organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(3,3-Di­phenyl­allyl­­idene)naph­thal­en-1-amine

aCenter for Neuro-Medicine, Brain Science Institute, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, bChemical Kinomics Research Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, cAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, and dKorea Institute of Industrial Technology, 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do 426-910, Republic of Korea
*Correspondence e-mail: j9601@kist.re.kr

(Received 9 May 2013; accepted 30 May 2013; online 8 June 2013)

The title compound, C25H19N, adopts an E conformation about the C=N bond. The naphthalene ring system and the phenyl rings form dihedral angles 38.1 (1), 46.9 (8) and 48.5 (1)°, respectively, with the mean plane of the central enimino fragment. The crystal packing exhibits no directional close contacts.

Related literature

For the crystal structures of related compounds studied recently by our group, see: Cha et al. (2012[Cha, J. H., Kang, Y. K., Cho, Y. S., Lee, J. K. & Woo, J. C. (2012). Acta Cryst. E68, o3030.]); Kang et al. (2012[Kang, Y. K., Cho, Y. S., Lee, J. K., Yu, B.-Y. & Cha, J. H. (2012). Acta Cryst. E68, o3031.]); Yu et al. (2013[Yu, B.-Y., Lee, J. E., Cho, Y. S., Cha, J. H. & Lee, J. K. (2013). Acta Cryst. E69, o757.]); Nam et al. (2013[Nam, K. D., Cha, J. H., Cho, Y. S., Lee, J. K. & Pae, A. N. (2013). Acta Cryst. E69, o548.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19N

  • Mr = 333.41

  • Orthorhombic, P b c a

  • a = 11.2203 (7) Å

  • b = 13.5658 (7) Å

  • c = 24.1946 (13) Å

  • V = 3682.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.986, Tmax = 0.986

  • 33578 measured reflections

  • 4190 independent reflections

  • 2080 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.197

  • S = 0.95

  • 4190 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

As a part of our ongoing study of 2-phenylcinnamaldehyde derivatives contaning aniline (Cha et al., 2012; Kang et al., 2012; Yu et al., 2013) and naphthylamine (Nam et al., 2013), we present here the title compound.

The title compound (Fig. 1) adopts an (E) conformation about the CN bond. The naphthalene bicycle C1–C10 and phenyl rings C14–C19 and C20–C25 form the dihedral angles 38.1 (1), 46.9 (8) and 48.5 (1)°, respectively, with the mean plane of the central N1–C11–C12 enimino fragment. The crystal packing exhibits no classical intermolecular contacts.

Related literature top

For the crystal structures of related compounds studied recently by our group, see: Cha et al. (2012); Kang et al. (2012); Yu et al. (2013); Nam et al. (2013).

Experimental top

In a solution of 1-naphthylamine (2.0 mmol) in anhydrous ethanol (50 mL) was treated with equimolar quantities of substituted 2-phenylcinnamaldehydes. The mixture was refluxed for 2 days, and the progress of reaction was monitored by TLC. After completion of reaction, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to afford the title compound as a yellow solid in yield 92%. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93 Å), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

As a part of our ongoing study of 2-phenylcinnamaldehyde derivatives contaning aniline (Cha et al., 2012; Kang et al., 2012; Yu et al., 2013) and naphthylamine (Nam et al., 2013), we present here the title compound.

The title compound (Fig. 1) adopts an (E) conformation about the CN bond. The naphthalene bicycle C1–C10 and phenyl rings C14–C19 and C20–C25 form the dihedral angles 38.1 (1), 46.9 (8) and 48.5 (1)°, respectively, with the mean plane of the central N1–C11–C12 enimino fragment. The crystal packing exhibits no classical intermolecular contacts.

For the crystal structures of related compounds studied recently by our group, see: Cha et al. (2012); Kang et al. (2012); Yu et al. (2013); Nam et al. (2013).

Computing details top

Data collection: RAPID–AUTO (Rigaku, 2006); cell refinement: RAPID–AUTO (Rigaku, 2006); data reduction: RAPID–AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoid.
(E)-N-(3,3-Diphenylallylidene)naphthalen-1-amine top
Crystal data top
C25H19NZ = 8
Mr = 333.41F(000) = 1408
Orthorhombic, PbcaDx = 1.203 Mg m3
Hall symbol: -P 2ac 2abMo Kα radiation, λ = 0.71075 Å
a = 11.2203 (7) ŵ = 0.07 mm1
b = 13.5658 (7) ÅT = 296 K
c = 24.1946 (13) ÅBlock, yellow
V = 3682.7 (4) Å30.20 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4190 independent reflections
Radiation source: fine-focus sealed tube2080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
k = 1717
Tmin = 0.986, Tmax = 0.986l = 3130
33578 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1186P)2]
where P = (Fo2 + 2Fc2)/3
4190 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C25H19NV = 3682.7 (4) Å3
Mr = 333.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.2203 (7) ŵ = 0.07 mm1
b = 13.5658 (7) ÅT = 296 K
c = 24.1946 (13) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4190 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2080 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.986Rint = 0.070
33578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 0.95Δρmax = 0.16 e Å3
4190 reflectionsΔρmin = 0.25 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03605 (16)0.37399 (12)0.86987 (6)0.0588 (5)
C10.1297 (2)0.27203 (18)0.83686 (9)0.0688 (6)
H10.11430.22510.86400.083*
C20.2224 (3)0.2562 (2)0.79886 (10)0.0830 (8)
H20.26820.19920.80130.100*
C30.2458 (2)0.3231 (2)0.75873 (9)0.0827 (8)
H30.30790.31180.73410.099*
C40.1772 (2)0.4100 (2)0.75384 (8)0.0682 (7)
C50.1976 (3)0.4814 (3)0.71211 (10)0.0888 (9)
H50.25690.47050.68600.107*
C60.1321 (3)0.5650 (3)0.70969 (10)0.0947 (10)
H60.14710.61080.68190.114*
C70.0421 (3)0.5836 (2)0.74842 (11)0.0850 (8)
H70.00180.64160.74650.102*
C80.0190 (2)0.51646 (18)0.78898 (9)0.0690 (7)
H80.04060.52950.81470.083*
C90.0839 (2)0.42754 (17)0.79262 (8)0.0582 (6)
C100.06209 (19)0.35522 (16)0.83444 (8)0.0564 (5)
C110.0290 (2)0.35090 (15)0.92139 (8)0.0558 (5)
H110.03940.32130.93540.067*
C120.1286 (2)0.37159 (14)0.95689 (8)0.0562 (5)
H120.19790.39230.93930.067*
C130.13445 (18)0.36485 (14)1.01268 (8)0.0522 (5)
C140.03384 (19)0.33393 (15)1.04830 (8)0.0534 (5)
C150.0793 (2)0.37540 (16)1.04349 (9)0.0630 (6)
H150.09370.42271.01650.076*
C160.1706 (2)0.3467 (2)1.07863 (10)0.0761 (7)
H160.24570.37501.07510.091*
C170.1506 (3)0.2765 (2)1.11871 (10)0.0793 (8)
H170.21220.25711.14200.095*
C180.0399 (3)0.23538 (18)1.12413 (9)0.0747 (7)
H180.02640.18811.15130.090*
C190.0517 (2)0.26348 (16)1.08965 (8)0.0642 (6)
H190.12660.23511.09390.077*
C200.24624 (19)0.39592 (14)1.04092 (8)0.0522 (5)
C210.2411 (2)0.45116 (16)1.08939 (8)0.0655 (6)
H210.16760.46351.10580.079*
C220.3434 (3)0.48772 (19)1.11332 (10)0.0760 (7)
H220.33850.52571.14520.091*
C230.4527 (3)0.46821 (19)1.09016 (10)0.0781 (7)
H230.52160.49331.10620.094*
C240.4600 (2)0.41132 (18)1.04309 (10)0.0702 (6)
H240.53400.39691.02790.084*
C250.3577 (2)0.37575 (16)1.01848 (8)0.0604 (6)
H250.36340.33790.98650.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0562 (11)0.0734 (12)0.0467 (9)0.0012 (9)0.0046 (8)0.0029 (8)
C10.0738 (16)0.0759 (15)0.0568 (12)0.0053 (13)0.0020 (11)0.0047 (11)
C20.0819 (19)0.0996 (19)0.0675 (15)0.0148 (15)0.0064 (14)0.0201 (14)
C30.0614 (16)0.127 (2)0.0593 (13)0.0046 (16)0.0104 (12)0.0266 (15)
C40.0574 (15)0.1024 (18)0.0447 (11)0.0215 (13)0.0033 (10)0.0105 (12)
C50.080 (2)0.133 (3)0.0530 (13)0.042 (2)0.0055 (13)0.0045 (15)
C60.108 (3)0.119 (2)0.0568 (15)0.052 (2)0.0038 (15)0.0169 (16)
C70.087 (2)0.0966 (18)0.0716 (15)0.0220 (15)0.0105 (14)0.0225 (14)
C80.0638 (15)0.0851 (17)0.0580 (13)0.0107 (13)0.0052 (11)0.0094 (12)
C90.0501 (13)0.0809 (15)0.0436 (10)0.0106 (11)0.0032 (9)0.0022 (10)
C100.0531 (13)0.0728 (14)0.0432 (10)0.0037 (11)0.0006 (9)0.0030 (9)
C110.0597 (13)0.0604 (12)0.0473 (10)0.0005 (10)0.0016 (9)0.0012 (9)
C120.0552 (13)0.0609 (13)0.0524 (11)0.0005 (10)0.0043 (10)0.0020 (9)
C130.0575 (13)0.0496 (11)0.0494 (10)0.0035 (9)0.0017 (9)0.0002 (9)
C140.0587 (13)0.0538 (11)0.0477 (10)0.0004 (10)0.0015 (9)0.0044 (9)
C150.0639 (15)0.0627 (13)0.0623 (12)0.0056 (11)0.0012 (11)0.0043 (10)
C160.0628 (16)0.0831 (16)0.0824 (16)0.0050 (13)0.0132 (13)0.0138 (14)
C170.083 (2)0.0854 (18)0.0691 (14)0.0109 (15)0.0213 (14)0.0095 (13)
C180.0897 (19)0.0763 (16)0.0580 (13)0.0081 (14)0.0090 (13)0.0040 (11)
C190.0681 (15)0.0682 (13)0.0563 (12)0.0009 (11)0.0006 (11)0.0054 (10)
C200.0568 (13)0.0519 (11)0.0480 (10)0.0005 (10)0.0030 (9)0.0045 (8)
C210.0706 (15)0.0692 (14)0.0568 (12)0.0008 (12)0.0029 (11)0.0056 (10)
C220.089 (2)0.0747 (16)0.0643 (14)0.0092 (14)0.0104 (14)0.0122 (12)
C230.0777 (19)0.0796 (16)0.0770 (16)0.0184 (14)0.0201 (14)0.0043 (13)
C240.0618 (15)0.0793 (16)0.0696 (14)0.0057 (12)0.0055 (12)0.0098 (12)
C250.0607 (14)0.0658 (13)0.0547 (12)0.0016 (11)0.0020 (10)0.0003 (10)
Geometric parameters (Å, º) top
N1—C111.288 (2)C13—C141.481 (3)
N1—C101.419 (3)C13—C201.489 (3)
C1—C101.361 (3)C14—C151.394 (3)
C1—C21.405 (3)C14—C191.398 (3)
C1—H10.9300C15—C161.387 (3)
C2—C31.355 (4)C15—H150.9300
C2—H20.9300C16—C171.377 (4)
C3—C41.412 (4)C16—H160.9300
C3—H30.9300C17—C181.368 (4)
C4—C51.417 (4)C17—H170.9300
C4—C91.425 (3)C18—C191.378 (3)
C5—C61.353 (4)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C71.400 (4)C20—C251.391 (3)
C6—H60.9300C20—C211.393 (3)
C7—C81.364 (3)C21—C221.379 (3)
C7—H70.9300C21—H210.9300
C8—C91.412 (3)C22—C231.373 (3)
C8—H80.9300C22—H220.9300
C9—C101.430 (3)C23—C241.378 (3)
C11—C121.437 (3)C23—H230.9300
C11—H110.9300C24—C251.380 (3)
C12—C131.355 (3)C24—H240.9300
C12—H120.9300C25—H250.9300
C11—N1—C10119.57 (18)C12—C13—C20118.61 (19)
C10—C1—C2120.7 (2)C14—C13—C20117.07 (16)
C10—C1—H1119.6C15—C14—C19117.8 (2)
C2—C1—H1119.6C15—C14—C13122.11 (19)
C3—C2—C1120.7 (3)C19—C14—C13120.05 (19)
C3—C2—H2119.7C16—C15—C14120.5 (2)
C1—C2—H2119.7C16—C15—H15119.7
C2—C3—C4120.9 (2)C14—C15—H15119.7
C2—C3—H3119.6C17—C16—C15120.4 (2)
C4—C3—H3119.6C17—C16—H16119.8
C3—C4—C5122.8 (2)C15—C16—H16119.8
C3—C4—C9119.0 (2)C18—C17—C16119.8 (2)
C5—C4—C9118.2 (3)C18—C17—H17120.1
C6—C5—C4121.1 (3)C16—C17—H17120.1
C6—C5—H5119.5C17—C18—C19120.4 (2)
C4—C5—H5119.5C17—C18—H18119.8
C5—C6—C7120.9 (3)C19—C18—H18119.8
C5—C6—H6119.6C18—C19—C14121.0 (2)
C7—C6—H6119.6C18—C19—H19119.5
C8—C7—C6119.9 (3)C14—C19—H19119.5
C8—C7—H7120.0C25—C20—C21118.2 (2)
C6—C7—H7120.0C25—C20—C13121.51 (17)
C7—C8—C9121.1 (2)C21—C20—C13120.2 (2)
C7—C8—H8119.4C22—C21—C20120.8 (2)
C9—C8—H8119.4C22—C21—H21119.6
C8—C9—C4118.7 (2)C20—C21—H21119.6
C8—C9—C10122.8 (2)C23—C22—C21120.2 (2)
C4—C9—C10118.5 (2)C23—C22—H22119.9
C1—C10—N1123.73 (19)C21—C22—H22119.9
C1—C10—C9120.2 (2)C22—C23—C24119.9 (2)
N1—C10—C9115.94 (19)C22—C23—H23120.1
N1—C11—C12118.9 (2)C24—C23—H23120.1
N1—C11—H11120.6C23—C24—C25120.2 (2)
C12—C11—H11120.6C23—C24—H24119.9
C13—C12—C11128.3 (2)C25—C24—H24119.9
C13—C12—H12115.8C24—C25—C20120.7 (2)
C11—C12—H12115.8C24—C25—H25119.7
C12—C13—C14124.21 (19)C20—C25—H25119.7
C10—C1—C2—C30.5 (4)C11—C12—C13—C20176.53 (18)
C1—C2—C3—C40.5 (4)C12—C13—C14—C1549.7 (3)
C2—C3—C4—C5179.2 (2)C20—C13—C14—C15126.6 (2)
C2—C3—C4—C91.3 (3)C12—C13—C14—C19132.6 (2)
C3—C4—C5—C6178.1 (2)C20—C13—C14—C1951.1 (3)
C9—C4—C5—C61.4 (4)C19—C14—C15—C160.4 (3)
C4—C5—C6—C70.0 (4)C13—C14—C15—C16178.12 (19)
C5—C6—C7—C80.5 (4)C14—C15—C16—C170.2 (3)
C6—C7—C8—C90.4 (4)C15—C16—C17—C180.4 (4)
C7—C8—C9—C41.7 (3)C16—C17—C18—C190.2 (4)
C7—C8—C9—C10179.8 (2)C17—C18—C19—C140.3 (4)
C3—C4—C9—C8177.3 (2)C15—C14—C19—C180.6 (3)
C5—C4—C9—C82.2 (3)C13—C14—C19—C18178.42 (19)
C3—C4—C9—C101.2 (3)C12—C13—C20—C2538.9 (3)
C5—C4—C9—C10179.31 (19)C14—C13—C20—C25144.7 (2)
C2—C1—C10—N1177.1 (2)C12—C13—C20—C21137.5 (2)
C2—C1—C10—C90.6 (3)C14—C13—C20—C2138.9 (3)
C11—N1—C10—C140.3 (3)C25—C20—C21—C222.3 (3)
C11—N1—C10—C9143.1 (2)C13—C20—C21—C22174.3 (2)
C8—C9—C10—C1178.2 (2)C20—C21—C22—C231.4 (4)
C4—C9—C10—C10.2 (3)C21—C22—C23—C240.5 (4)
C8—C9—C10—N15.0 (3)C22—C23—C24—C251.4 (4)
C4—C9—C10—N1176.55 (18)C23—C24—C25—C200.5 (3)
C10—N1—C11—C12179.19 (18)C21—C20—C25—C241.3 (3)
N1—C11—C12—C13171.0 (2)C13—C20—C25—C24175.22 (19)
C11—C12—C13—C140.3 (3)

Experimental details

Crystal data
Chemical formulaC25H19N
Mr333.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.2203 (7), 13.5658 (7), 24.1946 (13)
V3)3682.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.986, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
33578, 4190, 2080
Rint0.070
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.197, 0.95
No. of reflections4190
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: RAPID–AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

Financial support from the Korean Institute of Science and Technology (KIST) is gratefully acknowledged.

References

First citationCha, J. H., Kang, Y. K., Cho, Y. S., Lee, J. K. & Woo, J. C. (2012). Acta Cryst. E68, o3030.  CSD CrossRef IUCr Journals Google Scholar
First citationKang, Y. K., Cho, Y. S., Lee, J. K., Yu, B.-Y. & Cha, J. H. (2012). Acta Cryst. E68, o3031.  CSD CrossRef IUCr Journals Google Scholar
First citationNam, K. D., Cha, J. H., Cho, Y. S., Lee, J. K. & Pae, A. N. (2013). Acta Cryst. E69, o548.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, B.-Y., Lee, J. E., Cho, Y. S., Cha, J. H. & Lee, J. K. (2013). Acta Cryst. E69, o757.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds