organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­hexyl-3-(3-fluoro­phenyl­sulfin­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 23 May 2013; accepted 29 May 2013; online 8 June 2013)

In the title compound, C21H21FO2S, the cyclo­hexyl ring adopts a chair conformation. The 3-fluoro­phenyl ring makes a dihedral angle of 83.16 (4)° with the mean plane [r.m.s. deviation = 0.005 (1) Å] of the benzo­furan ring system. In the crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions into inversion dimers, which are further packed into stacks along the a-axis direction by C—H⋯π inter­actions.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1157.], 2012a[Choi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o205.],b[Choi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o947.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21FO2S

  • Mr = 356.44

  • Triclinic, [P \overline 1]

  • a = 8.9147 (1) Å

  • b = 10.1270 (2) Å

  • c = 10.5101 (2) Å

  • α = 90.376 (1)°

  • β = 110.407 (1)°

  • γ = 97.439 (1)°

  • V = 880.44 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.33 × 0.31 × 0.29 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.746

  • 19435 measured reflections

  • 4369 independent reflections

  • 3897 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.04

  • 4369 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACg1i 0.99 3.00 3.697 (1) 128
C14—H14BCg2i 0.99 2.91 3.569 (1) 125
C19—H19⋯Cg2ii 0.95 2.90 3.677 (1) 140
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing phenylsulfinyl (Choi et al., 2011), 4-bromophenylsulfinyl (Choi et al., 2012a) and 4-methylphenylsulfinyl (Choi et al., 2012b)substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring has the chair form. The dihedral angle between the 3-fluorophenyl ring and the mean plane of the benzofuran ring system is 83.16 (4)°. In the crystal structure (Fig. 2), molecules are connected by pairs of C—H···π interactions into dimers, which are further packed into stacks along the a axis by C—H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%, 202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-3-(3-fluorophenylsulfanyl)-2-methyl-1-benzofuran (272 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 68%, m.p. 403–404 K; Rf = 0.43 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our continuing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing phenylsulfinyl (Choi et al., 2011), 4-bromophenylsulfinyl (Choi et al., 2012a) and 4-methylphenylsulfinyl (Choi et al., 2012b)substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring has the chair form. The dihedral angle between the 3-fluorophenyl ring and the mean plane of the benzofuran ring system is 83.16 (4)°. In the crystal structure (Fig. 2), molecules are connected by pairs of C—H···π interactions into dimers, which are further packed into stacks along the a axis by C—H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively).

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y, - z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.]
5-Cyclohexyl-3-(3-fluorophenylsulfinyl)-2-methyl-1-benzofuran top
Crystal data top
C21H21FO2SZ = 2
Mr = 356.44F(000) = 376
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Melting point = 403–404 K
a = 8.9147 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1270 (2) ÅCell parameters from 9475 reflections
c = 10.5101 (2) Åθ = 2.6–28.3°
α = 90.376 (1)°µ = 0.21 mm1
β = 110.407 (1)°T = 173 K
γ = 97.439 (1)°Block, colourless
V = 880.44 (3) Å30.33 × 0.31 × 0.29 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4369 independent reflections
Radiation source: rotating anode3897 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.0°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.692, Tmax = 0.746l = 1314
19435 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.124H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.2924P]
where P = (Fo2 + 2Fc2)/3
4369 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C21H21FO2Sγ = 97.439 (1)°
Mr = 356.44V = 880.44 (3) Å3
Triclinic, P1Z = 2
a = 8.9147 (1) ÅMo Kα radiation
b = 10.1270 (2) ŵ = 0.21 mm1
c = 10.5101 (2) ÅT = 173 K
α = 90.376 (1)°0.33 × 0.31 × 0.29 mm
β = 110.407 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4369 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3897 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.746Rint = 0.025
19435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.94 e Å3
4369 reflectionsΔρmin = 0.41 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65884 (4)0.48559 (3)0.79845 (3)0.02628 (11)
F10.84222 (15)0.35909 (14)0.41074 (11)0.0615 (4)
O10.47089 (13)0.17436 (11)0.94217 (10)0.0312 (2)
O20.54304 (14)0.54929 (11)0.68662 (11)0.0358 (3)
C10.55705 (16)0.33517 (14)0.82691 (13)0.0252 (3)
C20.44498 (15)0.23532 (13)0.72755 (13)0.0235 (3)
C30.38240 (16)0.21856 (13)0.58605 (13)0.0242 (3)
H30.41360.28340.53170.029*
C40.27338 (16)0.10501 (13)0.52593 (13)0.0248 (3)
C50.22910 (18)0.01022 (15)0.60832 (15)0.0307 (3)
H50.15490.06690.56590.037*
C60.28993 (18)0.02523 (16)0.74949 (15)0.0323 (3)
H60.25970.03930.80450.039*
C70.39658 (16)0.13922 (14)0.80477 (13)0.0268 (3)
C80.56642 (17)0.29422 (15)0.95219 (14)0.0281 (3)
C90.20412 (16)0.08110 (14)0.37274 (14)0.0264 (3)
H90.11890.00130.35080.032*
C100.12469 (18)0.19886 (15)0.30242 (14)0.0292 (3)
H10A0.03610.21360.33490.035*
H10B0.20540.28040.32720.035*
C110.05690 (19)0.17497 (17)0.14790 (15)0.0341 (3)
H11A0.03360.10060.12250.041*
H11B0.01380.25580.10610.041*
C120.18461 (19)0.14180 (17)0.09251 (15)0.0350 (3)
H12A0.13420.12000.00660.042*
H12B0.26830.22050.10720.042*
C130.2628 (2)0.02487 (19)0.16166 (16)0.0408 (4)
H13A0.34970.00870.12770.049*
H13B0.18120.05610.13860.049*
C140.3336 (2)0.05058 (19)0.31578 (16)0.0396 (4)
H14A0.42180.12690.33930.048*
H14B0.38030.02880.35810.048*
C150.6580 (2)0.35137 (18)1.09261 (15)0.0377 (4)
H15A0.69530.44631.08970.057*
H15B0.75150.30451.13390.057*
H15C0.58780.34101.14680.057*
C160.79260 (16)0.41782 (13)0.72905 (13)0.0248 (3)
C170.75975 (17)0.41440 (15)0.59050 (14)0.0291 (3)
H170.66560.44460.52950.035*
C180.8701 (2)0.36513 (17)0.54482 (16)0.0354 (3)
C191.0094 (2)0.32320 (17)0.62948 (18)0.0398 (4)
H191.08290.29070.59390.048*
C201.0398 (2)0.32951 (18)0.76767 (18)0.0404 (4)
H201.13520.30060.82810.049*
C210.93245 (18)0.37764 (17)0.81917 (15)0.0344 (3)
H210.95420.38300.91430.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02997 (19)0.02451 (18)0.02462 (17)0.00348 (13)0.01014 (13)0.00131 (12)
F10.0640 (7)0.0929 (10)0.0356 (5)0.0216 (7)0.0239 (5)0.0039 (6)
O10.0346 (5)0.0388 (6)0.0242 (5)0.0057 (4)0.0152 (4)0.0056 (4)
O20.0386 (6)0.0332 (6)0.0378 (6)0.0126 (5)0.0136 (5)0.0070 (4)
C10.0261 (6)0.0285 (6)0.0226 (6)0.0049 (5)0.0103 (5)0.0001 (5)
C20.0227 (6)0.0254 (6)0.0248 (6)0.0054 (5)0.0109 (5)0.0021 (5)
C30.0245 (6)0.0247 (6)0.0244 (6)0.0038 (5)0.0097 (5)0.0029 (5)
C40.0230 (6)0.0247 (6)0.0271 (6)0.0042 (5)0.0091 (5)0.0019 (5)
C50.0284 (7)0.0274 (7)0.0357 (7)0.0009 (5)0.0125 (6)0.0020 (6)
C60.0331 (7)0.0321 (7)0.0355 (7)0.0014 (6)0.0177 (6)0.0089 (6)
C70.0269 (6)0.0319 (7)0.0252 (6)0.0058 (5)0.0132 (5)0.0042 (5)
C80.0287 (6)0.0343 (7)0.0245 (6)0.0079 (6)0.0121 (5)0.0012 (5)
C90.0254 (6)0.0253 (6)0.0261 (6)0.0021 (5)0.0067 (5)0.0004 (5)
C100.0319 (7)0.0306 (7)0.0275 (6)0.0093 (6)0.0118 (5)0.0020 (5)
C110.0338 (7)0.0420 (8)0.0276 (7)0.0119 (6)0.0099 (6)0.0039 (6)
C120.0371 (8)0.0417 (8)0.0284 (7)0.0035 (6)0.0149 (6)0.0027 (6)
C130.0418 (8)0.0500 (10)0.0311 (7)0.0180 (7)0.0095 (6)0.0080 (7)
C140.0349 (8)0.0532 (10)0.0305 (7)0.0205 (7)0.0063 (6)0.0063 (7)
C150.0426 (8)0.0493 (9)0.0229 (6)0.0084 (7)0.0130 (6)0.0009 (6)
C160.0260 (6)0.0229 (6)0.0255 (6)0.0021 (5)0.0096 (5)0.0016 (5)
C170.0283 (7)0.0322 (7)0.0252 (6)0.0040 (5)0.0076 (5)0.0013 (5)
C180.0383 (8)0.0393 (8)0.0308 (7)0.0021 (6)0.0162 (6)0.0039 (6)
C190.0343 (8)0.0400 (9)0.0499 (9)0.0083 (7)0.0199 (7)0.0028 (7)
C200.0310 (8)0.0447 (9)0.0449 (9)0.0129 (7)0.0098 (7)0.0071 (7)
C210.0328 (7)0.0406 (8)0.0278 (7)0.0089 (6)0.0069 (6)0.0061 (6)
Geometric parameters (Å, º) top
S1—O21.4831 (11)C11—C121.519 (2)
S1—C11.7523 (15)C11—H11A0.9900
S1—C161.7992 (14)C11—H11B0.9900
F1—C181.3424 (18)C12—C131.512 (2)
O1—C81.3703 (18)C12—H12A0.9900
O1—C71.3842 (16)C12—H12B0.9900
C1—C81.3609 (19)C13—C141.526 (2)
C1—C21.4520 (18)C13—H13A0.9900
C2—C71.3920 (19)C13—H13B0.9900
C2—C31.3948 (17)C14—H14A0.9900
C3—C41.3925 (19)C14—H14B0.9900
C3—H30.9500C15—H15A0.9800
C4—C51.406 (2)C15—H15B0.9800
C4—C91.5149 (18)C15—H15C0.9800
C5—C61.390 (2)C16—C171.3809 (18)
C5—H50.9500C16—C211.3891 (19)
C6—C71.377 (2)C17—C181.379 (2)
C6—H60.9500C17—H170.9500
C8—C151.4852 (19)C18—C191.373 (2)
C9—C101.5281 (19)C19—C201.381 (2)
C9—C141.536 (2)C19—H190.9500
C9—H91.0000C20—C211.387 (2)
C10—C111.5277 (19)C20—H200.9500
C10—H10A0.9900C21—H210.9500
C10—H10B0.9900
O2—S1—C1107.99 (7)C10—C11—H11B109.2
O2—S1—C16107.08 (6)H11A—C11—H11B107.9
C1—S1—C1698.41 (6)C13—C12—C11110.99 (13)
C8—O1—C7106.54 (11)C13—C12—H12A109.4
C8—C1—C2107.28 (12)C11—C12—H12A109.4
C8—C1—S1124.17 (11)C13—C12—H12B109.4
C2—C1—S1128.51 (10)C11—C12—H12B109.4
C7—C2—C3119.47 (12)H12A—C12—H12B108.0
C7—C2—C1104.60 (11)C12—C13—C14111.35 (13)
C3—C2—C1135.92 (13)C12—C13—H13A109.4
C4—C3—C2118.74 (12)C14—C13—H13A109.4
C4—C3—H3120.6C12—C13—H13B109.4
C2—C3—H3120.6C14—C13—H13B109.4
C3—C4—C5119.68 (13)H13A—C13—H13B108.0
C3—C4—C9120.75 (12)C13—C14—C9111.27 (12)
C5—C4—C9119.56 (12)C13—C14—H14A109.4
C6—C5—C4122.44 (13)C9—C14—H14A109.4
C6—C5—H5118.8C13—C14—H14B109.4
C4—C5—H5118.8C9—C14—H14B109.4
C7—C6—C5116.01 (13)H14A—C14—H14B108.0
C7—C6—H6122.0C8—C15—H15A109.5
C5—C6—H6122.0C8—C15—H15B109.5
C6—C7—O1125.68 (13)H15A—C15—H15B109.5
C6—C7—C2123.65 (13)C8—C15—H15C109.5
O1—C7—C2110.67 (12)H15A—C15—H15C109.5
C1—C8—O1110.90 (12)H15B—C15—H15C109.5
C1—C8—C15133.45 (15)C17—C16—C21121.91 (13)
O1—C8—C15115.64 (13)C17—C16—S1119.95 (11)
C4—C9—C10111.98 (11)C21—C16—S1118.02 (10)
C4—C9—C14111.49 (11)C18—C17—C16116.83 (13)
C10—C9—C14109.86 (12)C18—C17—H17121.6
C4—C9—H9107.8C16—C17—H17121.6
C10—C9—H9107.8F1—C18—C19117.70 (14)
C14—C9—H9107.8F1—C18—C17118.79 (15)
C11—C10—C9111.76 (12)C19—C18—C17123.50 (14)
C11—C10—H10A109.3C18—C19—C20118.24 (14)
C9—C10—H10A109.3C18—C19—H19120.9
C11—C10—H10B109.3C20—C19—H19120.9
C9—C10—H10B109.3C19—C20—C21120.67 (14)
H10A—C10—H10B107.9C19—C20—H20119.7
C12—C11—C10111.91 (12)C21—C20—H20119.7
C12—C11—H11A109.2C20—C21—C16118.81 (14)
C10—C11—H11A109.2C20—C21—H21120.6
C12—C11—H11B109.2C16—C21—H21120.6
O2—S1—C1—C8134.55 (12)C7—O1—C8—C15179.79 (12)
C16—S1—C1—C8114.34 (12)C3—C4—C9—C1054.46 (17)
O2—S1—C1—C242.59 (13)C5—C4—C9—C10126.65 (14)
C16—S1—C1—C268.53 (13)C3—C4—C9—C1469.09 (17)
C8—C1—C2—C70.61 (14)C5—C4—C9—C14109.80 (15)
S1—C1—C2—C7178.13 (10)C4—C9—C10—C11179.30 (12)
C8—C1—C2—C3179.01 (14)C14—C9—C10—C1154.84 (16)
S1—C1—C2—C31.5 (2)C9—C10—C11—C1254.84 (17)
C7—C2—C3—C40.38 (19)C10—C11—C12—C1354.65 (18)
C1—C2—C3—C4179.96 (14)C11—C12—C13—C1455.75 (19)
C2—C3—C4—C50.09 (19)C12—C13—C14—C957.1 (2)
C2—C3—C4—C9178.99 (11)C4—C9—C14—C13179.29 (14)
C3—C4—C5—C60.2 (2)C10—C9—C14—C1355.97 (18)
C9—C4—C5—C6179.11 (13)O2—S1—C16—C179.39 (14)
C4—C5—C6—C70.2 (2)C1—S1—C16—C17102.44 (12)
C5—C6—C7—O1179.75 (13)O2—S1—C16—C21166.74 (12)
C5—C6—C7—C20.7 (2)C1—S1—C16—C2181.42 (13)
C8—O1—C7—C6179.98 (14)C21—C16—C17—C182.0 (2)
C8—O1—C7—C20.40 (15)S1—C16—C17—C18177.96 (11)
C3—C2—C7—C60.8 (2)C16—C17—C18—F1179.49 (14)
C1—C2—C7—C6179.50 (13)C16—C17—C18—C191.5 (2)
C3—C2—C7—O1179.57 (11)F1—C18—C19—C20179.71 (16)
C1—C2—C7—O10.13 (14)C17—C18—C19—C200.7 (3)
C2—C1—C8—O10.90 (15)C18—C19—C20—C210.3 (3)
S1—C1—C8—O1178.55 (9)C19—C20—C21—C160.8 (3)
C2—C1—C8—C15179.85 (15)C17—C16—C21—C201.7 (2)
S1—C1—C8—C152.2 (2)S1—C16—C21—C20177.77 (13)
C7—O1—C8—C10.81 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.993.003.697 (1)128
C14—H14B···Cg2i0.992.913.569 (1)125
C19—H19···Cg2ii0.952.903.677 (1)140
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H21FO2S
Mr356.44
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.9147 (1), 10.1270 (2), 10.5101 (2)
α, β, γ (°)90.376 (1), 110.407 (1), 97.439 (1)
V3)880.44 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.33 × 0.31 × 0.29
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.692, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
19435, 4369, 3897
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.04
No. of reflections4369
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg1i0.993.003.697 (1)128.4
C14—H14B···Cg2i0.992.913.569 (1)125.2
C19—H19···Cg2ii0.952.903.677 (1)140.0
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o947.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds