metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[hexa­aqua­(μ9-cyclo­hexane-1,2,3,4,5,6-hexa­carboxyl­ato)trimanganese(II)]

aThe Class 10, 2011, Norman Bethune College of Medicine, Jilin University, 828 Xinmin Street, Changchun 130021, Jilin Province, People's Republic of China, bDepartment of Orthopedics, The China–Japan Union Hospital of Jilin University, Changchun 130021, Jilin Province, People's Republic of China, and cLaboratory Teaching of Pathology, Norman Bethune College of Medicine, Jilin University, 828 Xinmin Street, Changchun 130021, Jilin Province, People's Republic of China
*Correspondence e-mail: quanchengshi66@163.com

(Received 10 May 2013; accepted 5 June 2013; online 15 June 2013)

The asymmetric unit of the title compound, [Mn3(C12H6O12)(H2O)6]n, comprises one MnII ion, one third of a cyclo­hexane-1,2,3,4,5,6-hexa­carboxyl­ate anion and two aqua ligands. The anion is completed by application of a -3 axis. The MnII ion is six-coordinated by six O atoms from two aqua ligands and three different cyclo­hexa­carboxyl­ate anions in an octa­hedral geometry. The six carboxyl­ate groups adopt a bridging bidentate mode to ligate the MnII ions. Thus, each cyclo­hexane-1,2,3,4,5,6-hexa­carboxyl­ate anion adopts a μ9-connected mode, ligating nine different MnII ions and forming a three-dimensional framework. In the framework, there are strong O—H⋯O hydrogen-bonding inter­actions, which further stabilize the crystal structure.

Related literature

For background to compounds with metal-organic framework structures, see: Wang et al. (2010[Wang, G. H., Lei, Y. Q., Wang, N., He, R. L., Jia, H. Q., Hu, N. H. & Xu, J. W. (2010). Cryst. Growth Des. 10, 534-540.]); Bourne et al. (2001[Bourne, S. A., Lu, J., Moulton, B. & Zaworotko, M. J. (2001). Chem. Commun. pp. 861-862.]). For their properties, uses and topologies, see: O'Keeffe et al. (2000[O'Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. (2000). J. Solid State Chem. 152, 3-20.]); Song et al. (2012[Song, S. Y., Song, X. Z., Zhao, S. N., Qin, C., Su, S. Q., Zhu, M., Hao, Z. M. & Zhang, H. J. (2012). Dalton Trans. 41, 10412-10421.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn3(C12H6O12)(H2O)6]

  • Mr = 615.09

  • Trigonal, [R \overline 3]

  • a = 14.5432 (4) Å

  • c = 14.9445 (10) Å

  • V = 2737.4 (2) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 185 K

  • 0.25 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.616, Tmax = 0.725

  • 5063 measured reflections

  • 1200 independent reflections

  • 1098 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.08

  • 1200 reflections

  • 112 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2A⋯O2Wi 0.81 (2) 2.31 (2) 3.116 (2) 178 (3)
O2W—H2A⋯O3ii 0.81 (2) 2.56 (3) 2.955 (2) 111 (2)
O1W—H1B⋯O4iii 0.87 (2) 1.92 (2) 2.774 (3) 169 (3)
O1W—H1B⋯O3iii 0.87 (2) 2.52 (3) 2.942 (3) 111 (2)
O2W—H2B⋯O1ii 0.84 (2) 2.06 (2) 2.883 (3) 169 (3)
O1W—H1A⋯O1Wiv 0.84 (2) 2.01 (2) 2.8513 (18) 175 (3)
Symmetry codes: (i) x-y+1, x, -z+1; (ii) [-y+{\script{4\over 3}}, x-y+{\script{2\over 3}}, z-{\script{1\over 3}}]; (iii) [x-y+{\script{2\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (iv) [y-{\script{1\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic frameworks (MOFs) are an emerging class of periodic crystalline solid-state materials constructed from metal ions or polynuclear metal-oxygen clusters and multidentate organic ligands (Wang et al. 2010; Bourne et al. 2001). The potential applications in the realm of catalysis, gas separation, luminescence, as well as their intriguing nature of molecular architectures and topologies make so many chemists devote themselves to this active area (O'Keeffe et al. 2000; Song et al. 2012). The nature of the organic ligand has thus played an important role in designing special metal-organic frameworks. Herein, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride was oxidized and hydrolyzed to give cyclohexacarboxylate anion in situ, which exhibits strong coordination ability to ligate the metal atoms.

In this paper, we describe synthesis and the crystal structure of novel three-dimensional MnII-organic compound bearing the ligand 1,2,3,4,5,6-cyclohexacarboxylic acid. X-ray diffraction analysis reveals that the title compound crystallizes in the space group R-3. The asymmetric unit contains one crystallographically unique manganese(II) ion, one third cyclohexacarboxylate anion and two aqua ligands (Fig. 1). The central MnII ion exhibits the octahedral coordination geometry by six oxygen atoms from aqua ligands and different cyclohexacarboxylate anions. The whole framework composed of Mn ions and cyclohexacarboxylate anions is further stabilized by abundant and strong hydrogen bonding interactions (Fig. 2). The hydrogen bonding parameters are listed in Table 1.

Related literature top

For the background to metal-organic frameworks see: Wang et al. (2010); Bourne et al. (2001). For their properties, uses and topologies, see: O'Keeffe et al. (2000); Song et al. (2012).

Experimental top

A mixture of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (0.1 mmol, 0.025 g), manganese chloride tetrahydrate (0.1 mmol, 0.02 g) were mixed with deionized water (6 ml) in a 15 ml Teflon-lined reactor, and heated at constant 433 K for 3 d. Then, the mixture was cooled to room temperature at a rate of 5 K h-1. Finally, needle-like crystals were obtained in 27% yield based on MnCl2.

Refinement top

All the hydrogen atoms attached to carbon atoms were placed in calculated positions and refined as the riding model, and the water hydrogen atoms were located from the difference maps.

Structure description top

Metal-organic frameworks (MOFs) are an emerging class of periodic crystalline solid-state materials constructed from metal ions or polynuclear metal-oxygen clusters and multidentate organic ligands (Wang et al. 2010; Bourne et al. 2001). The potential applications in the realm of catalysis, gas separation, luminescence, as well as their intriguing nature of molecular architectures and topologies make so many chemists devote themselves to this active area (O'Keeffe et al. 2000; Song et al. 2012). The nature of the organic ligand has thus played an important role in designing special metal-organic frameworks. Herein, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride was oxidized and hydrolyzed to give cyclohexacarboxylate anion in situ, which exhibits strong coordination ability to ligate the metal atoms.

In this paper, we describe synthesis and the crystal structure of novel three-dimensional MnII-organic compound bearing the ligand 1,2,3,4,5,6-cyclohexacarboxylic acid. X-ray diffraction analysis reveals that the title compound crystallizes in the space group R-3. The asymmetric unit contains one crystallographically unique manganese(II) ion, one third cyclohexacarboxylate anion and two aqua ligands (Fig. 1). The central MnII ion exhibits the octahedral coordination geometry by six oxygen atoms from aqua ligands and different cyclohexacarboxylate anions. The whole framework composed of Mn ions and cyclohexacarboxylate anions is further stabilized by abundant and strong hydrogen bonding interactions (Fig. 2). The hydrogen bonding parameters are listed in Table 1.

For the background to metal-organic frameworks see: Wang et al. (2010); Bourne et al. (2001). For their properties, uses and topologies, see: O'Keeffe et al. (2000); Song et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. (i = 1 - x + y,1 - x,z; ii = 1 - x,x-y,z; iii = 1 - x,1 - y,1 - z; iv = y,1 - x + y,1 - z; v = 2/3 + x-y,1/3 + x,4/3 - z)
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound, hydrogen bonding interactions (dashed lines) in the whole three-dimensional framework.
Poly[hexaaqua(µ9-cyclohexane-1,2,3,4,5,6-hexacarboxylato)trimanganese(II)] top
Crystal data top
[Mn3(C12H6O12)(H2O)6]Dx = 2.239 Mg m3
Mr = 615.09Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 11080 reflections
Hall symbol: -R 3θ = 1.0–25.0°
a = 14.5432 (4) ŵ = 2.15 mm1
c = 14.9445 (10) ÅT = 185 K
V = 2737.4 (2) Å3Needle, colorless
Z = 60.25 × 0.18 × 0.16 mm
F(000) = 1854
Data collection top
Bruker APEXII CCD
diffractometer
1200 independent reflections
Radiation source: fine-focus sealed tube1098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1717
Tmin = 0.616, Tmax = 0.725k = 1117
5063 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0259P)2 + 11.1009P]
where P = (Fo2 + 2Fc2)/3
1200 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.75 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mn3(C12H6O12)(H2O)6]Z = 6
Mr = 615.09Mo Kα radiation
Trigonal, R3µ = 2.15 mm1
a = 14.5432 (4) ÅT = 185 K
c = 14.9445 (10) Å0.25 × 0.18 × 0.16 mm
V = 2737.4 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1200 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1098 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.725Rint = 0.025
5063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0254 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0259P)2 + 11.1009P]
where P = (Fo2 + 2Fc2)/3
1200 reflectionsΔρmax = 0.75 e Å3
112 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.72468 (17)0.55633 (17)0.56658 (15)0.0119 (5)
C20.69763 (17)0.44523 (17)0.59739 (16)0.0124 (5)
H20.69750.44450.66430.015*
C30.58420 (17)0.36429 (17)0.56474 (16)0.0126 (5)
H30.58190.36500.49790.015*
C40.50129 (18)0.38891 (17)0.60281 (16)0.0139 (5)
O10.68842 (14)0.60269 (13)0.61426 (11)0.0181 (4)
O20.77520 (13)0.59359 (13)0.49548 (12)0.0180 (4)
O1W0.53786 (15)0.68488 (15)0.66743 (13)0.0228 (4)
O30.50339 (13)0.40393 (14)0.68557 (11)0.0190 (4)
O2W0.78828 (15)0.80851 (14)0.46574 (12)0.0211 (4)
O40.43295 (13)0.38944 (13)0.55035 (11)0.0187 (4)
Mn10.65353 (3)0.71812 (3)0.55736 (2)0.01313 (13)
H2A0.8391 (18)0.804 (2)0.4826 (19)0.020*
H1B0.5862 (19)0.704 (2)0.7082 (16)0.020*
H2B0.775 (2)0.786 (2)0.4129 (13)0.020*
H1A0.4847 (18)0.6230 (16)0.6686 (19)0.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0076 (10)0.0110 (11)0.0147 (12)0.0029 (9)0.0035 (8)0.0014 (9)
C20.0108 (11)0.0094 (11)0.0169 (12)0.0050 (9)0.0007 (9)0.0006 (9)
C30.0100 (11)0.0102 (11)0.0165 (12)0.0043 (9)0.0001 (9)0.0003 (9)
C40.0119 (11)0.0081 (10)0.0186 (12)0.0027 (9)0.0013 (9)0.0002 (9)
O10.0263 (9)0.0155 (8)0.0179 (9)0.0145 (8)0.0027 (7)0.0008 (7)
O20.0161 (8)0.0203 (9)0.0201 (9)0.0108 (7)0.0054 (7)0.0064 (7)
O1W0.0189 (9)0.0241 (10)0.0229 (10)0.0089 (8)0.0011 (8)0.0057 (8)
O30.0166 (8)0.0255 (9)0.0154 (9)0.0109 (8)0.0008 (7)0.0015 (7)
O2W0.0208 (9)0.0246 (10)0.0196 (10)0.0126 (8)0.0038 (8)0.0016 (8)
O40.0179 (9)0.0217 (9)0.0198 (9)0.0125 (7)0.0066 (7)0.0052 (7)
Mn10.0142 (2)0.0124 (2)0.0134 (2)0.00709 (15)0.00102 (13)0.00031 (13)
Geometric parameters (Å, º) top
C1—O21.251 (3)O2—Mn1iii2.1866 (17)
C1—O11.263 (3)O1W—Mn12.2263 (19)
C1—C21.530 (3)O1W—H1B0.866 (17)
C2—C3i1.540 (3)O1W—H1A0.843 (17)
C2—C31.550 (3)O3—Mn1iv2.1581 (17)
C2—H21.0000O2W—Mn12.2062 (18)
C3—C41.529 (3)O2W—H2A0.811 (17)
C3—C2ii1.540 (3)O2W—H2B0.838 (17)
C3—H31.0000O4—Mn1v2.1569 (17)
C4—O31.254 (3)Mn1—O4v2.1569 (17)
C4—O41.269 (3)Mn1—O3vi2.1581 (17)
O1—Mn12.1565 (16)Mn1—O2vii2.1866 (17)
O2—C1—O1124.0 (2)H1B—O1W—H1A119 (3)
O2—C1—C2119.9 (2)C4—O3—Mn1iv131.39 (15)
O1—C1—C2116.0 (2)Mn1—O2W—H2A110 (2)
C1—C2—C3i111.91 (18)Mn1—O2W—H2B113 (2)
C1—C2—C3108.74 (18)H2A—O2W—H2B108 (3)
C3i—C2—C3111.7 (2)C4—O4—Mn1v129.13 (15)
C1—C2—H2108.1O1—Mn1—O4v90.49 (6)
C3i—C2—H2108.1O1—Mn1—O3vi89.74 (7)
C3—C2—H2108.1O4v—Mn1—O3vi168.84 (7)
C4—C3—C2ii107.13 (18)O1—Mn1—O2vii171.49 (7)
C4—C3—C2111.68 (18)O4v—Mn1—O2vii86.09 (6)
C2ii—C3—C2109.3 (2)O3vi—Mn1—O2vii95.12 (6)
C4—C3—H3109.6O1—Mn1—O2W102.94 (7)
C2ii—C3—H3109.6O4v—Mn1—O2W89.49 (7)
C2—C3—H3109.6O3vi—Mn1—O2W79.59 (7)
O3—C4—O4124.0 (2)O2vii—Mn1—O2W84.84 (7)
O3—C4—C3117.0 (2)O1—Mn1—O1W89.19 (7)
O4—C4—C3118.9 (2)O4v—Mn1—O1W106.90 (7)
C1—O1—Mn1121.10 (15)O3vi—Mn1—O1W84.26 (7)
C1—O2—Mn1iii139.24 (15)O2vii—Mn1—O1W84.36 (7)
Mn1—O1W—H1B92.6 (19)O2W—Mn1—O1W159.65 (7)
Mn1—O1W—H1A116 (2)
O2—C1—C2—C3i28.8 (3)C2—C1—O1—Mn1151.73 (15)
O1—C1—C2—C3i154.7 (2)O1—C1—O2—Mn1iii113.2 (2)
O2—C1—C2—C395.1 (2)C2—C1—O2—Mn1iii70.6 (3)
O1—C1—C2—C381.4 (2)O4—C4—O3—Mn1iv16.8 (3)
C1—C2—C3—C460.2 (2)C3—C4—O3—Mn1iv160.75 (15)
C3i—C2—C3—C4175.81 (16)O3—C4—O4—Mn1v136.2 (2)
C1—C2—C3—C2ii178.55 (15)C3—C4—O4—Mn1v41.3 (3)
C3i—C2—C3—C2ii57.4 (3)C1—O1—Mn1—O4v48.74 (18)
C2ii—C3—C4—O369.9 (3)C1—O1—Mn1—O3vi120.11 (18)
C2—C3—C4—O349.8 (3)C1—O1—Mn1—O2vii115.0 (4)
C2ii—C3—C4—O4107.7 (2)C1—O1—Mn1—O2W40.85 (18)
C2—C3—C4—O4132.6 (2)C1—O1—Mn1—O1W155.63 (18)
O2—C1—O1—Mn124.6 (3)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z; (iii) xy+1, x, z+1; (iv) y1/3, x+y+1/3, z+4/3; (v) x+1, y+1, z+1; (vi) xy+2/3, x+1/3, z+4/3; (vii) y, x+y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O2Wiii0.81 (2)2.31 (2)3.116 (2)178 (3)
O2W—H2A···O3viii0.81 (2)2.56 (3)2.955 (2)111 (2)
O1W—H1B···O4vi0.87 (2)1.92 (2)2.774 (3)169 (3)
O1W—H1B···O3vi0.87 (2)2.52 (3)2.942 (3)111 (2)
O2W—H2B···O1viii0.84 (2)2.06 (2)2.883 (3)169 (3)
O1W—H1A···O1Wiv0.84 (2)2.01 (2)2.8513 (18)175 (3)
Symmetry codes: (iii) xy+1, x, z+1; (iv) y1/3, x+y+1/3, z+4/3; (vi) xy+2/3, x+1/3, z+4/3; (viii) y+4/3, xy+2/3, z1/3.

Experimental details

Crystal data
Chemical formula[Mn3(C12H6O12)(H2O)6]
Mr615.09
Crystal system, space groupTrigonal, R3
Temperature (K)185
a, c (Å)14.5432 (4), 14.9445 (10)
V3)2737.4 (2)
Z6
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.25 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.616, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
5063, 1200, 1098
Rint0.025
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.08
No. of reflections1200
No. of parameters112
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0259P)2 + 11.1009P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.75, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O2Wi0.811 (17)2.306 (18)3.116 (2)178 (3)
O2W—H2A···O3ii0.811 (17)2.56 (3)2.955 (2)111 (2)
O1W—H1B···O4iii0.866 (17)1.920 (18)2.774 (3)169 (3)
O1W—H1B···O3iii0.866 (17)2.52 (3)2.942 (3)111 (2)
O2W—H2B···O1ii0.838 (17)2.057 (18)2.883 (3)169 (3)
O1W—H1A···O1Wiv0.843 (17)2.010 (18)2.8513 (18)175 (3)
Symmetry codes: (i) xy+1, x, z+1; (ii) y+4/3, xy+2/3, z1/3; (iii) xy+2/3, x+1/3, z+4/3; (iv) y1/3, x+y+1/3, z+4/3.
 

Acknowledgements

The authors thank Jilin University for supporting this work.

References

First citationBourne, S. A., Lu, J., Moulton, B. & Zaworotko, M. J. (2001). Chem. Commun. pp. 861–862.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationO'Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. (2000). J. Solid State Chem. 152, 3–20.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, S. Y., Song, X. Z., Zhao, S. N., Qin, C., Su, S. Q., Zhu, M., Hao, Z. M. & Zhang, H. J. (2012). Dalton Trans. 41, 10412–10421.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, G. H., Lei, Y. Q., Wang, N., He, R. L., Jia, H. Q., Hu, N. H. & Xu, J. W. (2010). Cryst. Growth Des. 10, 534–540.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds