organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(5-Methyl­thio­phen-2-yl)methyl­­idene]malono­nitrile

aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhunan Road No.30 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kaiguo@njut.edu.cn

(Received 19 March 2013; accepted 25 May 2013; online 8 June 2013)

There are two independent molecules in the asymmetric unit of the title compound, C9H6N2S, which is an inter­mediate compound of a cardiovascular drug. The two molecules are nearly planar, displaying dihedral angles of 3.5 (2) and 5.7 (2)° between the thiophene ring and the malononitrile moiety. In the crystal, C—H⋯N inter­actions lead to the formation of a sheet structure that packs in a parallel fashion.

Related literature

For a related structure, see: Altundas et al. (2011[Altundas, A., Ayvaz, S. & Logoglu, E. (2011). Med. Chem. Res. 20, 1-8.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6N2S

  • Mr = 174.22

  • Triclinic, [P \overline 1]

  • a = 9.1120 (18) Å

  • b = 9.9380 (2) Å

  • c = 10.1350 (2) Å

  • α = 81.10 (3)°

  • β = 80.71 (3)°

  • γ = 86.70 (3)°

  • V = 894.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.915, Tmax = 0.970

  • 3465 measured reflections

  • 3247 independent reflections

  • 1399 reflections with I > 2σ(I)

  • Rint = 0.081

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.102

  • S = 1.00

  • 3247 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N2i 0.93 2.52 3.439 (6) 168
C6—H6A⋯N3ii 0.93 2.52 3.434 (6) 169
C12—H12A⋯N4iii 0.93 2.60 3.518 (6) 171
C15—H15A⋯N1i 0.93 2.51 3.430 (6) 170
Symmetry codes: (i) x, y, z+1; (ii) x+1, y-1, z-1; (iii) x, y, z-1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For a related structure, see: Altundas et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 5-methylthiophene-2-carbaldehyde (10.02 mmol, 1.27 g) and malononitrile (10.13 mmol, 0.67 g) in ethanol (20 ml) was added triethyl (0.31 ml) and the reaction mixture stired at room temperature for 3 h. The reaction solution was filtered to get the title compound (1.44 g) as yellow solid. Crystals of the title compound for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.96 for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Structure description top

For a related structure, see: Altundas et al. (2011). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Fig. 2. A practical packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram for the title compound.
2-[(5-Methylthiophen-2-yl)methylidene]malononitrile top
Crystal data top
C9H6N2SZ = 4
Mr = 174.22F(000) = 360
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1120 (18) ÅCell parameters from 25 reflections
b = 9.9380 (2) Åθ = 9–13°
c = 10.1350 (2) ŵ = 0.30 mm1
α = 81.10 (3)°T = 293 K
β = 80.71 (3)°Colorless, yellow
γ = 86.70 (3)°0.30 × 0.20 × 0.10 mm
V = 894.3 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1399 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.915, Tmax = 0.970l = 1212
3465 measured reflections3 standard reflections every 200 reflections
3247 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.017P)2]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C9H6N2Sγ = 86.70 (3)°
Mr = 174.22V = 894.3 (3) Å3
Triclinic, P1Z = 4
a = 9.1120 (18) ÅMo Kα radiation
b = 9.9380 (2) ŵ = 0.30 mm1
c = 10.1350 (2) ÅT = 293 K
α = 81.10 (3)°0.30 × 0.20 × 0.10 mm
β = 80.71 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1399 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.081
Tmin = 0.915, Tmax = 0.9703 standard reflections every 200 reflections
3465 measured reflections intensity decay: 1%
3247 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
3247 reflectionsΔρmin = 0.28 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49006 (14)0.26105 (12)0.05976 (12)0.0669 (4)
N10.4196 (5)0.3320 (4)0.3837 (4)0.0881 (14)
C10.4416 (6)0.3227 (5)0.2007 (5)0.0890 (16)
H1A0.47340.29800.28720.133*
H1B0.33700.30810.20920.133*
H1C0.46030.41710.16820.133*
C20.5250 (5)0.2376 (5)0.1038 (4)0.0659 (14)
N20.7023 (5)0.0147 (5)0.5565 (4)0.0922 (15)
C30.6315 (5)0.1367 (5)0.1227 (5)0.0712 (15)
H3A0.66540.10910.20470.085*
C40.6835 (5)0.0797 (4)0.0059 (4)0.0657 (13)
H4A0.75630.01020.00250.079*
C50.6177 (5)0.1354 (4)0.1039 (4)0.0505 (12)
C60.6545 (5)0.0882 (4)0.2296 (4)0.0540 (12)
H6A0.72370.01570.23070.065*
C70.6063 (4)0.1304 (4)0.3479 (4)0.0525 (12)
C80.5028 (5)0.2431 (5)0.3670 (4)0.0630 (14)
C90.6586 (5)0.0674 (5)0.4633 (5)0.0644 (14)
S20.01039 (14)0.76331 (12)0.47759 (12)0.0648 (4)
N30.0749 (5)0.8358 (4)0.8055 (4)0.1014 (16)
N40.2033 (5)0.5077 (4)0.9825 (4)0.0876 (14)
C100.0682 (5)0.8159 (5)0.2138 (4)0.0893 (17)
H10A0.03900.78660.12720.134*
H10B0.04790.91070.20700.134*
H10C0.17260.80300.24280.134*
C110.0171 (5)0.7347 (5)0.3137 (4)0.0602 (13)
C120.1235 (6)0.6340 (5)0.2928 (4)0.0652 (14)
H12A0.15420.60640.20880.078*
C130.1810 (5)0.5769 (4)0.4076 (5)0.0641 (13)
H13A0.25250.50630.40940.077*
C140.1206 (4)0.6363 (4)0.5186 (4)0.0540 (12)
C150.1587 (5)0.5924 (4)0.6492 (4)0.0563 (12)
H15A0.22950.52110.65260.068*
C160.1108 (5)0.6353 (4)0.7697 (4)0.0506 (11)
C170.0059 (5)0.7456 (5)0.7899 (4)0.0603 (14)
C180.1617 (5)0.5647 (5)0.8883 (5)0.0640 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0696 (9)0.0566 (8)0.0684 (9)0.0139 (7)0.0053 (7)0.0016 (6)
N10.083 (3)0.074 (3)0.102 (3)0.030 (3)0.019 (3)0.004 (2)
C10.095 (4)0.091 (4)0.076 (4)0.006 (3)0.007 (3)0.006 (3)
C20.061 (3)0.069 (3)0.061 (3)0.000 (3)0.004 (3)0.002 (3)
N20.088 (4)0.104 (4)0.084 (3)0.024 (3)0.023 (3)0.013 (3)
C30.068 (4)0.068 (4)0.070 (3)0.008 (3)0.008 (3)0.009 (3)
C40.071 (4)0.050 (3)0.070 (3)0.006 (3)0.010 (3)0.006 (2)
C50.052 (3)0.045 (3)0.047 (3)0.007 (2)0.002 (2)0.007 (2)
C60.049 (3)0.038 (3)0.066 (3)0.005 (2)0.001 (2)0.008 (2)
C70.043 (3)0.047 (3)0.061 (3)0.014 (2)0.003 (2)0.003 (2)
C80.059 (3)0.065 (3)0.059 (3)0.008 (3)0.000 (3)0.002 (3)
C90.057 (3)0.066 (3)0.065 (3)0.016 (3)0.010 (3)0.000 (3)
S20.0640 (9)0.0575 (8)0.0679 (9)0.0153 (7)0.0109 (7)0.0010 (6)
N30.118 (4)0.083 (3)0.095 (3)0.038 (3)0.005 (3)0.014 (3)
N40.097 (4)0.087 (3)0.079 (3)0.019 (3)0.029 (3)0.003 (2)
C100.083 (4)0.110 (4)0.072 (3)0.007 (3)0.023 (3)0.008 (3)
C110.058 (3)0.061 (3)0.053 (3)0.010 (3)0.002 (2)0.009 (2)
C120.072 (4)0.065 (3)0.058 (3)0.002 (3)0.001 (3)0.016 (3)
C130.057 (3)0.054 (3)0.075 (3)0.010 (2)0.002 (3)0.001 (3)
C140.048 (3)0.048 (3)0.061 (3)0.003 (2)0.001 (2)0.001 (2)
C150.046 (3)0.040 (3)0.077 (3)0.010 (2)0.004 (2)0.001 (2)
C160.054 (3)0.042 (3)0.052 (3)0.010 (2)0.007 (2)0.001 (2)
C170.069 (3)0.046 (3)0.061 (3)0.019 (3)0.005 (3)0.004 (2)
C180.054 (3)0.063 (3)0.072 (3)0.018 (3)0.013 (3)0.006 (3)
Geometric parameters (Å, º) top
S1—C21.716 (4)S2—C111.704 (4)
S1—C51.717 (4)S2—C141.736 (4)
N1—C81.141 (5)N3—C171.141 (5)
C1—C21.483 (6)N4—C181.141 (5)
C1—H1A0.9600C10—C111.486 (5)
C1—H1B0.9600C10—H10A0.9600
C1—H1C0.9600C10—H10B0.9600
C2—C31.368 (6)C10—H10C0.9600
N2—C91.155 (5)C11—C121.369 (6)
C3—C41.394 (5)C12—C131.381 (6)
C3—H3A0.9300C12—H12A0.9300
C4—C51.375 (5)C13—C141.373 (5)
C4—H4A0.9300C13—H13A0.9300
C5—C61.409 (5)C14—C151.420 (5)
C6—C71.342 (5)C15—C161.353 (5)
C6—H6A0.9300C15—H15A0.9300
C7—C91.414 (6)C16—C181.426 (5)
C7—C81.432 (6)C16—C171.429 (5)
C2—S1—C592.6 (2)C11—S2—C1491.3 (2)
C2—C1—H1A109.5C11—C10—H10A109.5
C2—C1—H1B109.5C11—C10—H10B109.5
H1A—C1—H1B109.5H10A—C10—H10B109.5
C2—C1—H1C109.5C11—C10—H10C109.5
H1A—C1—H1C109.5H10A—C10—H10C109.5
H1B—C1—H1C109.5H10B—C10—H10C109.5
C3—C2—C1129.9 (5)C12—C11—C10128.2 (4)
C3—C2—S1110.8 (4)C12—C11—S2111.3 (3)
C1—C2—S1119.2 (4)C10—C11—S2120.5 (4)
C2—C3—C4112.8 (4)C11—C12—C13114.0 (4)
C2—C3—H3A123.6C11—C12—H12A123.0
C4—C3—H3A123.6C13—C12—H12A123.0
C5—C4—C3114.0 (4)C14—C13—C12112.4 (4)
C5—C4—H4A123.0C14—C13—H13A123.8
C3—C4—H4A123.0C12—C13—H13A123.8
C4—C5—C6121.7 (4)C13—C14—C15122.8 (4)
C4—C5—S1109.8 (3)C13—C14—S2111.0 (3)
C6—C5—S1128.5 (3)C15—C14—S2126.1 (3)
C7—C6—C5130.7 (4)C16—C15—C14131.7 (4)
C7—C6—H6A114.6C16—C15—H15A114.1
C5—C6—H6A114.6C14—C15—H15A114.1
C6—C7—C9121.4 (4)C15—C16—C18119.4 (4)
C6—C7—C8122.8 (4)C15—C16—C17124.7 (4)
C9—C7—C8115.8 (4)C18—C16—C17115.8 (4)
N1—C8—C7178.9 (5)N3—C17—C16178.3 (5)
N2—C9—C7179.2 (5)N4—C18—C16179.5 (5)
C5—S1—C2—C30.1 (4)C14—S2—C11—C120.9 (4)
C5—S1—C2—C1179.6 (4)C14—S2—C11—C10179.8 (4)
C1—C2—C3—C4179.7 (5)C10—C11—C12—C13179.3 (4)
S1—C2—C3—C40.0 (5)S2—C11—C12—C131.4 (5)
C2—C3—C4—C50.2 (6)C11—C12—C13—C141.3 (6)
C3—C4—C5—C6178.6 (4)C12—C13—C14—C15178.0 (4)
C3—C4—C5—S10.3 (5)C12—C13—C14—S20.6 (5)
C2—S1—C5—C40.2 (4)C11—S2—C14—C130.2 (4)
C2—S1—C5—C6178.6 (4)C11—S2—C14—C15177.2 (4)
C4—C5—C6—C7178.2 (4)C13—C14—C15—C16178.8 (4)
S1—C5—C6—C73.1 (7)S2—C14—C15—C161.8 (7)
C5—C6—C7—C9180.0 (4)C14—C15—C16—C18175.5 (4)
C5—C6—C7—C81.8 (7)C14—C15—C16—C171.9 (7)
C6—C7—C8—N1151 (29)C15—C16—C17—N392 (17)
C9—C7—C8—N130 (29)C18—C16—C17—N391 (17)
C6—C7—C9—N26 (43)C15—C16—C18—N421 (69)
C8—C7—C9—N2175 (100)C17—C16—C18—N4161 (68)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2i0.932.523.439 (6)168
C6—H6A···N3ii0.932.523.434 (6)169
C12—H12A···N4iii0.932.603.518 (6)171
C15—H15A···N1i0.932.513.430 (6)170
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1, z1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC9H6N2S
Mr174.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1120 (18), 9.9380 (2), 10.1350 (2)
α, β, γ (°)81.10 (3), 80.71 (3), 86.70 (3)
V3)894.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.915, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
3465, 3247, 1399
Rint0.081
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.102, 1.00
No. of reflections3247
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2i0.932.523.439 (6)168
C6—H6A···N3ii0.932.523.434 (6)169
C12—H12A···N4iii0.932.603.518 (6)171
C15—H15A···N1i0.932.513.430 (6)170
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1, z1; (iii) x, y, z1.
 

Acknowledgements

This research work was financially supported by School of Pharmaceutical Science, Nanjing University of Technology.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltundas, A., Ayvaz, S. & Logoglu, E. (2011). Med. Chem. Res. 20, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds