organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Naphthalen-1-yl)pyridine

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: Edwin.Weber@chemie.tu-freiberg.de

(Received 17 April 2013; accepted 24 May 2013; online 8 June 2013)

In the title compound, C15H11N, the mean planes of the aromatic moieties are inclined to one another by 72.9 (1)°. The crystal is stabilized by ππ stacking inter­actions between the pyridine rings of inversion-related mol­ecules, with a centroid–centroid distance of 3.772 (2) Å. In addition, C—H⋯π contacts involving an α-C—H group of the pyridine ring and the nonsubstituted ring of the naphthalene unit are observed, giving rise to a herringbone-type supramolecular architecture of the naphthalene moiety being contained in the molecule.

Related literature

For preparative methods and the characterization of the title compound, see: Miyaura et al. (1981[Miyaura, N., Yanagy, T. & Suzuki, A. (1981). Synth. Commun. 11, 513-519.]); Broutin & Colobert (2005[Broutin, P.-E. & Colobert, F. (2005). Eur. J. Org. Chem. pp. 1113-1128.]); Molander & Beaumard (2010[Molander, G. A. & Beaumard, F. (2010). Org. Lett. 12, 4022-4025.]). For ππ stacking inter­actions, see: James (2004[James, S. L. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 1093-1099. Boca Raton: CRC Press.]). For C—H⋯π inter­actions, see: Nishio et al. (2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]). For non-classic hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.]). For related structures, see: Boeyens et al. (1988[Boeyens, J. C. A., Denner, L. & Perold, G. W. (1988). J. Crystallogr. Spectrosc. Res. 18, 67-73.]); Fabbiani et al. (2006[Fabbiani, F. P. A., Allan, D. R., Parsons, S. & Pulham, C. R. (2006). Acta Cryst. B62, 826-842.]); Suthar et al. (2005[Suthar, B., Fowler, A., Jones, D. S. & Ogle, C. A. (2005). Acta Cryst. E61, o607-o608.]). For aspects of organic crystal engineering, see: Tiekink et al. (2010[Tiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Chichester: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N

  • Mr = 205.25

  • Monoclinic, P 21 /n

  • a = 6.8487 (2) Å

  • b = 7.4436 (2) Å

  • c = 21.8378 (5) Å

  • β = 91.833 (1)°

  • V = 1112.70 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 193 K

  • 0.53 × 0.43 × 0.43 mm

Data collection
  • Bruker X8 APEX CCD diffractometer

  • 14800 measured reflections

  • 2831 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.147

  • S = 1.05

  • 2831 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.93 2.69 3.577 (2) 161
C14—H14⋯Cg1ii 0.93 2.84 3.648 (2) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-NT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2007[Bruker (2007). SAINT-NT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Molecules having a defined structure with rather predictable supramolecular interactions of their construction elements and functional groups such as π···π (James, 2004) or weak hydrogen bonding contacts (Desiraju & Steiner,1999) are helpful in gaining deeper insight into the principles of crystal engineering (Tiekink et al., 2010). This has stimulated to determine the crystal structure of the title compound being composed of two π-systems of different electronic nature (naphthalene and pyridine units) and having potential capability of weak C—H···π (Nishio et al., 2009) or C—H···N bonding (Desiraju & Steiner, 1999). In the crystal structure, the bond distances both of the naphthalene (AB) and pyridine (C) parts agree well with those found for related compounds (Boeyens et al., (1988) Suthar et al., 2005). The naphthalene moiety shows a slight distortion from strict planarity with largest atomic distances from the best plane being 0.029 (1) Å for C7 and -0.030 (2) Å for C9. The mean planes of the naphthalene and pyridine moieties are inclined to one another by 72.9 (1) ° (Fig. 1). Contrary to expectations, the nitrogen of the heterocyclic ring is excluded from molecular association. Instead, the crystal structure is stabilized by weaker C—H···π contacts with the non-substituted ring of the naphthalene unit (B) acting as an acceptor [C6—H6···centroid(B) 2.69 Å, 161 °, C14—H14···centroid(B) 2.84 Å, 146 °]. Moreover, the centre···centre distance of 3.772 (2) Å between the pyridine rings of inversion related molecules indicate the occurrence of π···π stacking interactions (Fig. 2). In a similar fashion as in the crystal structure of naphthalene (Fabbiani et al., 2006), each molecule is surrounded by another six molecules so that their naphthalene elements form a herringbone motif.

Related literature top

For preparative methods and the characterization of the title compound, see: Miyaura et al. (1981); Broutin & Colobert (2005); Molander & Beaumard (2010). For π···π stacking interactions, see: James (2004). For C—H···π interactions, see: Nishio et al. (2009). For non-classic hydrogen bonds, see: Desiraju & Steiner (1999). For related structures, see: Boeyens et al. (1988); Fabbiani et al. (2006); Suthar et al. (2005). For aspects of organic crystal engineering, see: Tiekink et al. (2010).

Experimental top

Preparation of the title compound was achieved by a Suzuki cross coupling reaction (Miyaura et al., 1981) between 2-(1-naphthyl)-1,3,2-dioxaborolane (Broutin & Colobert, 2005) (4.94 g, 25 mmol) and 4-bromopyridinium hydrochloride (4.87 g, 25 mmol) in the presence of tetrakis(triphenylphosphane)palladium (0.52 g, 0.45 mmol) and potassium phosphate (7.24 g, 34 mmol) in 136 ml degassed N,N-dimethylformamide. The resulting mixture was heated to 100 °C and stirred at this temperature for 6 h. After cooling to room temperature, the mixture was extracted with toluene. The extract was washed with saturated aqueous NaCl solution and dried (Na2SO4). Evaporation of the solvent and crystallization from ethanol yielded 1.10 g (24%) colourless crystals. M.p. (366–368 K). Spectroscopic data correspond to those reported for the compound obtained via a different synthetic route (Molander & Beaumard, 2010).

Refinement top

Aromatic H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Molecules having a defined structure with rather predictable supramolecular interactions of their construction elements and functional groups such as π···π (James, 2004) or weak hydrogen bonding contacts (Desiraju & Steiner,1999) are helpful in gaining deeper insight into the principles of crystal engineering (Tiekink et al., 2010). This has stimulated to determine the crystal structure of the title compound being composed of two π-systems of different electronic nature (naphthalene and pyridine units) and having potential capability of weak C—H···π (Nishio et al., 2009) or C—H···N bonding (Desiraju & Steiner, 1999). In the crystal structure, the bond distances both of the naphthalene (AB) and pyridine (C) parts agree well with those found for related compounds (Boeyens et al., (1988) Suthar et al., 2005). The naphthalene moiety shows a slight distortion from strict planarity with largest atomic distances from the best plane being 0.029 (1) Å for C7 and -0.030 (2) Å for C9. The mean planes of the naphthalene and pyridine moieties are inclined to one another by 72.9 (1) ° (Fig. 1). Contrary to expectations, the nitrogen of the heterocyclic ring is excluded from molecular association. Instead, the crystal structure is stabilized by weaker C—H···π contacts with the non-substituted ring of the naphthalene unit (B) acting as an acceptor [C6—H6···centroid(B) 2.69 Å, 161 °, C14—H14···centroid(B) 2.84 Å, 146 °]. Moreover, the centre···centre distance of 3.772 (2) Å between the pyridine rings of inversion related molecules indicate the occurrence of π···π stacking interactions (Fig. 2). In a similar fashion as in the crystal structure of naphthalene (Fabbiani et al., 2006), each molecule is surrounded by another six molecules so that their naphthalene elements form a herringbone motif.

For preparative methods and the characterization of the title compound, see: Miyaura et al. (1981); Broutin & Colobert (2005); Molander & Beaumard (2010). For π···π stacking interactions, see: James (2004). For C—H···π interactions, see: Nishio et al. (2009). For non-classic hydrogen bonds, see: Desiraju & Steiner (1999). For related structures, see: Boeyens et al. (1988); Fabbiani et al. (2006); Suthar et al. (2005). For aspects of organic crystal engineering, see: Tiekink et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-NT (Bruker, 2007); data reduction: SAINT-NT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing the atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a-axis of the title compound. Hydrogen bond type contacts are presented as broken, π···π stacking interactions as broken double lines.
4-(Naphthalen-1-yl)pyridine top
Crystal data top
C15H11NF(000) = 432
Mr = 205.25Dx = 1.225 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7291 reflections
a = 6.8487 (2) Åθ = 2.9–32.2°
b = 7.4436 (2) ŵ = 0.07 mm1
c = 21.8378 (5) ÅT = 193 K
β = 91.833 (1)°Irregular, colourless
V = 1112.70 (5) Å30.53 × 0.43 × 0.43 mm
Z = 4
Data collection top
Bruker X8 APEX CCD
diffractometer
2302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.6°, θmin = 1.9°
φ and ω scansh = 79
14800 measured reflectionsk = 109
2831 independent reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.2598P]
where P = (Fo2 + 2Fc2)/3
2831 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H11NV = 1112.70 (5) Å3
Mr = 205.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8487 (2) ŵ = 0.07 mm1
b = 7.4436 (2) ÅT = 193 K
c = 21.8378 (5) Å0.53 × 0.43 × 0.43 mm
β = 91.833 (1)°
Data collection top
Bruker X8 APEX CCD
diffractometer
2302 reflections with I > 2σ(I)
14800 measured reflectionsRint = 0.019
2831 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2831 reflectionsΔρmin = 0.18 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12887 (17)0.13749 (16)0.10279 (5)0.0377 (3)
C20.2963 (2)0.1121 (2)0.07098 (6)0.0502 (3)
H20.32180.18590.03780.060*
C30.4299 (2)0.0245 (2)0.08800 (7)0.0568 (4)
H30.54160.04120.06560.068*
C40.3968 (2)0.13166 (19)0.13686 (7)0.0517 (3)
H40.48670.22060.14770.062*
C50.22727 (18)0.10975 (16)0.17143 (6)0.0405 (3)
C60.1913 (2)0.21677 (19)0.22348 (7)0.0521 (3)
H60.28140.30450.23540.063*
C70.0282 (2)0.1939 (2)0.25625 (7)0.0587 (4)
H70.00890.26370.29080.070*
C80.1115 (2)0.0647 (2)0.23796 (7)0.0552 (4)
H80.22470.05160.26000.066*
C90.08234 (18)0.04175 (17)0.18808 (6)0.0433 (3)
H90.17650.12620.17640.052*
C100.08913 (16)0.02542 (15)0.15386 (5)0.0356 (3)
C110.00895 (17)0.28518 (16)0.08512 (5)0.0383 (3)
C120.1289 (2)0.27550 (19)0.03312 (6)0.0519 (3)
H120.12470.17570.00760.062*
C130.2554 (2)0.4160 (2)0.01943 (7)0.0603 (4)
H130.33650.40580.01540.072*
C140.1506 (2)0.5733 (2)0.10206 (8)0.0595 (4)
H140.15520.67630.12610.071*
C150.0213 (2)0.43915 (19)0.11996 (7)0.0537 (4)
H150.05690.45260.15530.064*
N10.26865 (18)0.56431 (17)0.05271 (6)0.0572 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (6)0.0367 (6)0.0362 (5)0.0064 (4)0.0017 (4)0.0047 (4)
C20.0521 (8)0.0563 (8)0.0428 (6)0.0127 (6)0.0091 (6)0.0022 (6)
C30.0486 (8)0.0686 (9)0.0540 (8)0.0212 (7)0.0123 (6)0.0027 (7)
C40.0460 (7)0.0516 (8)0.0571 (8)0.0194 (6)0.0029 (6)0.0033 (6)
C50.0402 (6)0.0373 (6)0.0435 (6)0.0048 (5)0.0073 (5)0.0031 (5)
C60.0531 (8)0.0455 (7)0.0569 (8)0.0037 (6)0.0104 (6)0.0099 (6)
C70.0618 (9)0.0573 (9)0.0568 (8)0.0067 (7)0.0005 (7)0.0170 (7)
C80.0471 (8)0.0601 (8)0.0589 (8)0.0050 (6)0.0105 (6)0.0056 (7)
C90.0369 (6)0.0428 (6)0.0504 (7)0.0027 (5)0.0015 (5)0.0007 (5)
C100.0350 (6)0.0331 (5)0.0383 (6)0.0021 (4)0.0043 (4)0.0050 (4)
C110.0381 (6)0.0386 (6)0.0383 (6)0.0045 (5)0.0027 (4)0.0011 (4)
C120.0523 (8)0.0491 (7)0.0536 (7)0.0098 (6)0.0100 (6)0.0085 (6)
C130.0536 (8)0.0660 (9)0.0603 (8)0.0133 (7)0.0156 (7)0.0007 (7)
C140.0652 (9)0.0452 (7)0.0681 (9)0.0169 (7)0.0011 (7)0.0076 (7)
C150.0608 (9)0.0479 (7)0.0516 (7)0.0134 (6)0.0114 (6)0.0087 (6)
N10.0518 (7)0.0529 (7)0.0669 (8)0.0175 (5)0.0010 (6)0.0064 (6)
Geometric parameters (Å, º) top
C1—C21.3723 (17)C8—C91.367 (2)
C1—C101.4259 (17)C8—H80.9300
C1—C111.4916 (16)C9—C101.4172 (17)
C2—C31.4098 (19)C9—H90.9300
C2—H20.9300C11—C151.3797 (18)
C3—C41.357 (2)C11—C121.3823 (17)
C3—H30.9300C12—C131.3849 (19)
C4—C51.4144 (19)C12—H120.9300
C4—H40.9300C13—N11.326 (2)
C5—C61.4161 (19)C13—H130.9300
C5—C101.4252 (16)C14—N11.328 (2)
C6—C71.356 (2)C14—C151.3828 (19)
C6—H60.9300C14—H140.9300
C7—C81.405 (2)C15—H150.9300
C7—H70.9300
C2—C1—C10119.92 (11)C7—C8—H8119.7
C2—C1—C11120.16 (11)C8—C9—C10121.00 (12)
C10—C1—C11119.90 (10)C8—C9—H9119.5
C1—C2—C3120.78 (13)C10—C9—H9119.5
C1—C2—H2119.6C9—C10—C5118.21 (11)
C3—C2—H2119.6C9—C10—C1122.98 (10)
C4—C3—C2120.51 (13)C5—C10—C1118.81 (11)
C4—C3—H3119.7C15—C11—C12116.81 (12)
C2—C3—H3119.7C15—C11—C1121.27 (11)
C3—C4—C5120.82 (12)C12—C11—C1121.92 (11)
C3—C4—H4119.6C11—C12—C13119.29 (13)
C5—C4—H4119.6C11—C12—H12120.4
C4—C5—C6122.03 (12)C13—C12—H12120.4
C4—C5—C10119.14 (11)N1—C13—C12124.30 (14)
C6—C5—C10118.83 (12)N1—C13—H13117.8
C7—C6—C5121.34 (13)C12—C13—H13117.8
C7—C6—H6119.3N1—C14—C15124.12 (14)
C5—C6—H6119.3N1—C14—H14117.9
C6—C7—C8120.05 (13)C15—C14—H14117.9
C6—C7—H7120.0C11—C15—C14119.60 (13)
C8—C7—H7120.0C11—C15—H15120.2
C9—C8—C7120.51 (13)C14—C15—H15120.2
C9—C8—H8119.7C13—N1—C14115.86 (12)
C10—C1—C2—C30.3 (2)C2—C1—C10—C9178.79 (12)
C11—C1—C2—C3178.62 (13)C11—C1—C10—C92.86 (17)
C1—C2—C3—C41.1 (2)C2—C1—C10—C51.02 (17)
C2—C3—C4—C50.5 (2)C11—C1—C10—C5177.32 (10)
C3—C4—C5—C6178.45 (14)C2—C1—C11—C15105.67 (15)
C3—C4—C5—C100.8 (2)C10—C1—C11—C1572.68 (16)
C4—C5—C6—C7179.85 (14)C2—C1—C11—C1273.83 (17)
C10—C5—C6—C70.6 (2)C10—C1—C11—C12107.83 (14)
C5—C6—C7—C81.5 (2)C15—C11—C12—C131.2 (2)
C6—C7—C8—C91.6 (2)C1—C11—C12—C13179.30 (13)
C7—C8—C9—C100.3 (2)C11—C12—C13—N11.1 (3)
C8—C9—C10—C52.34 (18)C12—C11—C15—C140.4 (2)
C8—C9—C10—C1177.84 (12)C1—C11—C15—C14179.90 (13)
C4—C5—C10—C9178.26 (11)N1—C14—C15—C110.6 (3)
C6—C5—C10—C92.44 (17)C12—C13—N1—C140.1 (2)
C4—C5—C10—C11.57 (17)C15—C14—N1—C130.8 (2)
C6—C5—C10—C1177.74 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.932.693.577 (2)161
C14—H14···Cg1ii0.932.843.648 (2)146
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H11N
Mr205.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)6.8487 (2), 7.4436 (2), 21.8378 (5)
β (°) 91.833 (1)
V3)1112.70 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.53 × 0.43 × 0.43
Data collection
DiffractometerBruker X8 APEX CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14800, 2831, 2302
Rint0.019
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.147, 1.05
No. of reflections2831
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: SMART (Bruker, 2007), SAINT-NT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.932.693.577 (2)161
C14—H14···Cg1ii0.932.843.648 (2)146
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
 

References

First citationBoeyens, J. C. A., Denner, L. & Perold, G. W. (1988). J. Crystallogr. Spectrosc. Res. 18, 67–73.  CrossRef CAS Web of Science Google Scholar
First citationBroutin, P.-E. & Colobert, F. (2005). Eur. J. Org. Chem. pp. 1113–1128.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). SAINT-NT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.  Google Scholar
First citationFabbiani, F. P. A., Allan, D. R., Parsons, S. & Pulham, C. R. (2006). Acta Cryst. B62, 826–842.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJames, S. L. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 1093–1099. Boca Raton: CRC Press.  Google Scholar
First citationMiyaura, N., Yanagy, T. & Suzuki, A. (1981). Synth. Commun. 11, 513–519.  CrossRef CAS Web of Science Google Scholar
First citationMolander, G. A. & Beaumard, F. (2010). Org. Lett. 12, 4022–4025.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuthar, B., Fowler, A., Jones, D. S. & Ogle, C. A. (2005). Acta Cryst. E61, o607–o608.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Chichester: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds