1ii0.972.573.4299 (18)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and ZF thanks the UGC for a meritorious fellowship.

References

First citationAllinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127–8134.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHema, R., Parthasarathi, V., Ravikumar, K., Pandiarajan, K. & Murugavel, K. (2006). Acta Cryst. E62, o703–o705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPuetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Appl. No. 20030096811.  Google Scholar
First citationRajveer, Ch., Stephenrathinaraj, B., Sudharshini, S., Kumaraswamy, D., Shreshtha, B. & Choudhury, P. K. (2010). Res. J. Pharm. Biol. Chem. Sci. 1, 99–107.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds