organic compounds
(2S*,5R*)-2,5-Dimethyl-1,4-bis(pyridin-2-ylmethyl)piperazine
aDepartment of Chemistry, Williams College, Williamstown, MA 01267, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
The title compound, C18H24N4, resides on a crystallographic inversion centre, so that the comprises one half-molecule. The piperazine ring adopts a chair conformation, with the mean planes of the two equatorial pyridine rings parallel to each other and separated by 2.54 (3) Å. No classical hydrogen bonds are observed.
Related literature
For related work on the synthesis of tetradentate pyridine-piperazine ligands and for metal complexes of these ligands, see: Geiger et al. (2011); Ostermeier et al. (2006, 2009); Nam (2007); Huuskonen et al. (1995); Que & Tolman (2008); Ratilainen et al. (1999); Fuji et al. (1996). For the synthesis, see: Halfen et al. (2000).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
https://doi.org/10.1107/S160053681301605X/fj2633sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681301605X/fj2633Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681301605X/fj2633Isup3.cml
The title compound was synthesized under a dinitrogen atmosphere by modifications of a previously published protocol (Halfen et al., 2000). 2-picolyl chloride hydrochloride (2.87 g, 17.5 mmol) and triethylamine (4.88 mL, 35.0 mmol) were added to a suspension of (2R, 5S)-2,5-dimethylpiperazine (1.00 g, 8.76 mmol) in 30 mL of acetonitrile to form a slurry. The mixture was allowed to stir for 48 hours at room temperature and then treated with 100 mL of 1 M sodium hydroxide. The product was extracted with three portions of 50 mL of CH2Cl2. The combined fractions were dried with MgSO4, filtered and the solvent removed to yield the crude product as a brown solid. Further purification by
with a Biotage IsoleraTM Flash Purification System using a silica cartridge and a gradient of ethyl acetate and a mixture of ethyl acetate/methanol/triethylamine (90/5/5), followed by solvent removal yielded the pure product as a faintly brown transparent solid (1.40 g, 54% yield). Crystallization by evaporation from a concentrated diethyl ether solution led to isolation of crystals suitable for X-ray analysis (m.p.: 405–406K).All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3times Ueq of the parent atom. Ternary CH were refined with riding coordinates: C2(H2), secondary CH2 refined with riding coordinates: C3(H3A,H3B), C4(H4A,H4B), aromatic/amide H refined with riding coordinates: C6(H6), C7(H7), C8(H8), C9(H9), idealised Me refined as rotating group: C1(H1A,H1B,H1C).
Multidentate ligands containing pyridine and amine donor moieties have applications in metal-catalyzed oxidations and in the design of macrocyclic metal-binding receptors. Examples include the manganese, iron, and copper complexes of tetradentate pyridine and amine ligands for biologically-inspired oxidations (Geiger et al., 2011; Ostermeier et al., 2009; Que et al., 2008; Nam, 2007; Ostermeier et al., 2006), copper complexes of pyridine-diazacycloalkanes as catalysts for the aziridination of
(Halfen et al., 2000) and macrocyclic piperazinacyclophanes as complexation agents for a host of metals (Ratilainen et al., 1999; Fuji et al., 1996; Huuskonen et al., 1995). Our group has been interested in the use of neutral tetradentate hetero-aromatic-amine ligands in metal-catalyzed oxidations. Here we report the synthesis and of the meso form of the tetradentate ligand, (I), (2S,5R)-2,5-dimethyl-1,4-bis(pyridin-2-ylmethyl)piperazine (Fig. 1).In the θ = 0.00 (1)°, φ = 0.0000°. The mean planes of the two equatorial pyridine rings are parallel to each other and separated by 2.54 (3)Å, respectively. In the formation of this neutral tetradentate hetero-aromatic-amine ligand no classical hydrogen bonds are observed (Fig. 2).
of the title compound, C18H24N4, (I), a piperazine ring (N1/C2/C3A/N1A/C2A/C3) is formed by a center of symmetry connecting each half (N/C/C) to a methyl group and pyridine ring at the 2,5 and 1,4 positions, respectively. The piperazine ring adopts a chair conformation with puckering parameters Q = 0.5804 (13)Å,For related work on the synthesis of tetradentate pyridine-piperazine ligands and for metal complexes of these ligands, see: Geiger et al. (2011); Ostermeier et al. (2006, 2009); Nam (2007); Huuskonen et al. (1995); Que & Tolman (2008); Ratilainen et al. (1999); Fuji et al. (1996). For the synthesis, see: Halfen et al. (2000).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C18H24N4 | Dx = 1.211 Mg m−3 |
Mr = 296.41 | Cu Kα radiation, λ = 1.5418 Å |
Orthorhombic, Pbca | Cell parameters from 4359 reflections |
a = 9.4097 (5) Å | θ = 4.7–70.6° |
b = 9.2191 (5) Å | µ = 0.57 mm−1 |
c = 18.7473 (9) Å | T = 173 K |
V = 1626.29 (14) Å3 | Block, colourless |
Z = 4 | 0.22 × 0.18 × 0.04 mm |
F(000) = 640 |
Agilent Xcalibur (Eos, Gemini) diffractometer | 1545 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1392 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 70.7°, θmin = 6.7° |
ω scans | h = −10→11 |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | k = −8→11 |
Tmin = 0.817, Tmax = 1.000 | l = −22→21 |
10101 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0744P)2 + 0.3744P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.131 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.24 e Å−3 |
1545 reflections | Δρmin = −0.19 e Å−3 |
102 parameters | Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0056 (9) |
Primary atom site location: structure-invariant direct methods |
C18H24N4 | V = 1626.29 (14) Å3 |
Mr = 296.41 | Z = 4 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 9.4097 (5) Å | µ = 0.57 mm−1 |
b = 9.2191 (5) Å | T = 173 K |
c = 18.7473 (9) Å | 0.22 × 0.18 × 0.04 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 1545 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 1392 reflections with I > 2σ(I) |
Tmin = 0.817, Tmax = 1.000 | Rint = 0.064 |
10101 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.24 e Å−3 |
1545 reflections | Δρmin = −0.19 e Å−3 |
102 parameters |
Experimental. 1H-NMR (CDCl3, 298 K): δ 8.55 (d, J = 3.5 Hz, 2H, py), 7.65 (m, 2H, py), 7.44 (d, J = 7.5 Hz, 2H, py), 7.15 (m, 2H, py), 4.15 (d, J = 14 Hz, 2 H, py-CH2N), 3.38 (d, J = 14 Hz, 2H, py-CH2N), 2.68 (m, 2H, NCH2), 2.50 (m, 2H, NCH), 2.14 (m, 2H, NCH2), 1.07 (d, J = 6.1 Hz, 6H, CH3) ppm. 13C-NMR (CDCl3, 298K): δ 159.6 (py), 150.0 (py), 136.3 (py), 123.2 (py), 121.8 (py), 60.5, 59.7, 56.0, 17.8 (CH3) ppm. MS: m/z 204 (py-CH2N2C6H12), m/z 175 (py-CH2NC5H9), m/z 149 (py-CH2NC3H7), m/z 135.0 (py-CH2NC2H4), m/z 112 (N2C6H12), m/z 93 (py-CH3). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.35844 (11) | 0.53852 (12) | 0.52226 (5) | 0.0296 (3) | |
N2 | 0.05342 (13) | 0.49301 (14) | 0.64052 (7) | 0.0433 (4) | |
C1 | 0.31099 (16) | 0.64089 (18) | 0.40179 (8) | 0.0431 (4) | |
H1A | 0.3227 | 0.7380 | 0.4222 | 0.065* | |
H1B | 0.2100 | 0.6148 | 0.4018 | 0.065* | |
H1C | 0.3469 | 0.6403 | 0.3527 | 0.065* | |
C2 | 0.39382 (14) | 0.53155 (14) | 0.44625 (7) | 0.0309 (4) | |
H2 | 0.3740 | 0.4316 | 0.4281 | 0.037* | |
C3 | 0.44872 (13) | 0.43666 (15) | 0.56137 (7) | 0.0316 (4) | |
H3A | 0.4297 | 0.3372 | 0.5439 | 0.038* | |
H3B | 0.4230 | 0.4399 | 0.6126 | 0.038* | |
C4 | 0.20889 (13) | 0.50891 (17) | 0.53835 (7) | 0.0352 (4) | |
H4A | 0.1907 | 0.4036 | 0.5333 | 0.042* | |
H4B | 0.1482 | 0.5604 | 0.5034 | 0.042* | |
C5 | 0.16893 (14) | 0.55639 (15) | 0.61287 (7) | 0.0319 (3) | |
C6 | 0.24476 (15) | 0.66281 (16) | 0.64872 (7) | 0.0339 (4) | |
H6 | 0.3263 | 0.7057 | 0.6275 | 0.041* | |
C7 | 0.20015 (15) | 0.70565 (18) | 0.71574 (7) | 0.0411 (4) | |
H7 | 0.2508 | 0.7779 | 0.7414 | 0.049* | |
C8 | 0.08112 (17) | 0.64193 (19) | 0.74468 (8) | 0.0476 (4) | |
H8 | 0.0476 | 0.6693 | 0.7905 | 0.057* | |
C9 | 0.01202 (18) | 0.53765 (18) | 0.70546 (9) | 0.0507 (5) | |
H9 | −0.0704 | 0.4943 | 0.7256 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0247 (6) | 0.0370 (6) | 0.0270 (6) | 0.0004 (4) | 0.0020 (4) | 0.0000 (4) |
N2 | 0.0353 (7) | 0.0432 (7) | 0.0513 (8) | −0.0014 (5) | 0.0150 (5) | −0.0023 (6) |
C1 | 0.0377 (8) | 0.0577 (10) | 0.0340 (7) | 0.0097 (7) | 0.0010 (6) | 0.0065 (6) |
C2 | 0.0296 (7) | 0.0365 (7) | 0.0266 (7) | 0.0013 (5) | 0.0006 (5) | −0.0020 (5) |
C3 | 0.0315 (7) | 0.0345 (7) | 0.0288 (7) | −0.0004 (5) | 0.0043 (5) | 0.0021 (5) |
C4 | 0.0268 (7) | 0.0452 (8) | 0.0335 (7) | −0.0029 (5) | 0.0015 (5) | −0.0039 (6) |
C5 | 0.0253 (6) | 0.0356 (7) | 0.0347 (7) | 0.0050 (5) | 0.0028 (5) | 0.0033 (5) |
C6 | 0.0279 (7) | 0.0420 (8) | 0.0317 (7) | 0.0033 (5) | −0.0001 (5) | 0.0019 (5) |
C7 | 0.0380 (8) | 0.0503 (9) | 0.0349 (7) | 0.0098 (6) | −0.0043 (6) | −0.0040 (6) |
C8 | 0.0485 (9) | 0.0590 (10) | 0.0353 (8) | 0.0155 (7) | 0.0111 (6) | 0.0009 (7) |
C9 | 0.0447 (9) | 0.0509 (10) | 0.0566 (10) | 0.0024 (7) | 0.0245 (8) | 0.0042 (8) |
N1—C2 | 1.4648 (16) | C3—H3B | 0.9900 |
N1—C3 | 1.4633 (17) | C4—H4A | 0.9900 |
N1—C4 | 1.4649 (17) | C4—H4B | 0.9900 |
N2—C5 | 1.3385 (18) | C4—C5 | 1.5115 (18) |
N2—C9 | 1.343 (2) | C5—C6 | 1.387 (2) |
C1—H1A | 0.9800 | C6—H6 | 0.9500 |
C1—H1B | 0.9800 | C6—C7 | 1.3824 (19) |
C1—H1C | 0.9800 | C7—H7 | 0.9500 |
C1—C2 | 1.5226 (19) | C7—C8 | 1.376 (2) |
C2—H2 | 1.0000 | C8—H8 | 0.9500 |
C2—C3i | 1.5171 (17) | C8—C9 | 1.374 (3) |
C3—C2i | 1.5171 (17) | C9—H9 | 0.9500 |
C3—H3A | 0.9900 | ||
C2—N1—C4 | 114.24 (10) | N1—C4—H4A | 109.2 |
C3—N1—C2 | 109.11 (10) | N1—C4—H4B | 109.2 |
C3—N1—C4 | 109.57 (10) | N1—C4—C5 | 112.04 (11) |
C5—N2—C9 | 116.93 (14) | H4A—C4—H4B | 107.9 |
H1A—C1—H1B | 109.5 | C5—C4—H4A | 109.2 |
H1A—C1—H1C | 109.5 | C5—C4—H4B | 109.2 |
H1B—C1—H1C | 109.5 | N2—C5—C4 | 115.69 (12) |
C2—C1—H1A | 109.5 | N2—C5—C6 | 122.62 (13) |
C2—C1—H1B | 109.5 | C6—C5—C4 | 121.65 (12) |
C2—C1—H1C | 109.5 | C5—C6—H6 | 120.4 |
N1—C2—C1 | 112.78 (11) | C7—C6—C5 | 119.10 (13) |
N1—C2—H2 | 109.2 | C7—C6—H6 | 120.4 |
N1—C2—C3i | 107.77 (10) | C6—C7—H7 | 120.5 |
C1—C2—H2 | 109.2 | C8—C7—C6 | 118.91 (14) |
C3i—C2—C1 | 108.69 (11) | C8—C7—H7 | 120.5 |
C3i—C2—H2 | 109.2 | C7—C8—H8 | 120.9 |
N1—C3—C2i | 113.32 (11) | C9—C8—C7 | 118.22 (14) |
N1—C3—H3A | 108.9 | C9—C8—H8 | 120.9 |
N1—C3—H3B | 108.9 | N2—C9—C8 | 124.22 (15) |
C2i—C3—H3A | 108.9 | N2—C9—H9 | 117.9 |
C2i—C3—H3B | 108.9 | C8—C9—H9 | 117.9 |
H3A—C3—H3B | 107.7 | ||
N1—C4—C5—N2 | −158.76 (12) | C4—N1—C2—C3i | −179.58 (11) |
N1—C4—C5—C6 | 23.55 (18) | C4—N1—C3—C2i | −174.32 (11) |
N2—C5—C6—C7 | 0.1 (2) | C4—C5—C6—C7 | 177.62 (12) |
C2—N1—C3—C2i | 59.93 (15) | C5—N2—C9—C8 | −0.6 (3) |
C2—N1—C4—C5 | −164.47 (11) | C5—C6—C7—C8 | −0.4 (2) |
C3—N1—C2—C1 | −176.54 (12) | C6—C7—C8—C9 | 0.2 (2) |
C3—N1—C2—C3i | −56.57 (14) | C7—C8—C9—N2 | 0.3 (3) |
C3—N1—C4—C5 | 72.78 (14) | C9—N2—C5—C4 | −177.26 (13) |
C4—N1—C2—C1 | 60.45 (15) | C9—N2—C5—C6 | 0.4 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H24N4 |
Mr | 296.41 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 173 |
a, b, c (Å) | 9.4097 (5), 9.2191 (5), 18.7473 (9) |
V (Å3) | 1626.29 (14) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.57 |
Crystal size (mm) | 0.22 × 0.18 × 0.04 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini) |
Absorption correction | Multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) |
Tmin, Tmax | 0.817, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10101, 1545, 1392 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.131, 1.07 |
No. of reflections | 1545 |
No. of parameters | 102 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.19 |
Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
CG acknowledges the Donors of the American Chemical Society Petroleum Research Fund for support of this research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fuji, K., Takasu, K., Miyamoto, H., Tanaka, K. & Taga, T. (1996). Tetrahedron Lett. 37, 7111–7114. CSD CrossRef CAS Web of Science Google Scholar
Geiger, R. A., Chattopadhyay, S., Day, V. W. & Jackson, T. A. (2011). Dalton Trans. 40, 1707–1715. Web of Science CSD CrossRef CAS PubMed Google Scholar
Halfen, J. A., Uhan, J. M., Fox, D. C., Mehn, M. P. & Que, L. (2000). Inorg. Chem. 39, 4913–4920. Web of Science CSD CrossRef PubMed CAS Google Scholar
Huuskonen, J., Schulz, J. & Rissanen, K. (1995). Liebigs Ann. pp. 1515–1519. CrossRef Google Scholar
Nam, W. (2007). Acc. Chem. Res. 40, 522–531. Web of Science CrossRef PubMed CAS Google Scholar
Ostermeier, M., Limberg, C., Herwig, C. & Ziemer, B. (2009). Z. Anorg. Allg. Chem. 635, 1823–1830. Web of Science CSD CrossRef CAS Google Scholar
Ostermeier, M., Limberg, C. & Ziemer, B. (2006). Z. Anorg. Allg. Chem. 632, 1287–1292. Web of Science CSD CrossRef CAS Google Scholar
Que, L. & Tolman, W. B. (2008). Nature, 455, 333–339. Web of Science CrossRef PubMed CAS Google Scholar
Ratilainen, J., Airola, K., Fröhlich, R., Nieger, M. & Rissanen, K. (1999). Polyhedron, 18, 2265–2273. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multidentate ligands containing pyridine and amine donor moieties have applications in metal-catalyzed oxidations and in the design of macrocyclic metal-binding receptors. Examples include the manganese, iron, and copper complexes of tetradentate pyridine and amine ligands for biologically-inspired oxidations (Geiger et al., 2011; Ostermeier et al., 2009; Que et al., 2008; Nam, 2007; Ostermeier et al., 2006), copper complexes of pyridine-diazacycloalkanes as catalysts for the aziridination of alkenes (Halfen et al., 2000) and macrocyclic piperazinacyclophanes as complexation agents for a host of metals (Ratilainen et al., 1999; Fuji et al., 1996; Huuskonen et al., 1995). Our group has been interested in the use of neutral tetradentate hetero-aromatic-amine ligands in metal-catalyzed oxidations. Here we report the synthesis and crystal structure of the meso form of the tetradentate ligand, (I), (2S,5R)-2,5-dimethyl-1,4-bis(pyridin-2-ylmethyl)piperazine (Fig. 1).
In the asymmetric unit of the title compound, C18H24N4, (I), a piperazine ring (N1/C2/C3A/N1A/C2A/C3) is formed by a center of symmetry connecting each half (N/C/C) to a methyl group and pyridine ring at the 2,5 and 1,4 positions, respectively. The piperazine ring adopts a chair conformation with puckering parameters Q = 0.5804 (13)Å, θ = 0.00 (1)°, φ = 0.0000°. The mean planes of the two equatorial pyridine rings are parallel to each other and separated by 2.54 (3)Å, respectively. In the formation of this neutral tetradentate hetero-aromatic-amine ligand no classical hydrogen bonds are observed (Fig. 2).