organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-4-(prop-2-en-1-yl)phenyl 2,4-di­chloro­benzoate

aDepartment of Pharmaceutical Chemistry, International Medical University, 126 Jalan Bukit Jalil, 57000 Kuala Lumpur, Malaysia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: mallikarjunarao_pichika@imu.edu.my

(Received 3 June 2013; accepted 5 June 2013; online 12 June 2013)

In the title compound, C17H14Cl2O3, the two benzene rings are twisted by 73.6 (2)°. The twist is similar to that found in the unsubstituted compound, viz. phenyl benzoate. In the crystal, inversion dimers are linked by pairs of C—H⋯O inter­actions.

Related literature

For the structure of phenyl benzoate, see: Shibakami & Sekiya (1995[Shibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326-330.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14Cl2O3

  • Mr = 337.18

  • Triclinic, [P \overline 1]

  • a = 7.8805 (8) Å

  • b = 8.4673 (12) Å

  • c = 12.3973 (14) Å

  • α = 104.166 (11)°

  • β = 94.502 (9)°

  • γ = 104.145 (10)°

  • V = 769.29 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.847, Tmax = 0.919

  • 4945 measured reflections

  • 2703 independent reflections

  • 1818 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.269

  • S = 1.09

  • 2703 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.95 2.52 3.339 (7) 144
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title phenyl benzoate (Scheme I, Fig. 1), which possesses an allyl and a methoxy substituent, was synthesized for an evaluation of its pharmaceutical properties as it is an ester derivative of eugenol. The two benzene rings are approximately perpendicular [dihedral angle 73.6 (25) °]. The twist is similar to that found in the unsubstituted compound, phenyl benzoate (Shibakami & Sekiya, 1995).

Related literature top

For the structure of phenyl benzoate, see: Shibakami & Sekiya (1995).

Experimental top

4-Allyl-2-methoxyphenol (1 mmol), 2,4-dichlorobenzoic acid (1 mmol), diethylazodicarboxylate (2 mmol) and triphenylphosphine (2 mmol) were heated in THF (10 ml) for 2 h. The solid material extracted with dichloromethane. The dichloromethane solution was eluted through a silica gel column by using an n-hexane–ethyl acetate (95: 5 v/v) solvent system. Slow evaporation of the solution yielded large colorless crystals.

Refinement top

H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The final difference Fourier map had a peak at 1 Å from Cl1.

Structure description top

The title phenyl benzoate (Scheme I, Fig. 1), which possesses an allyl and a methoxy substituent, was synthesized for an evaluation of its pharmaceutical properties as it is an ester derivative of eugenol. The two benzene rings are approximately perpendicular [dihedral angle 73.6 (25) °]. The twist is similar to that found in the unsubstituted compound, phenyl benzoate (Shibakami & Sekiya, 1995).

For the structure of phenyl benzoate, see: Shibakami & Sekiya (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C17H14Cl2O3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Methoxy-4-(prop-2-en-1-yl)phenyl 2,4-dichlorobenzoate top
Crystal data top
C17H14Cl2O3Z = 2
Mr = 337.18F(000) = 348
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8805 (8) ÅCell parameters from 1164 reflections
b = 8.4673 (12) Åθ = 3.0–25.0°
c = 12.3973 (14) ŵ = 0.43 mm1
α = 104.166 (11)°T = 100 K
β = 94.502 (9)°Prism, colourless
γ = 104.145 (10)°0.40 × 0.20 × 0.20 mm
V = 769.29 (16) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2703 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1818 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
Detector resolution: 10.4041 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 910
Tmin = 0.847, Tmax = 0.919l = 149
4945 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.269H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1481P)2 + 0.2039P]
where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C17H14Cl2O3γ = 104.145 (10)°
Mr = 337.18V = 769.29 (16) Å3
Triclinic, P1Z = 2
a = 7.8805 (8) ÅMo Kα radiation
b = 8.4673 (12) ŵ = 0.43 mm1
c = 12.3973 (14) ÅT = 100 K
α = 104.166 (11)°0.40 × 0.20 × 0.20 mm
β = 94.502 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2703 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1818 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.919Rint = 0.057
4945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.269H-atom parameters constrained
S = 1.09Δρmax = 1.02 e Å3
2703 reflectionsΔρmin = 0.64 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61313 (17)0.1630 (2)0.41224 (12)0.0305 (5)
Cl21.30151 (17)0.3673 (2)0.56261 (11)0.0286 (5)
O10.5171 (5)0.5487 (5)0.1955 (3)0.0248 (10)
O20.5571 (5)0.2458 (5)0.2059 (3)0.0247 (10)
O30.7704 (5)0.3027 (5)0.0993 (3)0.0244 (10)
C10.4077 (7)0.4099 (7)0.1176 (4)0.0196 (12)
C20.2748 (7)0.4127 (7)0.0377 (4)0.0210 (13)
H20.25800.51840.03330.025*
C30.1662 (7)0.2644 (8)0.0358 (4)0.0225 (13)
C40.1948 (7)0.1095 (7)0.0313 (5)0.0232 (13)
H40.12310.00720.08200.028*
C50.3276 (7)0.1049 (8)0.0470 (5)0.0252 (14)
H50.34640.00050.05040.030*
C60.4327 (7)0.2539 (7)0.1202 (4)0.0205 (13)
C70.4783 (8)0.7069 (7)0.1996 (5)0.0297 (15)
H7A0.56280.79760.25810.045*
H7B0.35790.70010.21700.045*
H7C0.48760.73110.12660.045*
C80.0147 (7)0.2725 (8)0.1161 (4)0.0258 (14)
H8A0.09810.22700.09020.031*
H8B0.02510.39270.11230.031*
C90.0062 (8)0.1778 (8)0.2361 (5)0.0286 (15)
H90.10730.20720.27160.034*
C100.1295 (9)0.0577 (8)0.2954 (5)0.0335 (15)
H10A0.23290.02480.26270.040*
H10B0.12500.00320.37140.040*
C110.7283 (7)0.2824 (7)0.1879 (5)0.0218 (13)
C120.8567 (7)0.2914 (7)0.2851 (4)0.0218 (13)
C130.8232 (7)0.2503 (7)0.3850 (5)0.0209 (13)
C140.9597 (7)0.2728 (7)0.4692 (4)0.0216 (13)
H140.93520.24230.53630.026*
C151.1335 (7)0.3406 (8)0.4549 (4)0.0222 (13)
C161.1726 (7)0.3802 (7)0.3571 (4)0.0237 (13)
H161.29170.42280.34690.028*
C171.0337 (7)0.3565 (8)0.2737 (4)0.0245 (13)
H171.05950.38550.20630.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0151 (8)0.0452 (11)0.0321 (9)0.0026 (7)0.0048 (6)0.0172 (7)
Cl20.0183 (8)0.0381 (10)0.0272 (9)0.0058 (7)0.0021 (6)0.0082 (7)
O10.018 (2)0.026 (2)0.027 (2)0.0043 (18)0.0019 (16)0.0035 (18)
O20.019 (2)0.034 (2)0.023 (2)0.0072 (18)0.0033 (16)0.0102 (18)
O30.021 (2)0.028 (2)0.023 (2)0.0034 (18)0.0032 (16)0.0096 (18)
C10.016 (3)0.017 (3)0.020 (3)0.000 (2)0.003 (2)0.001 (2)
C20.019 (3)0.029 (3)0.017 (3)0.008 (3)0.003 (2)0.006 (2)
C30.019 (3)0.030 (3)0.020 (3)0.008 (3)0.009 (2)0.007 (3)
C40.020 (3)0.021 (3)0.026 (3)0.000 (3)0.003 (2)0.009 (3)
C50.020 (3)0.027 (3)0.032 (3)0.008 (3)0.007 (2)0.010 (3)
C60.016 (3)0.026 (3)0.019 (3)0.006 (2)0.002 (2)0.006 (2)
C70.024 (3)0.021 (3)0.038 (4)0.005 (3)0.001 (3)0.000 (3)
C80.018 (3)0.023 (3)0.033 (3)0.003 (3)0.000 (2)0.007 (3)
C90.021 (3)0.043 (4)0.025 (3)0.012 (3)0.004 (2)0.012 (3)
C100.038 (4)0.025 (4)0.034 (4)0.011 (3)0.004 (3)0.002 (3)
C110.017 (3)0.016 (3)0.030 (3)0.005 (2)0.007 (2)0.002 (3)
C120.018 (3)0.022 (3)0.023 (3)0.008 (2)0.001 (2)0.001 (2)
C130.012 (3)0.021 (3)0.029 (3)0.004 (2)0.002 (2)0.006 (2)
C140.021 (3)0.024 (3)0.020 (3)0.010 (3)0.001 (2)0.002 (2)
C150.019 (3)0.030 (3)0.016 (3)0.008 (3)0.001 (2)0.002 (2)
C160.014 (3)0.027 (3)0.025 (3)0.000 (2)0.002 (2)0.003 (3)
C170.027 (3)0.031 (4)0.016 (3)0.008 (3)0.005 (2)0.006 (3)
Geometric parameters (Å, º) top
Cl1—C131.736 (5)C7—H7C0.9800
Cl2—C151.736 (5)C8—C91.494 (8)
O1—C11.369 (6)C8—H8A0.9900
O1—C71.436 (7)C8—H8B0.9900
O2—C111.357 (6)C9—C101.303 (9)
O2—C61.414 (6)C9—H90.9500
O3—C111.210 (7)C10—H10A0.9500
C1—C61.390 (8)C10—H10B0.9500
C1—C21.393 (7)C11—C121.486 (8)
C2—C31.390 (8)C12—C131.393 (8)
C2—H20.9500C12—C171.401 (8)
C3—C41.397 (8)C13—C141.382 (7)
C3—C81.520 (7)C14—C151.393 (8)
C4—C51.385 (8)C14—H140.9500
C4—H40.9500C15—C161.373 (8)
C5—C61.383 (7)C16—C171.386 (8)
C5—H50.9500C16—H160.9500
C7—H7A0.9800C17—H170.9500
C7—H7B0.9800
C1—O1—C7115.8 (4)C3—C8—H8B108.5
C11—O2—C6115.7 (4)H8A—C8—H8B107.5
O1—C1—C6116.3 (5)C10—C9—C8124.8 (6)
O1—C1—C2125.6 (5)C10—C9—H9117.6
C6—C1—C2118.1 (5)C8—C9—H9117.6
C3—C2—C1121.5 (5)C9—C10—H10A120.0
C3—C2—H2119.2C9—C10—H10B120.0
C1—C2—H2119.2H10A—C10—H10B120.0
C2—C3—C4119.1 (5)O3—C11—O2122.4 (5)
C2—C3—C8119.7 (5)O3—C11—C12123.7 (5)
C4—C3—C8121.2 (5)O2—C11—C12114.0 (5)
C5—C4—C3120.0 (5)C13—C12—C17117.4 (5)
C5—C4—H4120.0C13—C12—C11128.7 (5)
C3—C4—H4120.0C17—C12—C11113.8 (5)
C6—C5—C4119.9 (5)C14—C13—C12121.1 (5)
C6—C5—H5120.0C14—C13—Cl1115.1 (4)
C4—C5—H5120.0C12—C13—Cl1123.8 (4)
C5—C6—C1121.4 (5)C13—C14—C15119.5 (5)
C5—C6—O2119.1 (5)C13—C14—H14120.3
C1—C6—O2119.3 (5)C15—C14—H14120.3
O1—C7—H7A109.5C16—C15—C14121.3 (5)
O1—C7—H7B109.5C16—C15—Cl2120.5 (4)
H7A—C7—H7B109.5C14—C15—Cl2118.2 (4)
O1—C7—H7C109.5C15—C16—C17118.2 (5)
H7A—C7—H7C109.5C15—C16—H16120.9
H7B—C7—H7C109.5C17—C16—H16120.9
C9—C8—C3114.9 (4)C16—C17—C12122.4 (5)
C9—C8—H8A108.5C16—C17—H17118.8
C3—C8—H8A108.5C12—C17—H17118.8
C9—C8—H8B108.5
C7—O1—C1—C6173.9 (5)C6—O2—C11—O37.7 (7)
C7—O1—C1—C25.8 (7)C6—O2—C11—C12173.5 (4)
O1—C1—C2—C3177.9 (5)O3—C11—C12—C13171.3 (6)
C6—C1—C2—C31.7 (8)O2—C11—C12—C137.5 (8)
C1—C2—C3—C41.9 (8)O3—C11—C12—C1711.4 (8)
C1—C2—C3—C8175.7 (5)O2—C11—C12—C17169.9 (4)
C2—C3—C4—C51.2 (8)C17—C12—C13—C140.1 (8)
C8—C3—C4—C5176.3 (5)C11—C12—C13—C14177.4 (5)
C3—C4—C5—C60.5 (8)C17—C12—C13—Cl1178.2 (4)
C4—C5—C6—C10.4 (8)C11—C12—C13—Cl14.6 (9)
C4—C5—C6—O2174.5 (4)C12—C13—C14—C151.2 (8)
O1—C1—C6—C5178.7 (5)Cl1—C13—C14—C15179.4 (4)
C2—C1—C6—C51.0 (8)C13—C14—C15—C162.3 (9)
O1—C1—C6—O24.6 (7)C13—C14—C15—Cl2179.9 (4)
C2—C1—C6—O2175.1 (4)C14—C15—C16—C172.2 (9)
C11—O2—C6—C5103.7 (6)Cl2—C15—C16—C17180.0 (4)
C11—O2—C6—C182.0 (6)C15—C16—C17—C121.1 (9)
C2—C3—C8—C9130.2 (6)C13—C12—C17—C160.1 (8)
C4—C3—C8—C952.2 (7)C11—C12—C17—C16177.8 (5)
C3—C8—C9—C10122.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.523.339 (7)144
C17—H17···O30.952.392.746 (6)101
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14Cl2O3
Mr337.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8805 (8), 8.4673 (12), 12.3973 (14)
α, β, γ (°)104.166 (11), 94.502 (9), 104.145 (10)
V3)769.29 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.847, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
4945, 2703, 1818
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.269, 1.09
No. of reflections2703
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.64

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.95002.52003.339 (7)144.00
C17—H17···O30.95002.39002.746 (6)101.00
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank the Ministry of Higher Education, Malaysia (ERGS/1/2012/STG01/IMU/02/1; UM-C/HIR-MOHE/SC/03) for supporting this study and the International Medical University for providing the facilities.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326–330.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds