metal-organic compounds
{4-Bromo-2-[(2-{(ethylsulfanyl)[(2-oxidobenzylidene-κO)amino-κN]methylidene}hydrazinylidene-κN1)methyl]phenolato-κO}(ethanol-κO)dioxidouranium(VI)
aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, bDepartment of Chemistry, Payame Noor University, 19395–4697, Tehran, Iran, and cDipartimento di Chimica e Biologia, Università di Salerno, Via Ponte don Melillo, 84084 Salerno, Italy
*Correspondence e-mail: roberto.centore@unina.it
In the title complex, [U(C17H14BrN3O2S)O2(C2H5OH)], the UVI cation has a distorted pentagonal–bipyramidal environment with the pentagonal plane defined by two N and two O atoms of the tetradentate Schiff base ligand and the O atom of the ethanol molecule. Two oxide O atoms occupy the axial positions. The azomethine C=N group and the Br atom are disordered over two positions in a 0.8356 (18):0.1644 (18) ratio. The ethylthiolyl group is disordered over three conformations in a 0.8356 (18):0.085 (6):0.079 (6) ratio, and the ethanol ligand is also disordered over three orientations in a 0.470 (16):0.277 (19):0.253 (18) ratio. In the crystal, molecules form centrosymmetric dimers through hydrogen bonding between ethanol O—H donors and phenolate O-atom acceptors. Weak C—H⋯O interactions consolidate the crystal packing.
Related literature
For semiconductor materials containing heterocycles, see: Centore, Ricciotti et al. (2012). For the structural and theoretical analysis of conjugation in sulfur-containing metalorganic compounds, see: Takjoo et al. (2011); Takjoo & Centore (2013). For recent examples of hydrogen bonding in crystals, see: Centore et al. (2013). For the structure of a related complex, see: Takjoo et al. (2012).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1999); cell DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813014669/cv5416sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813014669/cv5416Isup2.hkl
Preparation of 5-Bromo-2-hydroxybenzaldehyde-S-ethylisothiosemicarbazone hydroiodide (H2L.HI). A solution of thiosemicarbazide (0.91 g, 10 mmol) in ethanol (5 mL) was treated with ethyliodide (1.55 g, 10 mmol) and was refluxed for 3 h at 90 °C. 5-Bromo-2-hydroxybenzaldehyde (2.011 g, 10 mmol) was then added to the resulting solution and the reflux was continued for an additional 1 h. A yellow precipitate formed that was filtered off, washed with cold ethanol and dried in vacuum over silica gel. Yield 75%. Mp. 190 °C.
Preparation of the title compound. H2L.HI (0.430 g, 1.0 mmol) and salicylaldehyde (0.12 g, 1.0 mmol) were dissolved in warm ethanol (10 mL). To this solution, a solution of UO2(OAc)2.2H2O (0.42 g, 1.0 mmol) in 10 mL ethanol was added. The resulting solution was refluxed for 30 min. By slow evaporation at room temperature, red crystals of the title compound formed after several days. The crystals were collected by filtration, washed with diethyl ether and dried in air. Yield 37%. Mp. 156 °C (dec). Anal. Calc. for C19H20N3O5SBrU: C, 31.68; H, 2.80; N, 5.83%. Found: C, 31.43; H, 2.72; N, 5.74%. IR (cm-1): ν(C–H) 2931–3004 w; ν(C=N) + ν(C=C) 1604 vs, 1527 s; ν(C–O) 1288 s; ν(N–N) 1010 w; νasy(trans-UO2) 910 s; νsy(trans-UO2) 877 m. UV-VIS [MeOH, λmax/nm (log εmax/M-1 cm-1)]: 222 (4.39), 248 (4.34), 312 (4.20), 410 (3.79). (1.0×10-3 M; MeOH): 6 Ω-1 cm2 mol-1.
The H atom of the hydroxy group was located in difference map. All other H atoms were generated stereochemically and were refined by the riding model. For all H atoms Uiso=1.2×Ueq of the
was assumed (1.5 for methyl groups). The shows a remarkable degree of static disorder. In fact, molecules enter the crystal in two orientations of the tetradentate ligand, which are nearly obtained by rotation of 180° around the line joining U1 with the barycentre of N2A–C8A. There results a complete superposition of the atoms of the tetradentate ligand in the two orientations, with exception for bromine, sulfur and the methyl group of the S-ethyl tail. These atoms were found in difmaps and were refined. By refining also the occupancy factor, it resulted that the main orientation has an occupation factor higher by far than the other (0.836 (2) and 0.164 (2)). The resolved atoms of the low populated split positions were refined with some restraints on bond lengths and angles in order to keep the same geometry of the higher occupancy position (SAME instruction of SHELXL97). Also the ethanol molecule coordinated to uranyl is disordered over three positions. Since the methylene carbon atoms of the three different positions of the ethanol molecule are quite close to each other, they were refined with isotropic displacement parameters.Condensation between S-alkyl-isothiosemicarbazides and salicylaldehyde analogues affords
called isothiosemicarbazones, that can act as tridentate donor ligands, Fig. 1 (a). Isothiosemicarbazones are versatile ligands because by varying the substituents on sulfur and salicylaldehyde, and by changing the metal ion, a tuning of the properties of the corresponding complexes can be achieved in principle. As shown in Fig. 1 (b), S-alkylisothiosemicarbazones can react with The template reaction of S-alkylisothiosemicarbazones with substituted salicyladehydes, in the presence of metal ions fitted for square planar coordination (e. g. VO(II), Cu(II), Ni(II), UO2(II)) can lead to tetradentate (N, N, O, O) complexes, Fig. 1(b).Following our interest in the synthesis and structural characterization of organic and metallorganic compounds containing heterocycles for applications as advanced materials and bioactive compounds (Centore, Ricciotti et al., 2012; Takjoo et al., 2011; Takjoo & Centore, 2013), and in the analysis of crystal structures controlled by the formation of H bonds (Centore et al., 2013), we report the structural investigation of the title compound, (I). (I) was obtained by the template reaction of 5-bromo-2-hydroxybenzaldehyde-S- ethylisothiosemicarbazone with salicylaldehyde, in the presence of uranyl acetate.
The molecular structure of (I) is shown in Fig. 2. The heptacoordination around the metal atom can be described as distorted pentagonal bipyramid. The equatorial plane is occupied by the four donor atoms of the tetradentate chelate ligand (N, N, O, O) and by the oxygen donor atom of the coordinated ethanol molecule. The axial positions are occupied by the uranyl oxygen atoms. The bond lengths between uranium and the equatorial donors range between 2.221 (4) Å and 2.576 (4) Å, while the two bond lengths within the uranyl group are significantly shorter (1.764 (4) Å and 1.771 (3) Å). In the equatorial plane, two six-membered and one five-membered rings are formed involving the metal atom. The five membered ring is almost planar, while the two six-membered rings are in
with the metal atom out of the plane. The bite angles corresponding to the formation of the six-membered rings are slightly larger than the five membered ring.Molecules of the title compound have H bonding donor and acceptor groups, and the crystal packing shows the formation of H bonds. In the crystal, molecules form centrosymmetric dimers through H bonding between O–H donors and phenolato O- acceptors, giving rise to ring patterns R22(8). The rings include the uranium atoms, Fig. 3. The same pattern is present in the crystals of a closely related compound (Takjoo et al., 2012). The oxygen atoms of the uranyl moiety are involved in weak H bonding interactions. In the case of O3, aromatic and imino C–H are the weak donors, and R12(6) ring patterns are observed. In the case of O4, methyl and aromatic C–H are the weak donors, Fig. 4.
For semiconductor materials containing heterocycles, see: Centore, Ricciotti et al. (2012). For the structural and theoretical analysis of conjugation in sulfur-containing metallorganic compounds, see: Takjoo et al. (2011); Takjoo & Centore (2013). For recent examples of hydrogen bonding in crystals, see: Centore et al. (2013). For the structure of a related complex, see: Takjoo et al. (2012).
Data collection: COLLECT (Nonius, 1999); cell
DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. (a) General synthesis of isothiosemicarbazones; (b) Template reaction between an isothiosemicarbazone, a substituted salicylaldehyde and a metal ion affording a complex with a tetradentate isothiosemicarbazate ligand. | |
Fig. 2. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids. For the disordered atoms, only the major components are shown. | |
Fig. 3. Centrosymmetric H bonded dimer in (I). H bonds are represented by dashed lines. For the disordered atoms, only the major components are shown. | |
Fig. 4. Weak C—H···O interactions (dashed lines), involving oxygen atoms of the uranyl group. For the disordered atoms, only the major components are shown. |
[U(C17H14BrN3O2S)O2(C2H6O)] | Z = 2 |
Mr = 720.38 | F(000) = 676 |
Triclinic, P1 | Dx = 2.109 Mg m−3 |
a = 10.3720 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.1380 (14) Å | Cell parameters from 110 reflections |
c = 11.167 (1) Å | θ = 4.6–23.6° |
α = 69.428 (10)° | µ = 9.04 mm−1 |
β = 86.870 (11)° | T = 293 K |
γ = 70.379 (10)° | Prism, red |
V = 1134.7 (3) Å3 | 0.40 × 0.20 × 0.20 mm |
Bruker–Nonius KappaCCD diffractometer | 5207 independent reflections |
Radiation source: normal-focus sealed tube | 4347 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
CCD rotation images, thick slices scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −14→14 |
Tmin = 0.123, Tmax = 0.265 | l = −14→13 |
15923 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0179P)2 + 1.5042P] where P = (Fo2 + 2Fc2)/3 |
5207 reflections | (Δ/σ)max = 0.001 |
306 parameters | Δρmax = 1.02 e Å−3 |
53 restraints | Δρmin = −1.22 e Å−3 |
[U(C17H14BrN3O2S)O2(C2H6O)] | γ = 70.379 (10)° |
Mr = 720.38 | V = 1134.7 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.3720 (17) Å | Mo Kα radiation |
b = 11.1380 (14) Å | µ = 9.04 mm−1 |
c = 11.167 (1) Å | T = 293 K |
α = 69.428 (10)° | 0.40 × 0.20 × 0.20 mm |
β = 86.870 (11)° |
Bruker–Nonius KappaCCD diffractometer | 5207 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 4347 reflections with I > 2σ(I) |
Tmin = 0.123, Tmax = 0.265 | Rint = 0.045 |
15923 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 53 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.02 e Å−3 |
5207 reflections | Δρmin = −1.22 e Å−3 |
306 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6222 (5) | −0.4166 (5) | 1.0165 (5) | 0.0480 (13) | |
H1B | 0.6535 | −0.4967 | 1.0874 | 0.058* | 0.1644 (18) |
Br1A | 0.68347 (8) | −0.57406 (7) | 1.16068 (8) | 0.0615 (2) | 0.8356 (18) |
Br1B | −0.0277 (5) | 0.9058 (5) | 0.2778 (5) | 0.0882 (18) | 0.1644 (18) |
C2 | 0.6697 (6) | −0.4110 (6) | 0.8960 (6) | 0.0547 (14) | |
H2 | 0.7339 | −0.4884 | 0.8871 | 0.066* | |
C3 | 0.6239 (5) | −0.2946 (6) | 0.7911 (6) | 0.0494 (13) | |
H3 | 0.6578 | −0.2935 | 0.7120 | 0.059* | |
C4 | 0.5257 (5) | −0.1758 (5) | 0.8013 (5) | 0.0399 (11) | |
O1 | 0.4757 (4) | −0.0655 (3) | 0.6971 (3) | 0.0439 (8) | |
C5 | 0.4789 (5) | −0.1789 (5) | 0.9220 (5) | 0.0389 (11) | |
C6 | 0.5280 (5) | −0.3005 (5) | 1.0281 (5) | 0.0436 (12) | |
H6 | 0.4962 | −0.3027 | 1.1081 | 0.052* | |
C7 | 0.3759 (5) | −0.0669 (5) | 0.9449 (5) | 0.0405 (11) | |
H7 | 0.3427 | −0.0849 | 1.0261 | 0.049* | |
N1 | 0.3248 (4) | 0.0560 (4) | 0.8644 (4) | 0.0395 (9) | |
N2A | 0.2242 (5) | 0.1373 (5) | 0.9202 (4) | 0.0480 (11) | 0.8356 (18) |
N2B | 0.1747 (5) | 0.2653 (5) | 0.8539 (5) | 0.0441 (11) | 0.1644 (18) |
C8A | 0.1747 (5) | 0.2653 (5) | 0.8539 (5) | 0.0441 (11) | 0.8356 (18) |
S1A | 0.05176 (18) | 0.36638 (19) | 0.92399 (19) | 0.0574 (5) | 0.8356 (18) |
C16A | 0.0450 (13) | 0.2473 (13) | 1.0815 (13) | 0.088 (4) | 0.8356 (18) |
H16A | 0.1376 | 0.1892 | 1.1170 | 0.106* | 0.8356 (18) |
H16B | 0.0039 | 0.2972 | 1.1377 | 0.106* | 0.8356 (18) |
C17A | −0.0377 (13) | 0.1597 (13) | 1.0763 (14) | 0.128 (5) | 0.8356 (18) |
H17A | −0.0391 | 0.0973 | 1.1611 | 0.192* | 0.8356 (18) |
H17B | 0.0034 | 0.1094 | 1.0215 | 0.192* | 0.8356 (18) |
H17C | −0.1299 | 0.2169 | 1.0431 | 0.192* | 0.8356 (18) |
C8B | 0.2242 (5) | 0.1373 (5) | 0.9202 (4) | 0.0480 (11) | 0.085 (6) |
S1B | 0.172 (3) | 0.0871 (19) | 1.0706 (17) | 0.062 (4)* | 0.085 (6) |
C16B | 0.027 (5) | 0.231 (5) | 1.075 (5) | 0.088 (4) | 0.085 (6) |
H16C | 0.0349 | 0.3161 | 1.0164 | 0.106* | 0.085 (6) |
H16D | −0.0584 | 0.2236 | 1.0522 | 0.106* | 0.085 (6) |
C17B | 0.033 (7) | 0.223 (6) | 1.213 (5) | 0.128 (5) | 0.085 (6) |
H17D | −0.0425 | 0.2959 | 1.2242 | 0.192* | 0.085 (6) |
H17E | 0.1179 | 0.2315 | 1.2326 | 0.192* | 0.085 (6) |
H17F | 0.0279 | 0.1372 | 1.2687 | 0.192* | 0.085 (6) |
C8C | 0.2242 (5) | 0.1373 (5) | 0.9202 (4) | 0.0480 (11) | 0.079 (6) |
S1C | 0.127 (3) | 0.0792 (19) | 1.043 (2) | 0.062 (4)* | 0.079 (6) |
C16C | 0.027 (5) | 0.231 (5) | 1.075 (5) | 0.088 (4) | 0.079 (6) |
H16E | 0.0571 | 0.3054 | 1.0221 | 0.106* | 0.079 (6) |
H16F | −0.0683 | 0.2541 | 1.0474 | 0.106* | 0.079 (6) |
C17C | 0.033 (7) | 0.223 (6) | 1.213 (5) | 0.128 (5) | 0.079 (6) |
H17G | −0.0321 | 0.3043 | 1.2208 | 0.192* | 0.079 (6) |
H17H | 0.1237 | 0.2152 | 1.2372 | 0.192* | 0.079 (6) |
H17I | 0.0116 | 0.1451 | 1.2674 | 0.192* | 0.079 (6) |
N3 | 0.2190 (4) | 0.3221 (4) | 0.7343 (4) | 0.0399 (9) | |
C9 | 0.1450 (5) | 0.4453 (5) | 0.6638 (6) | 0.0464 (12) | |
H9 | 0.0654 | 0.4855 | 0.6980 | 0.056* | |
C10 | 0.1708 (5) | 0.5257 (5) | 0.5413 (6) | 0.0446 (12) | |
C11 | 0.0656 (6) | 0.6486 (6) | 0.4747 (6) | 0.0568 (15) | |
H11 | −0.0168 | 0.6753 | 0.5115 | 0.068* | |
C12 | 0.0856 (7) | 0.7270 (5) | 0.3570 (7) | 0.0654 (17) | |
H12A | 0.0141 | 0.8059 | 0.3125 | 0.079* | 0.8356 (18) |
C13 | 0.2068 (8) | 0.6951 (7) | 0.3002 (7) | 0.0682 (18) | |
H13 | 0.2172 | 0.7523 | 0.2193 | 0.082* | |
C14 | 0.3117 (7) | 0.5792 (7) | 0.3632 (6) | 0.0593 (15) | |
H14 | 0.3943 | 0.5580 | 0.3253 | 0.071* | |
C15 | 0.2972 (6) | 0.4909 (6) | 0.4848 (6) | 0.0460 (12) | |
O2 | 0.3995 (4) | 0.3803 (4) | 0.5465 (4) | 0.0528 (9) | |
O3 | 0.5501 (4) | 0.1468 (4) | 0.7532 (4) | 0.0489 (9) | |
O4 | 0.2827 (3) | 0.1828 (4) | 0.5463 (4) | 0.0466 (8) | |
U1 | 0.415731 (18) | 0.164807 (19) | 0.650973 (18) | 0.03560 (6) | |
O5A | 0.5794 (4) | 0.1272 (4) | 0.4954 (4) | 0.0483 (9) | 0.470 (16) |
H5A | 0.5486 | 0.0995 | 0.4528 | 0.058* | 0.470 (16) |
C18A | 0.7137 (10) | 0.1409 (15) | 0.4828 (12) | 0.042 (3)* | 0.470 (16) |
H18A | 0.7110 | 0.2233 | 0.4958 | 0.051* | 0.470 (16) |
H18B | 0.7430 | 0.1464 | 0.3976 | 0.051* | 0.470 (16) |
C19A | 0.8114 (16) | 0.0191 (16) | 0.581 (2) | 0.106 (8) | 0.470 (16) |
H19A | 0.9024 | 0.0233 | 0.5713 | 0.159* | 0.470 (16) |
H19B | 0.8096 | −0.0622 | 0.5706 | 0.159* | 0.470 (16) |
H19C | 0.7849 | 0.0177 | 0.6653 | 0.159* | 0.470 (16) |
O5B | 0.5794 (4) | 0.1272 (4) | 0.4954 (4) | 0.0483 (9) | 0.277 (19) |
H5B | 0.5487 | 0.0992 | 0.4535 | 0.058* | 0.277 (19) |
C18B | 0.683 (2) | 0.192 (3) | 0.462 (3) | 0.072 (9)* | 0.277 (19) |
H18C | 0.7096 | 0.2071 | 0.5353 | 0.086* | 0.277 (19) |
H18D | 0.6448 | 0.2796 | 0.3935 | 0.086* | 0.277 (19) |
C19B | 0.8029 (17) | 0.1076 (18) | 0.4192 (18) | 0.104 (6)* | 0.277 (19) |
H19D | 0.8752 | 0.1452 | 0.4103 | 0.156* | 0.277 (19) |
H19E | 0.7799 | 0.1053 | 0.3382 | 0.156* | 0.277 (19) |
H19F | 0.8329 | 0.0167 | 0.4814 | 0.156* | 0.277 (19) |
O5C | 0.5794 (4) | 0.1272 (4) | 0.4954 (4) | 0.0483 (9) | 0.253 (18) |
H5C | 0.5476 | 0.1003 | 0.4533 | 0.058* | 0.253 (18) |
C18C | 0.7286 (16) | 0.073 (3) | 0.531 (2) | 0.055 (8)* | 0.253 (18) |
H18E | 0.7482 | 0.1098 | 0.5917 | 0.067* | 0.253 (18) |
H18F | 0.7579 | −0.0258 | 0.5721 | 0.067* | 0.253 (18) |
C19C | 0.8029 (17) | 0.1076 (18) | 0.4192 (18) | 0.104 (6)* | 0.253 (18) |
H19G | 0.8995 | 0.0713 | 0.4436 | 0.156* | 0.253 (18) |
H19H | 0.7750 | 0.2050 | 0.3796 | 0.156* | 0.253 (18) |
H19I | 0.7840 | 0.0700 | 0.3597 | 0.156* | 0.253 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.047 (3) | 0.045 (3) | 0.043 (3) | −0.007 (2) | −0.012 (2) | −0.011 (2) |
Br1A | 0.0653 (5) | 0.0427 (4) | 0.0608 (5) | −0.0068 (3) | −0.0091 (4) | −0.0090 (3) |
Br1B | 0.083 (3) | 0.083 (3) | 0.087 (4) | −0.036 (3) | −0.015 (3) | −0.005 (3) |
C2 | 0.046 (3) | 0.053 (3) | 0.060 (4) | 0.000 (3) | −0.001 (3) | −0.029 (3) |
C3 | 0.047 (3) | 0.050 (3) | 0.047 (3) | −0.001 (2) | 0.005 (2) | −0.027 (3) |
C4 | 0.041 (3) | 0.043 (3) | 0.038 (3) | −0.011 (2) | 0.001 (2) | −0.019 (2) |
O1 | 0.056 (2) | 0.0418 (19) | 0.0314 (18) | −0.0056 (16) | 0.0018 (16) | −0.0199 (15) |
C5 | 0.038 (2) | 0.044 (3) | 0.038 (3) | −0.010 (2) | 0.000 (2) | −0.021 (2) |
C6 | 0.048 (3) | 0.045 (3) | 0.037 (3) | −0.011 (2) | −0.001 (2) | −0.017 (2) |
C7 | 0.044 (3) | 0.045 (3) | 0.031 (3) | −0.011 (2) | 0.005 (2) | −0.016 (2) |
N1 | 0.040 (2) | 0.042 (2) | 0.035 (2) | −0.0048 (18) | 0.0051 (17) | −0.0205 (18) |
N2A | 0.046 (2) | 0.054 (3) | 0.044 (3) | −0.008 (2) | 0.014 (2) | −0.027 (2) |
N2B | 0.041 (3) | 0.049 (3) | 0.046 (3) | −0.010 (2) | 0.009 (2) | −0.027 (2) |
C8A | 0.041 (3) | 0.049 (3) | 0.046 (3) | −0.010 (2) | 0.009 (2) | −0.027 (2) |
S1A | 0.0515 (10) | 0.0548 (10) | 0.0647 (12) | −0.0065 (8) | 0.0199 (8) | −0.0330 (9) |
C16A | 0.098 (7) | 0.074 (6) | 0.097 (7) | −0.026 (5) | 0.059 (5) | −0.046 (5) |
C17A | 0.147 (11) | 0.111 (9) | 0.149 (13) | −0.061 (9) | 0.077 (10) | −0.066 (9) |
C8B | 0.046 (2) | 0.054 (3) | 0.044 (3) | −0.008 (2) | 0.014 (2) | −0.027 (2) |
C16B | 0.098 (7) | 0.074 (6) | 0.097 (7) | −0.026 (5) | 0.059 (5) | −0.046 (5) |
C17B | 0.147 (11) | 0.111 (9) | 0.149 (13) | −0.061 (9) | 0.077 (10) | −0.066 (9) |
C8C | 0.046 (2) | 0.054 (3) | 0.044 (3) | −0.008 (2) | 0.014 (2) | −0.027 (2) |
C16C | 0.098 (7) | 0.074 (6) | 0.097 (7) | −0.026 (5) | 0.059 (5) | −0.046 (5) |
C17C | 0.147 (11) | 0.111 (9) | 0.149 (13) | −0.061 (9) | 0.077 (10) | −0.066 (9) |
N3 | 0.039 (2) | 0.042 (2) | 0.043 (2) | −0.0112 (18) | 0.0030 (18) | −0.0221 (19) |
C9 | 0.037 (3) | 0.044 (3) | 0.061 (4) | −0.007 (2) | 0.002 (2) | −0.028 (3) |
C10 | 0.045 (3) | 0.039 (3) | 0.054 (3) | −0.014 (2) | −0.001 (2) | −0.019 (2) |
C11 | 0.050 (3) | 0.048 (3) | 0.069 (4) | −0.012 (3) | −0.009 (3) | −0.020 (3) |
C12 | 0.073 (4) | 0.052 (4) | 0.064 (4) | −0.023 (3) | −0.015 (3) | −0.006 (3) |
C13 | 0.083 (5) | 0.067 (4) | 0.054 (4) | −0.036 (4) | −0.005 (3) | −0.008 (3) |
C14 | 0.067 (4) | 0.064 (4) | 0.055 (4) | −0.034 (3) | 0.010 (3) | −0.021 (3) |
C15 | 0.048 (3) | 0.045 (3) | 0.052 (3) | −0.020 (2) | 0.000 (2) | −0.021 (3) |
O2 | 0.046 (2) | 0.047 (2) | 0.067 (3) | −0.0162 (17) | 0.0111 (19) | −0.0222 (19) |
O3 | 0.0410 (19) | 0.068 (2) | 0.045 (2) | −0.0157 (18) | 0.0043 (16) | −0.0310 (19) |
O4 | 0.0400 (18) | 0.054 (2) | 0.049 (2) | −0.0104 (16) | −0.0014 (16) | −0.0258 (18) |
U1 | 0.03288 (9) | 0.04260 (11) | 0.03333 (10) | −0.00789 (7) | 0.00249 (6) | −0.02045 (7) |
O5A | 0.0432 (19) | 0.071 (3) | 0.044 (2) | −0.0205 (18) | 0.0099 (16) | −0.0346 (19) |
C19A | 0.057 (9) | 0.090 (13) | 0.17 (2) | −0.011 (9) | −0.029 (12) | −0.051 (14) |
O5B | 0.0432 (19) | 0.071 (3) | 0.044 (2) | −0.0205 (18) | 0.0099 (16) | −0.0346 (19) |
O5C | 0.0432 (19) | 0.071 (3) | 0.044 (2) | −0.0205 (18) | 0.0099 (16) | −0.0346 (19) |
C1—C6 | 1.378 (7) | C9—H9 | 0.9300 |
C1—C2 | 1.395 (8) | C10—C11 | 1.410 (7) |
C1—Br1A | 1.858 (5) | C10—C15 | 1.417 (8) |
C1—H1B | 0.9300 | C11—C12 | 1.348 (9) |
C2—C3 | 1.364 (8) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | C12—C13 | 1.372 (10) |
C3—C4 | 1.410 (7) | C12—H12A | 0.9300 |
C3—H3 | 0.9300 | C13—C14 | 1.360 (9) |
C4—O1 | 1.328 (6) | C13—H13 | 0.9300 |
C4—C5 | 1.400 (7) | C14—C15 | 1.404 (8) |
O1—U1 | 2.295 (3) | C14—H14 | 0.9300 |
C5—C6 | 1.405 (7) | C15—O2 | 1.312 (7) |
C5—C7 | 1.436 (7) | O2—U1 | 2.221 (4) |
C6—H6 | 0.9300 | O3—U1 | 1.764 (4) |
C7—N1 | 1.290 (6) | O4—U1 | 1.771 (3) |
C7—H7 | 0.9300 | U1—O5A | 2.406 (3) |
N1—N2A | 1.410 (5) | O5A—C18A | 1.445 (10) |
N1—U1 | 2.556 (4) | O5A—H5A | 0.7809 |
S1A—C16A | 1.808 (13) | O5A—H5B | 0.7768 |
C16A—C17A | 1.517 (9) | O5A—H5C | 0.7761 |
C16A—H16A | 0.9700 | C18A—C19A | 1.492 (9) |
C16A—H16B | 0.9700 | C18A—H18A | 0.9700 |
C17A—H17A | 0.9600 | C18A—H18B | 0.9700 |
C17A—H17B | 0.9600 | C19A—H19A | 0.9600 |
C17A—H17C | 0.9600 | C19A—H19B | 0.9600 |
S1B—C16B | 1.81 (3) | C19A—H19C | 0.9600 |
C16B—C17B | 1.52 (2) | C18B—C19B | 1.455 (18) |
C16B—H16C | 0.9700 | C18B—H18C | 0.9700 |
C16B—H16D | 0.9700 | C18B—H18D | 0.9700 |
C17B—H17D | 0.9600 | C19B—H19D | 0.9600 |
C17B—H17E | 0.9600 | C19B—H19E | 0.9600 |
C17B—H17F | 0.9600 | C19B—H19F | 0.9600 |
N3—C9 | 1.301 (7) | C18C—H18E | 0.9700 |
N3—U1 | 2.576 (4) | C18C—H18F | 0.9700 |
C9—C10 | 1.416 (8) | ||
C6—C1—C2 | 118.4 (5) | C13—C12—H12A | 118.6 |
C6—C1—Br1A | 119.5 (4) | C14—C13—C12 | 119.4 (6) |
C2—C1—Br1A | 122.1 (4) | C14—C13—H13 | 120.3 |
C6—C1—H1B | 120.8 | C12—C13—H13 | 120.3 |
C2—C1—H1B | 120.8 | C13—C14—C15 | 121.0 (6) |
Br1A—C1—H1B | 1.4 | C13—C14—H14 | 119.5 |
C3—C2—C1 | 121.4 (5) | C15—C14—H14 | 119.5 |
C3—C2—H2 | 119.3 | O2—C15—C14 | 120.9 (5) |
C1—C2—H2 | 119.3 | O2—C15—C10 | 120.6 (5) |
C2—C3—C4 | 120.7 (5) | C14—C15—C10 | 118.5 (5) |
C2—C3—H3 | 119.7 | C15—O2—U1 | 133.4 (3) |
C4—C3—H3 | 119.7 | O3—U1—O4 | 179.05 (17) |
O1—C4—C5 | 121.2 (4) | O3—U1—O2 | 89.52 (17) |
O1—C4—C3 | 120.1 (5) | O4—U1—O2 | 90.23 (16) |
C5—C4—C3 | 118.6 (5) | O3—U1—O1 | 93.70 (16) |
C4—O1—U1 | 134.9 (3) | O4—U1—O1 | 86.22 (15) |
C4—C5—C6 | 119.3 (4) | O2—U1—O1 | 159.51 (13) |
C4—C5—C7 | 124.2 (5) | O3—U1—O5A | 88.85 (14) |
C6—C5—C7 | 116.3 (5) | O4—U1—O5A | 90.21 (14) |
C1—C6—C5 | 121.5 (5) | O2—U1—O5A | 82.02 (14) |
C1—C6—H6 | 119.2 | O1—U1—O5A | 77.82 (13) |
C5—C6—H6 | 119.2 | O3—U1—N1 | 82.19 (16) |
N1—C7—C5 | 126.6 (5) | O4—U1—N1 | 98.66 (16) |
N1—C7—H7 | 116.7 | O2—U1—N1 | 130.39 (14) |
C5—C7—H7 | 116.7 | O1—U1—N1 | 70.10 (12) |
C7—N1—N2A | 110.6 (4) | O5A—U1—N1 | 145.93 (13) |
C7—N1—U1 | 127.6 (3) | O3—U1—N3 | 97.53 (15) |
N2A—N1—U1 | 120.6 (3) | O4—U1—N3 | 83.25 (14) |
C17A—C16A—S1A | 111.4 (10) | O2—U1—N3 | 70.53 (14) |
C17A—C16A—H16A | 109.4 | O1—U1—N3 | 128.83 (13) |
S1A—C16A—H16A | 109.4 | O5A—U1—N3 | 151.69 (14) |
C17A—C16A—H16B | 109.4 | N1—U1—N3 | 62.37 (13) |
S1A—C16A—H16B | 109.4 | C18A—O5A—U1 | 129.7 (6) |
H16A—C16A—H16B | 108.0 | C18A—O5A—H5A | 123.9 |
C16A—C17A—H17A | 109.5 | U1—O5A—H5A | 106.3 |
C16A—C17A—H17B | 109.5 | C18A—O5A—H5B | 124.2 |
H17A—C17A—H17B | 109.5 | U1—O5A—H5B | 106.0 |
C16A—C17A—H17C | 109.5 | H5A—O5A—H5B | 0.4 |
H17A—C17A—H17C | 109.5 | C18A—O5A—H5C | 124.8 |
H17B—C17A—H17C | 109.5 | U1—O5A—H5C | 105.4 |
C17B—C16B—S1B | 104 (2) | H5A—O5A—H5C | 0.9 |
C17B—C16B—H16C | 111.0 | H5B—O5A—H5C | 1.0 |
S1B—C16B—H16C | 111.0 | O5A—C18A—C19A | 108.0 (10) |
C17B—C16B—H16D | 111.0 | O5A—C18A—H18A | 110.1 |
S1B—C16B—H16D | 111.0 | C19A—C18A—H18A | 110.1 |
H16C—C16B—H16D | 109.0 | O5A—C18A—H18B | 110.1 |
C16B—C17B—H17D | 109.5 | C19A—C18A—H18B | 110.1 |
C16B—C17B—H17E | 109.5 | H18A—C18A—H18B | 108.4 |
H17D—C17B—H17E | 109.5 | C18A—C19A—H19A | 109.5 |
C16B—C17B—H17F | 109.5 | C18A—C19A—H19B | 109.5 |
H17D—C17B—H17F | 109.5 | H19A—C19A—H19B | 109.5 |
H17E—C17B—H17F | 109.5 | C18A—C19A—H19C | 109.5 |
C9—N3—U1 | 123.7 (4) | H19A—C19A—H19C | 109.5 |
N3—C9—C10 | 127.9 (5) | H19B—C19A—H19C | 109.5 |
N3—C9—H9 | 116.0 | C19B—C18B—H18C | 109.4 |
C10—C9—H9 | 116.0 | C19B—C18B—H18D | 109.4 |
C11—C10—C9 | 117.6 (5) | H18C—C18B—H18D | 108.0 |
C11—C10—C15 | 118.9 (6) | C18B—C19B—H19D | 109.5 |
C9—C10—C15 | 123.5 (5) | C18B—C19B—H19E | 109.5 |
C12—C11—C10 | 119.3 (6) | H19D—C19B—H19E | 109.5 |
C12—C11—H11 | 120.3 | C18B—C19B—H19F | 109.5 |
C10—C11—H11 | 120.3 | H19D—C19B—H19F | 109.5 |
C11—C12—C13 | 122.8 (6) | H19E—C19B—H19F | 109.5 |
C11—C12—H12A | 118.6 | H18E—C18C—H18F | 108.1 |
C6—C1—C2—C3 | −0.6 (9) | C15—O2—U1—O4 | 31.2 (5) |
Br1A—C1—C2—C3 | −179.9 (5) | C15—O2—U1—O1 | 111.0 (5) |
C1—C2—C3—C4 | −0.5 (9) | C15—O2—U1—O5A | 121.4 (5) |
C2—C3—C4—O1 | −175.9 (5) | C15—O2—U1—N1 | −70.4 (5) |
C2—C3—C4—C5 | 1.7 (8) | C15—O2—U1—N3 | −51.5 (5) |
C5—C4—O1—U1 | 40.8 (7) | C4—O1—U1—O3 | 36.0 (5) |
C3—C4—O1—U1 | −141.7 (4) | C4—O1—U1—O4 | −144.9 (5) |
O1—C4—C5—C6 | 175.9 (5) | C4—O1—U1—O2 | 134.6 (5) |
C3—C4—C5—C6 | −1.7 (8) | C4—O1—U1—O5A | 124.0 (5) |
O1—C4—C5—C7 | −0.2 (8) | C4—O1—U1—N1 | −44.3 (4) |
C3—C4—C5—C7 | −177.8 (5) | C4—O1—U1—N3 | −66.7 (5) |
C2—C1—C6—C5 | 0.5 (8) | C7—N1—U1—O3 | −68.2 (4) |
Br1A—C1—C6—C5 | 179.9 (4) | N2A—N1—U1—O3 | 98.1 (4) |
C4—C5—C6—C1 | 0.6 (8) | C7—N1—U1—O4 | 111.4 (4) |
C7—C5—C6—C1 | 177.0 (5) | N2A—N1—U1—O4 | −82.3 (4) |
C4—C5—C7—N1 | −9.6 (9) | C7—N1—U1—O2 | −150.8 (4) |
C6—C5—C7—N1 | 174.2 (5) | N2A—N1—U1—O2 | 15.5 (4) |
C5—C7—N1—N2A | 178.9 (5) | C7—N1—U1—O1 | 28.7 (4) |
C5—C7—N1—U1 | −13.7 (8) | N2A—N1—U1—O1 | −165.0 (4) |
U1—N3—C9—C10 | −13.0 (8) | C7—N1—U1—O5A | 8.0 (6) |
N3—C9—C10—C11 | 170.5 (5) | N2A—N1—U1—O5A | 174.3 (3) |
N3—C9—C10—C15 | −11.3 (9) | C7—N1—U1—N3 | −170.9 (5) |
C9—C10—C11—C12 | −179.0 (6) | N2A—N1—U1—N3 | −4.6 (3) |
C15—C10—C11—C12 | 2.7 (8) | C9—N3—U1—O3 | 117.9 (4) |
C10—C11—C12—C13 | −2.6 (10) | C9—N3—U1—O4 | −61.6 (4) |
C11—C12—C13—C14 | 0.8 (11) | C9—N3—U1—O2 | 31.0 (4) |
C12—C13—C14—C15 | 0.7 (10) | C9—N3—U1—O1 | −141.2 (4) |
C13—C14—C15—O2 | −178.7 (6) | C9—N3—U1—O5A | 16.2 (6) |
C13—C14—C15—C10 | −0.5 (9) | C9—N3—U1—N1 | −165.1 (4) |
C11—C10—C15—O2 | 177.0 (5) | O3—U1—O5A—C18A | −20.1 (8) |
C9—C10—C15—O2 | −1.1 (8) | O4—U1—O5A—C18A | 159.7 (8) |
C11—C10—C15—C14 | −1.2 (8) | O2—U1—O5A—C18A | 69.5 (8) |
C9—C10—C15—C14 | −179.4 (5) | O1—U1—O5A—C18A | −114.2 (8) |
C14—C15—O2—U1 | −133.5 (5) | N1—U1—O5A—C18A | −94.4 (8) |
C10—C15—O2—U1 | 48.3 (7) | N3—U1—O5A—C18A | 83.7 (8) |
C15—O2—U1—O3 | −149.7 (5) | U1—O5A—C18A—C19A | 77.3 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5A—H5A···O1i | 0.78 | 1.89 | 2.618 (5) | 155 |
C7—H7···O3ii | 0.93 | 2.53 | 3.235 (6) | 133 |
C6—H6···O3ii | 0.93 | 2.63 | 3.368 (6) | 137 |
C11—H11···O4iii | 0.93 | 2.66 | 3.443 (7) | 143 |
C19A—H19B···O4i | 0.96 | 2.58 | 3.451 (19) | 151 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [U(C17H14BrN3O2S)O2(C2H6O)] |
Mr | 720.38 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.3720 (17), 11.1380 (14), 11.167 (1) |
α, β, γ (°) | 69.428 (10), 86.870 (11), 70.379 (10) |
V (Å3) | 1134.7 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.04 |
Crystal size (mm) | 0.40 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.123, 0.265 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15923, 5207, 4347 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.068, 1.08 |
No. of reflections | 5207 |
No. of parameters | 306 |
No. of restraints | 53 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.02, −1.22 |
Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
O5A—H5A···O1i | 0.78 | 1.89 | 2.618 (5) | 155 |
C7—H7···O3ii | 0.93 | 2.53 | 3.235 (6) | 133 |
C6—H6···O3ii | 0.93 | 2.63 | 3.368 (6) | 137 |
C11—H11···O4iii | 0.93 | 2.66 | 3.443 (7) | 143 |
C19A—H19B···O4i | 0.96 | 2.58 | 3.451 (19) | 151 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+1. |
Acknowledgements
The authors thank the Centro Interdipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II". Thanks are also due to Dr Reza Takjoo (Ferdowsi University of Mashhad, Iran) for helpful discussions.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Centore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o802–o803. CSD CrossRef CAS IUCr Journals Google Scholar
Centore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 13, 2083–2093. Web of Science CrossRef CAS Google Scholar
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takjoo, R., Ahmadi, M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m279–m280. CSD CrossRef CAS IUCr Journals Google Scholar
Takjoo, R. & Centore, R. (2013). J. Mol. Struct. 1031, 180–185. Web of Science CSD CrossRef CAS Google Scholar
Takjoo, R., Centore, R., Hakimi, M., Beyramabadi, A. S. & Morsali, A. (2011). Inorg. Chim. Acta, 371, 36–41. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Condensation between S-alkyl-isothiosemicarbazides and salicylaldehyde analogues affords Schiff bases, called isothiosemicarbazones, that can act as tridentate donor ligands, Fig. 1 (a). Isothiosemicarbazones are versatile ligands because by varying the substituents on sulfur and salicylaldehyde, and by changing the metal ion, a tuning of the properties of the corresponding complexes can be achieved in principle. As shown in Fig. 1 (b), S-alkylisothiosemicarbazones can react with aldehydes. The template reaction of S-alkylisothiosemicarbazones with substituted salicyladehydes, in the presence of metal ions fitted for square planar coordination (e. g. VO(II), Cu(II), Ni(II), UO2(II)) can lead to tetradentate (N, N, O, O) complexes, Fig. 1(b).
Following our interest in the synthesis and structural characterization of organic and metallorganic compounds containing heterocycles for applications as advanced materials and bioactive compounds (Centore, Ricciotti et al., 2012; Takjoo et al., 2011; Takjoo & Centore, 2013), and in the analysis of crystal structures controlled by the formation of H bonds (Centore et al., 2013), we report the structural investigation of the title compound, (I). (I) was obtained by the template reaction of 5-bromo-2-hydroxybenzaldehyde-S- ethylisothiosemicarbazone with salicylaldehyde, in the presence of uranyl acetate.
The molecular structure of (I) is shown in Fig. 2. The heptacoordination around the metal atom can be described as distorted pentagonal bipyramid. The equatorial plane is occupied by the four donor atoms of the tetradentate chelate ligand (N, N, O, O) and by the oxygen donor atom of the coordinated ethanol molecule. The axial positions are occupied by the uranyl oxygen atoms. The bond lengths between uranium and the equatorial donors range between 2.221 (4) Å and 2.576 (4) Å, while the two bond lengths within the uranyl group are significantly shorter (1.764 (4) Å and 1.771 (3) Å). In the equatorial plane, two six-membered and one five-membered rings are formed involving the metal atom. The five membered ring is almost planar, while the two six-membered rings are in envelope conformation, with the metal atom out of the plane. The bite angles corresponding to the formation of the six-membered rings are slightly larger than the five membered ring.
Molecules of the title compound have H bonding donor and acceptor groups, and the crystal packing shows the formation of H bonds. In the crystal, molecules form centrosymmetric dimers through H bonding between O–H donors and phenolato O- acceptors, giving rise to ring patterns R22(8). The rings include the uranium atoms, Fig. 3. The same pattern is present in the crystals of a closely related compound (Takjoo et al., 2012). The oxygen atoms of the uranyl moiety are involved in weak H bonding interactions. In the case of O3, aromatic and imino C–H are the weak donors, and R12(6) ring patterns are observed. In the case of O4, methyl and aromatic C–H are the weak donors, Fig. 4.