organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,5-Di­meth­­oxy­phen­yl)-4,5-di­phenyl-1-(prop-2-en-1-yl)-1H-imidazole

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, dPharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt, eMamedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, fChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and gDepartment of Organic Chemistry, Faculty of Science, Institute of Biotechnology, Granada University, Granada, E-18071, Spain
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 3 June 2013; accepted 7 June 2013; online 15 June 2013)

In the title compound, C26H24N2O2, the two phenyl and the 2,5-di­meth­oxy­phen­yl rings are inclined to the imidazole ring at dihedral angles of 30.38 (8), 56.59 (9) and 73.11 (9)°, respectively. In the crystal, mol­ecules are linked by pairs of C—H⋯O inter­actions into centrosymmetric dimers with graph-set notation R22(8). C—H⋯π inter­actions are also observed.

Related literature

For chemical properties and applications of imidazoles with an unsaturated side chain, see, for example: Koszykowska et al. (2009[Koszykowska, M., Tokarek, M. & Kucharski, S. (2009). Mater. Sci. Pol. 27, 699-708.]); Berezin et al. (2009[Berezin, M. Y., Jeff, K. & Achilefu, S. (2009). Chemistry, 15, 3560-3566.]); Rambo et al. (2010[Rambo, B. M., Silver, E. S., Bielawski, C. W. & Sessler, J. L. (2010). Heterocycl. Chem. 1, 1-37.]); Min et al. (2006[Min, G.-H., Yim, T., Lee, H. Y., Huh, D. H., Lee, E., Mun, J., Oh, S. M. & Kim, Y. G. (2006). Bull. Korean Chem. Soc. 27, 847-852.]). For similar structures, see: Akkurt et al. (2013a[Akkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013a). Acta Cryst. E69, o527-o528.],b[Akkurt, M., Mohamed, S. K., Singh, K., Marzouk, A. A. & Abdelhamid, A. A. (2013b). Acta Cryst. E69, o846-o847.]); Mohamed et al. (2013a[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474-o475.],b[Mohamed, S. K., Akkurt, M., Marzouk, A. A. E., Santoyo-Gonzalez, F. & Elremaily, M. A. A. (2013b). Acta Cryst. E69, o875-o876.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O2

  • Mr = 396.47

  • Triclinic, [P \overline 1]

  • a = 8.3117 (14) Å

  • b = 10.5217 (17) Å

  • c = 13.425 (2) Å

  • α = 105.938 (2)°

  • β = 101.846 (2)°

  • γ = 107.772 (2)°

  • V = 1020.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.26 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.993

  • 11527 measured reflections

  • 4193 independent reflections

  • 3184 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.05

  • 4193 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the N1/N2/C1–C3, C4–C9 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O1i 0.95 2.54 3.354 (2) 143
C14—H14⋯Cg2ii 0.95 2.63 3.4083 (19) 139
C25—H25BCg1iii 0.98 2.84 3.6337 (19) 139
C26—H26CCg4iv 0.98 2.95 3.908 (2) 166
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, much attention has been devoted to vinyl and allyl N-substituted imidazole compunds due to their interesting properties and high reactivities. Such compounds in addition to threir flourecent properties (Berezin et al., 2009; Rambo et al., 2010) they can polymerize to obtain chromophoric polymers (Koszykowska et al., 2009). In addition their quaternery salts are acting as ionic catalists (Min et al., 2006) which are widely used in green chemistry applications. In this context the title compound has been synthesized among series of allyl imidazole derivatives and herein we report its crystal structure.

In the title compound (I, Fig. 1), the two phenyl (C4–C9 and C10–C15) and 2-(2,5-dimethoxyphenyl) (C19–C24) rings are inclined to the N1/N2/C1–C3 imidazole ring at angles of 30.38 (8), 56.59 (9) and 73.11 (9)°, respectively. All bond lengths and angles are normal and are corresponding to those reported in a similar structure (Akkurt et al., 2013a,b; Mohamed et al., 2013a,b). In the crystal the molecules are linked by C— H··· O interactions into centrosymmetric dimers with graph-set notation R22(8) (Bernstein et al., 1995).C—H···π interactions are also observed,Table 1, Fig2.

Related literature top

For chemical properties and applications of imidazoles with an unsaturated side chain, see, for example: Koszykowska et al. (2009); Berezin et al. (2009); Rambo et al. (2010); Min et al. (2006). For similar structures, see: Akkurt et al. (2013a,b); Mohamed et al. (2013a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to our reported method (Mohamed et al. 2013a) in 85% yield. Colourless prisms suitable for X-ray analyses were obtained by slow evaporation of a solution of (I) in ethanol, m.p. 471–473 K.

Refinement top

All H atoms were placed in geometrically, with C—H = 0.95–0.99 Å, and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Recently, much attention has been devoted to vinyl and allyl N-substituted imidazole compunds due to their interesting properties and high reactivities. Such compounds in addition to threir flourecent properties (Berezin et al., 2009; Rambo et al., 2010) they can polymerize to obtain chromophoric polymers (Koszykowska et al., 2009). In addition their quaternery salts are acting as ionic catalists (Min et al., 2006) which are widely used in green chemistry applications. In this context the title compound has been synthesized among series of allyl imidazole derivatives and herein we report its crystal structure.

In the title compound (I, Fig. 1), the two phenyl (C4–C9 and C10–C15) and 2-(2,5-dimethoxyphenyl) (C19–C24) rings are inclined to the N1/N2/C1–C3 imidazole ring at angles of 30.38 (8), 56.59 (9) and 73.11 (9)°, respectively. All bond lengths and angles are normal and are corresponding to those reported in a similar structure (Akkurt et al., 2013a,b; Mohamed et al., 2013a,b). In the crystal the molecules are linked by C— H··· O interactions into centrosymmetric dimers with graph-set notation R22(8) (Bernstein et al., 1995).C—H···π interactions are also observed,Table 1, Fig2.

For chemical properties and applications of imidazoles with an unsaturated side chain, see, for example: Koszykowska et al. (2009); Berezin et al. (2009); Rambo et al. (2010); Min et al. (2006). For similar structures, see: Akkurt et al. (2013a,b); Mohamed et al. (2013a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular strcuture of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding and packing of the title compound viewing along the b axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-(2,5-Dimethoxyphenyl)-4,5-diphenyl-1-(prop-2-en-1-yl)-1H-imidazole top
Crystal data top
C26H24N2O2Z = 2
Mr = 396.47F(000) = 420
Triclinic, P1Dx = 1.291 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3117 (14) ÅCell parameters from 2470 reflections
b = 10.5217 (17) Åθ = 2.2–26.3°
c = 13.425 (2) ŵ = 0.08 mm1
α = 105.938 (2)°T = 100 K
β = 101.846 (2)°Prism, colourless
γ = 107.772 (2)°0.26 × 0.16 × 0.08 mm
V = 1020.1 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4193 independent reflections
Radiation source: sealed tube3184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.979, Tmax = 0.993k = 1313
11527 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1427P]
where P = (Fo2 + 2Fc2)/3
4193 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C26H24N2O2γ = 107.772 (2)°
Mr = 396.47V = 1020.1 (3) Å3
Triclinic, P1Z = 2
a = 8.3117 (14) ÅMo Kα radiation
b = 10.5217 (17) ŵ = 0.08 mm1
c = 13.425 (2) ÅT = 100 K
α = 105.938 (2)°0.26 × 0.16 × 0.08 mm
β = 101.846 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3184 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.993Rint = 0.036
11527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
4193 reflectionsΔρmin = 0.26 e Å3
273 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22127 (15)0.57663 (13)0.01565 (9)0.0294 (4)
O20.51365 (14)0.51988 (12)0.37054 (9)0.0246 (3)
N10.03320 (16)0.34760 (14)0.28257 (10)0.0200 (4)
N20.19265 (16)0.21885 (14)0.23560 (10)0.0197 (4)
C10.1675 (2)0.34409 (16)0.24524 (12)0.0187 (4)
C20.0647 (2)0.13719 (17)0.26932 (12)0.0191 (5)
C30.0325 (2)0.21832 (16)0.29722 (12)0.0187 (5)
C40.1839 (2)0.18601 (17)0.34015 (12)0.0196 (5)
C50.2095 (2)0.29766 (17)0.41145 (13)0.0221 (5)
C60.3463 (2)0.26861 (19)0.45693 (13)0.0244 (5)
C70.4602 (2)0.12872 (19)0.43134 (14)0.0257 (5)
C80.4395 (2)0.01733 (19)0.35825 (14)0.0253 (5)
C90.3029 (2)0.04563 (17)0.31312 (13)0.0219 (5)
C100.05668 (19)0.00280 (17)0.27544 (13)0.0194 (4)
C110.0409 (2)0.11491 (17)0.18480 (13)0.0234 (5)
C120.0405 (2)0.24371 (18)0.19320 (14)0.0264 (5)
C130.0564 (2)0.26260 (18)0.29232 (14)0.0248 (5)
C140.0700 (2)0.15270 (17)0.38256 (13)0.0228 (5)
C150.0696 (2)0.02425 (17)0.37420 (13)0.0210 (5)
C160.3286 (2)0.18032 (18)0.19444 (13)0.0229 (5)
C170.2732 (2)0.12340 (19)0.07169 (14)0.0280 (5)
C180.2775 (3)0.0033 (2)0.01278 (16)0.0392 (7)
C190.2772 (2)0.45508 (16)0.21242 (13)0.0199 (5)
C200.2057 (2)0.47090 (17)0.11627 (13)0.0221 (5)
C210.3087 (2)0.56926 (17)0.08016 (13)0.0220 (5)
C220.4852 (2)0.65115 (17)0.14076 (14)0.0238 (5)
C230.5580 (2)0.63844 (17)0.23932 (13)0.0233 (5)
C240.4555 (2)0.54150 (16)0.27547 (13)0.0202 (5)
C250.6880 (2)0.61529 (18)0.44233 (14)0.0292 (5)
C260.3278 (2)0.64720 (19)0.07022 (15)0.0303 (6)
H50.132800.394000.428900.0270*
H60.361700.345100.505800.0290*
H70.552000.109100.463700.0310*
H80.519200.078600.339100.0300*
H90.289800.031300.263200.0260*
H110.030200.103100.116400.0280*
H120.029200.319200.130600.0320*
H130.057900.350200.298300.0300*
H140.079700.165200.450700.0270*
H150.078200.050100.436700.0250*
H16A0.351400.106900.221500.0270*
H16B0.441000.265900.223400.0270*
H170.232400.178100.034500.0340*
H18A0.317600.053900.047400.0470*
H18B0.240600.026500.064600.0470*
H200.084700.414000.074200.0270*
H220.557000.716100.115400.0290*
H230.678600.696700.281700.0280*
H25A0.776800.599500.407800.0440*
H25B0.708900.597400.510800.0440*
H25C0.697900.714400.457600.0440*
H26A0.391300.748900.024800.0450*
H26B0.251200.637400.140200.0450*
H26C0.414000.603800.083100.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0266 (6)0.0360 (7)0.0281 (7)0.0075 (5)0.0080 (5)0.0209 (6)
O20.0216 (6)0.0252 (6)0.0223 (6)0.0044 (5)0.0028 (5)0.0098 (5)
N10.0190 (7)0.0203 (7)0.0193 (7)0.0059 (6)0.0055 (6)0.0074 (6)
N20.0188 (7)0.0205 (7)0.0210 (7)0.0079 (6)0.0073 (6)0.0080 (6)
C10.0183 (7)0.0192 (8)0.0169 (8)0.0064 (6)0.0042 (6)0.0059 (7)
C20.0181 (8)0.0204 (8)0.0156 (8)0.0047 (7)0.0040 (6)0.0060 (7)
C30.0189 (8)0.0187 (8)0.0167 (8)0.0058 (6)0.0046 (6)0.0062 (6)
C40.0189 (8)0.0233 (9)0.0193 (8)0.0092 (7)0.0060 (6)0.0106 (7)
C50.0215 (8)0.0219 (9)0.0253 (9)0.0090 (7)0.0080 (7)0.0108 (7)
C60.0245 (8)0.0308 (9)0.0249 (9)0.0160 (8)0.0102 (7)0.0125 (8)
C70.0202 (8)0.0357 (10)0.0300 (9)0.0133 (8)0.0119 (7)0.0189 (8)
C80.0177 (8)0.0282 (9)0.0298 (9)0.0054 (7)0.0051 (7)0.0159 (8)
C90.0202 (8)0.0221 (9)0.0226 (9)0.0078 (7)0.0050 (7)0.0086 (7)
C100.0152 (7)0.0200 (8)0.0215 (8)0.0058 (6)0.0044 (6)0.0073 (7)
C110.0237 (8)0.0248 (9)0.0213 (9)0.0090 (7)0.0068 (7)0.0085 (7)
C120.0296 (9)0.0217 (9)0.0248 (9)0.0100 (7)0.0080 (7)0.0043 (7)
C130.0241 (8)0.0206 (9)0.0326 (10)0.0099 (7)0.0093 (7)0.0123 (8)
C140.0205 (8)0.0256 (9)0.0236 (9)0.0073 (7)0.0077 (7)0.0121 (7)
C150.0180 (8)0.0216 (9)0.0226 (8)0.0068 (7)0.0069 (7)0.0072 (7)
C160.0194 (8)0.0249 (9)0.0260 (9)0.0093 (7)0.0084 (7)0.0096 (7)
C170.0249 (9)0.0345 (10)0.0263 (9)0.0113 (8)0.0113 (7)0.0114 (8)
C180.0452 (12)0.0426 (12)0.0293 (10)0.0187 (10)0.0155 (9)0.0073 (9)
C190.0194 (8)0.0190 (8)0.0224 (8)0.0073 (7)0.0100 (7)0.0067 (7)
C200.0197 (8)0.0213 (8)0.0234 (9)0.0056 (7)0.0057 (7)0.0088 (7)
C210.0243 (8)0.0246 (9)0.0202 (8)0.0111 (7)0.0073 (7)0.0104 (7)
C220.0253 (8)0.0201 (8)0.0293 (9)0.0078 (7)0.0132 (7)0.0115 (7)
C230.0206 (8)0.0222 (9)0.0249 (9)0.0062 (7)0.0069 (7)0.0077 (7)
C240.0214 (8)0.0198 (8)0.0201 (8)0.0092 (7)0.0070 (7)0.0063 (7)
C250.0243 (9)0.0263 (9)0.0281 (9)0.0045 (8)0.0003 (7)0.0087 (8)
C260.0363 (10)0.0328 (10)0.0315 (10)0.0149 (8)0.0173 (8)0.0193 (8)
Geometric parameters (Å, º) top
O1—C211.376 (2)C20—C211.394 (3)
O1—C261.427 (2)C21—C221.382 (2)
O2—C241.374 (2)C22—C231.397 (2)
O2—C251.430 (2)C23—C241.383 (2)
N1—C11.320 (2)C5—H50.9500
N1—C31.387 (2)C6—H60.9500
N2—C11.372 (2)C7—H70.9500
N2—C21.388 (2)C8—H80.9500
N2—C161.470 (2)C9—H90.9500
C1—C191.479 (2)C11—H110.9500
C2—C31.375 (2)C12—H120.9500
C2—C101.480 (3)C13—H130.9500
C3—C41.475 (2)C14—H140.9500
C4—C51.400 (2)C15—H150.9500
C4—C91.399 (3)C16—H16A0.9900
C5—C61.391 (3)C16—H16B0.9900
C6—C71.385 (3)C17—H170.9500
C7—C81.388 (3)C18—H18A0.9500
C8—C91.386 (3)C18—H18B0.9500
C10—C111.393 (2)C20—H200.9500
C10—C151.393 (2)C22—H220.9500
C11—C121.390 (3)C23—H230.9500
C12—C131.385 (3)C25—H25A0.9800
C13—C141.383 (2)C25—H25B0.9800
C14—C151.388 (3)C25—H25C0.9800
C16—C171.505 (2)C26—H26A0.9800
C17—C181.309 (3)C26—H26B0.9800
C19—C201.382 (2)C26—H26C0.9800
C19—C241.407 (2)
C21—O1—C26117.36 (14)C5—C6—H6120.00
C24—O2—C25116.87 (14)C7—C6—H6120.00
C1—N1—C3105.42 (14)C6—C7—H7120.00
C1—N2—C2107.22 (14)C8—C7—H7120.00
C1—N2—C16125.18 (15)C7—C8—H8120.00
C2—N2—C16127.58 (15)C9—C8—H8120.00
N1—C1—N2111.60 (15)C4—C9—H9120.00
N1—C1—C19126.41 (16)C8—C9—H9120.00
N2—C1—C19121.96 (15)C10—C11—H11120.00
N2—C2—C3105.17 (15)C12—C11—H11120.00
N2—C2—C10122.53 (15)C11—C12—H12120.00
C3—C2—C10132.23 (16)C13—C12—H12120.00
N1—C3—C2110.59 (15)C12—C13—H13120.00
N1—C3—C4120.32 (15)C14—C13—H13120.00
C2—C3—C4129.08 (16)C13—C14—H14120.00
C3—C4—C5119.76 (16)C15—C14—H14120.00
C3—C4—C9121.91 (15)C10—C15—H15120.00
C5—C4—C9118.32 (16)C14—C15—H15120.00
C4—C5—C6120.51 (17)N2—C16—H16A109.00
C5—C6—C7120.36 (16)N2—C16—H16B109.00
C6—C7—C8119.68 (17)C17—C16—H16A109.00
C7—C8—C9120.17 (18)C17—C16—H16B109.00
C4—C9—C8120.90 (16)H16A—C16—H16B108.00
C2—C10—C11121.70 (15)C16—C17—H17118.00
C2—C10—C15120.15 (15)C18—C17—H17118.00
C11—C10—C15118.13 (16)C17—C18—H18A120.00
C10—C11—C12120.84 (16)C17—C18—H18B120.00
C11—C12—C13120.37 (16)H18A—C18—H18B120.00
C12—C13—C14119.31 (17)C19—C20—H20120.00
C13—C14—C15120.39 (16)C21—C20—H20120.00
C10—C15—C14120.96 (15)C21—C22—H22120.00
N2—C16—C17112.28 (14)C23—C22—H22120.00
C16—C17—C18124.22 (18)C22—C23—H23120.00
C1—C19—C20119.57 (15)C24—C23—H23120.00
C1—C19—C24121.05 (15)O2—C25—H25A109.00
C20—C19—C24119.34 (16)O2—C25—H25B109.00
C19—C20—C21120.92 (16)O2—C25—H25C109.00
O1—C21—C20115.32 (15)H25A—C25—H25B109.00
O1—C21—C22125.10 (16)H25A—C25—H25C109.00
C20—C21—C22119.58 (16)H25B—C25—H25C109.00
C21—C22—C23120.05 (16)O1—C26—H26A109.00
C22—C23—C24120.34 (16)O1—C26—H26B109.00
O2—C24—C19115.12 (15)O1—C26—H26C109.00
O2—C24—C23125.15 (15)H26A—C26—H26B109.00
C19—C24—C23119.74 (15)H26A—C26—H26C109.00
C4—C5—H5120.00H26B—C26—H26C109.00
C6—C5—H5120.00
C26—O1—C21—C2215.8 (2)C2—C3—C4—C5148.45 (17)
C26—O1—C21—C20164.74 (15)N1—C3—C4—C529.8 (2)
C25—O2—C24—C19173.84 (15)C3—C4—C5—C6176.81 (15)
C25—O2—C24—C236.6 (2)C3—C4—C9—C8177.09 (16)
C1—N1—C3—C20.58 (17)C9—C4—C5—C62.2 (2)
C1—N1—C3—C4179.16 (14)C5—C4—C9—C81.9 (2)
C3—N1—C1—N20.36 (17)C4—C5—C6—C70.7 (3)
C3—N1—C1—C19177.32 (15)C5—C6—C7—C81.3 (3)
C16—N2—C1—C190.9 (2)C6—C7—C8—C91.6 (3)
C16—N2—C2—C104.5 (2)C7—C8—C9—C40.0 (3)
C2—N2—C1—C19177.79 (14)C2—C10—C11—C12177.49 (17)
C16—N2—C2—C3178.34 (14)C11—C10—C15—C141.2 (3)
C1—N2—C2—C10176.80 (14)C2—C10—C15—C14177.22 (16)
C16—N2—C1—N1178.73 (13)C15—C10—C11—C120.9 (3)
C2—N2—C16—C1797.69 (19)C10—C11—C12—C130.2 (3)
C1—N2—C16—C1780.8 (2)C11—C12—C13—C141.0 (3)
C2—N2—C1—N10.00 (17)C12—C13—C14—C150.7 (3)
C1—N2—C2—C30.34 (16)C13—C14—C15—C100.4 (3)
N1—C1—C19—C2072.9 (2)N2—C16—C17—C18129.1 (2)
N1—C1—C19—C24109.5 (2)C1—C19—C24—C23176.09 (16)
N2—C1—C19—C20104.59 (19)C20—C19—C24—O2178.86 (15)
N2—C1—C19—C2473.1 (2)C1—C19—C24—O23.5 (2)
N2—C2—C10—C15121.30 (18)C24—C19—C20—C211.2 (3)
C3—C2—C10—C11126.7 (2)C20—C19—C24—C231.6 (3)
C3—C2—C10—C1555.0 (3)C1—C19—C20—C21176.52 (16)
N2—C2—C10—C1157.0 (2)C19—C20—C21—C220.6 (3)
N2—C2—C3—C4178.98 (15)C19—C20—C21—O1178.89 (16)
N2—C2—C3—N10.57 (17)C20—C21—C22—C232.0 (3)
C10—C2—C3—N1176.17 (16)O1—C21—C22—C23177.44 (16)
C10—C2—C3—C42.3 (3)C21—C22—C23—C241.6 (3)
C2—C3—C4—C930.5 (3)C22—C23—C24—C190.2 (3)
N1—C3—C4—C9151.19 (15)C22—C23—C24—O2179.71 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the N1/N2/C1–C3, C4–C9 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.952.543.354 (2)143
C14—H14···Cg2ii0.952.633.4083 (19)139
C25—H25B···Cg1iii0.982.843.6337 (19)139
C26—H26C···Cg4iv0.982.953.908 (2)166
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H24N2O2
Mr396.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3117 (14), 10.5217 (17), 13.425 (2)
α, β, γ (°)105.938 (2), 101.846 (2), 107.772 (2)
V3)1020.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.979, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
11527, 4193, 3184
Rint0.036
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.05
No. of reflections4193
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the N1/N2/C1–C3, C4–C9 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.952.543.354 (2)143
C14—H14···Cg2ii0.952.633.4083 (19)139
C25—H25B···Cg1iii0.982.843.6337 (19)139
C26—H26C···Cg4iv0.982.953.908 (2)166
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

Manchester Metropolitan University, Erciyes University and Granada University are gratefully acknowledged for supporting this study. The authors also thank José Romero Garzón, Centro de Instrumentación Científica, Universidad de Granada, for the data collection.

References

First citationAkkurt, M., Fronczek, F. R., Mohamed, S. K., Talybov, A. H., Marzouk, A. A. E. & Abdelhamid, A. A. (2013a). Acta Cryst. E69, o527–o528.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Mohamed, S. K., Singh, K., Marzouk, A. A. & Abdelhamid, A. A. (2013b). Acta Cryst. E69, o846–o847.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBerezin, M. Y., Jeff, K. & Achilefu, S. (2009). Chemistry, 15, 3560–3566.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoszykowska, M., Tokarek, M. & Kucharski, S. (2009). Mater. Sci. Pol. 27, 699–708.  CAS Google Scholar
First citationMin, G.-H., Yim, T., Lee, H. Y., Huh, D. H., Lee, E., Mun, J., Oh, S. M. & Kim, Y. G. (2006). Bull. Korean Chem. Soc. 27, 847–852.  CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474–o475.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A. E., Santoyo-Gonzalez, F. & Elremaily, M. A. A. (2013b). Acta Cryst. E69, o875–o876.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRambo, B. M., Silver, E. S., Bielawski, C. W. & Sessler, J. L. (2010). Heterocycl. Chem. 1, 1–37.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds