organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-4-Benz­yl­oxy-2-hy­dr­oxy­benzyl­­idene]-4-nitro­benzohydrazide di­methyl­formamide monosolvate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 5 June 2013; accepted 20 June 2013; online 26 June 2013)

The title compound, C21H17N3O5·C3H7NO, exists in an E conformation with respect to the azomethine double bond of the hydrazide mol­ecule. This mol­ecule contains an intra­molecular O—H⋯N hydrogen bond, while an inter­molecular N—H⋯O hydrogen bond links the hydrazide to the formamide mol­ecule of solvation. Nonclassical C—H⋯O inter­molecular hydrogen bonds build up a supra­molecular architecture, together with two C—H⋯π inter­actions and a weak ππ inter­action, with a centroid–centroid distance of 3.650 (13) Å.

Related literature

For the biological and analytical applications of carbohydrazides, see: Vicini et al. (2002[Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553-564.]); Savini et al. (2002[Savini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193-2198.]); Grande et al. (2007[Grande, F., Aiello, F., Grazia, O. D., Brizzi, A., Garofalo, A. & Neamati, N. (2007). Bioorg. Med. Chem. 15, 288-294.]). For the synthesis of related compounds, see: Mathew & Kurup (2011[Mathew, N. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 78, 1424-1428.]); Despaigne et al. (2009[Despaigne, A. A. R., Silva, J. G. D., Carmo, A. C. M. D. & Piro, O. E. (2009). Inorg. Chim. Acta, 362, 2117-2122.]). For related structures, see: Joseph et al. (2012[Joseph, B., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1421-o1422.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N3O5·C3H7NO

  • Mr = 464.47

  • Monoclinic, P 21 /c

  • a = 10.0160 (8) Å

  • b = 22.661 (2) Å

  • c = 10.2611 (11) Å

  • β = 101.392 (5)°

  • V = 2283.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.981

  • 16107 measured reflections

  • 4910 independent reflections

  • 2901 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.176

  • S = 1.04

  • 4910 reflections

  • 318 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2′⋯O6 0.88 (1) 1.95 (1) 2.810 (3) 166 (2)
O2—H2O⋯N1 0.85 (1) 1.82 (2) 2.583 (2) 149 (3)
C7—H7B⋯O3i 0.97 2.49 3.167 (3) 127
C13—H13⋯O1ii 0.93 2.58 3.448 (3) 156
C21—H21⋯O6 0.93 2.42 3.206 (3) 143
C12—H12⋯Cg1ii 0.93 2.91 3.673 (2) 140
C17—H17⋯Cg1i 0.93 2.85 3.630 (3) 142
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Coordination chemistry and biochemistry of hydrazones have received increasing interest due to their chelating ability and their antimicrobial, antituberculosis and antitumour activities (Vicini et al. 2002; Savini et al., 2002; Grande et al. 2007). As a continuous work on the hydrazide compounds, a new hydrazide compound, N'-[(E)-4-Benzyloxy-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate, was prepared and structurally characterized.

The compound crystallizes in monoclinic space group P21/c. This molecule adopts an E configuration (Fig.1) with respect to C14—N1 bond with torsional angles of 177.93 (18)°. The title compound exists in amido form with C15—O3 bond length of 1.217 (3) Å, which is very close to CO bond length of a similar reported nitrobenzohydrazide compound (Joseph et al., 2012). The aromatic ring (C1–C6) of the compound forms dihedral angles between the other two aromatic rings (C8–C13 and C16–C21) with angles of 67.63 (12) and 61.58 (12)° respectively. There are one classical N2—H2'···O6 and three non-classical C—H···O intermolecular hydrogen bonds (Fig. 2) present in the molecular system with D···A distances of 2.810 (3), 3.167 (3), 3.448 (3) and 3.206 (3) Å (Table 1) respectively. These intermolecular hydrogen bonds chain the molecules along c axis. Moreover, two C—H···π interactions between the H atoms attached at the C12 and C17 atoms and the corresponding aromatic ring C1–C6 of the neighbouring molecules with H···π distances of 3.673 (2) and 3.630 (3) Å respectively, also support the hydrogen bonding to form a one-dimensional layer along c axis. This supramolecular network is augmented by a weak ππ interaction (Fig. 2) between the phenyl rings (C8–C13 and C16–C21) of the molecules with a centroid–centroid distance of 3.650 (13) Å by interconnecting the molecules along b axis. Packing of molecules is predominantly favored by the classical intermolecular hydrogen bonding and C—H···π interactions. Other short ring interactions are very weak as they correspond to their centroid-centroid distances greater than 4 Å. Intramolecular classical hydrogen bond is also observed in the molecular system (Table 1). Fig. 3 shows the packing diagram of the title compound along c axis.

Related literature top

For the biological and analytical applications of carbohydrazides, see: Vicini et al. (2002); Savini et al. (2002); Grande et al. (2007). For the synthesis of related compounds, see: Mathew & Kurup (2011); Despaigne et al. (2009). For related structures, see: Joseph et al. (2012).

Experimental top

The title compound was prepared by adapting a reported procedure (Mathew & Kurup, 2011; Despaigne et al., 2009). A methanolic solution of 4-nitrobenzohydrazide (0.181 g, 1 mmol) was added to a solution of 4-(benzyloxy)-2-hydroxybenzldehyde (0.228 g, 1 mmol) in ethanol and the reaction mixture was refluxed for 5 h after adding a few drops of dilute sulfuric acid. On cooling yellow colored crystals were collected, washed with few drops of methanol, and dried over P4O10 in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from a mixture of ethanol and dimethylformamide (1:1 v/v).

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). N2–H2' and O2–H2O H atoms were located from difference maps and restrained using DFIX instructions. Omitted owing to bad disagreement was the reflection (2 6 2).

Structure description top

Coordination chemistry and biochemistry of hydrazones have received increasing interest due to their chelating ability and their antimicrobial, antituberculosis and antitumour activities (Vicini et al. 2002; Savini et al., 2002; Grande et al. 2007). As a continuous work on the hydrazide compounds, a new hydrazide compound, N'-[(E)-4-Benzyloxy-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate, was prepared and structurally characterized.

The compound crystallizes in monoclinic space group P21/c. This molecule adopts an E configuration (Fig.1) with respect to C14—N1 bond with torsional angles of 177.93 (18)°. The title compound exists in amido form with C15—O3 bond length of 1.217 (3) Å, which is very close to CO bond length of a similar reported nitrobenzohydrazide compound (Joseph et al., 2012). The aromatic ring (C1–C6) of the compound forms dihedral angles between the other two aromatic rings (C8–C13 and C16–C21) with angles of 67.63 (12) and 61.58 (12)° respectively. There are one classical N2—H2'···O6 and three non-classical C—H···O intermolecular hydrogen bonds (Fig. 2) present in the molecular system with D···A distances of 2.810 (3), 3.167 (3), 3.448 (3) and 3.206 (3) Å (Table 1) respectively. These intermolecular hydrogen bonds chain the molecules along c axis. Moreover, two C—H···π interactions between the H atoms attached at the C12 and C17 atoms and the corresponding aromatic ring C1–C6 of the neighbouring molecules with H···π distances of 3.673 (2) and 3.630 (3) Å respectively, also support the hydrogen bonding to form a one-dimensional layer along c axis. This supramolecular network is augmented by a weak ππ interaction (Fig. 2) between the phenyl rings (C8–C13 and C16–C21) of the molecules with a centroid–centroid distance of 3.650 (13) Å by interconnecting the molecules along b axis. Packing of molecules is predominantly favored by the classical intermolecular hydrogen bonding and C—H···π interactions. Other short ring interactions are very weak as they correspond to their centroid-centroid distances greater than 4 Å. Intramolecular classical hydrogen bond is also observed in the molecular system (Table 1). Fig. 3 shows the packing diagram of the title compound along c axis.

For the biological and analytical applications of carbohydrazides, see: Vicini et al. (2002); Savini et al. (2002); Grande et al. (2007). For the synthesis of related compounds, see: Mathew & Kurup (2011); Despaigne et al. (2009). For related structures, see: Joseph et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Hydrogen-bonding, C—H···π and ππ interactions present in the crystal structure of C21H17N3O5.C3H7NO.
[Figure 3] Fig. 3. Packing diagram of the compound along c axis.
N'-[(E)-4-Benzyloxy-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate top
Crystal data top
C21H17N3O5·C3H7NOF(000) = 976
Mr = 464.47Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3347 reflections
a = 10.0160 (8) Åθ = 2.7–27.6°
b = 22.661 (2) ŵ = 0.10 mm1
c = 10.2611 (11) ÅT = 296 K
β = 101.392 (5)°Block, yellow
V = 2283.1 (4) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4910 independent reflections
Radiation source: fine-focus sealed tube2901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scanθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1211
Tmin = 0.977, Tmax = 0.981k = 2828
16107 measured reflectionsl = 138
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0894P)2 + 0.2279P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4910 reflectionsΔρmax = 0.40 e Å3
318 parametersΔρmin = 0.22 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (15)
Crystal data top
C21H17N3O5·C3H7NOV = 2283.1 (4) Å3
Mr = 464.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0160 (8) ŵ = 0.10 mm1
b = 22.661 (2) ÅT = 296 K
c = 10.2611 (11) Å0.40 × 0.20 × 0.20 mm
β = 101.392 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4910 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2901 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.031
16107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
4910 reflectionsΔρmin = 0.22 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07170 (14)0.02077 (7)0.19458 (16)0.0520 (4)
O20.50913 (16)0.05541 (8)0.38186 (17)0.0554 (5)
O30.87382 (16)0.10480 (8)0.40720 (18)0.0605 (5)
O41.4753 (2)0.21761 (12)0.2984 (3)0.1028 (9)
O51.4051 (2)0.21112 (11)0.0893 (3)0.0926 (8)
O60.7557 (2)0.15662 (12)0.0661 (2)0.0952 (8)
N10.65997 (16)0.08803 (8)0.2177 (2)0.0430 (5)
N20.77984 (17)0.10975 (8)0.1910 (2)0.0435 (5)
N31.3896 (2)0.20500 (9)0.2026 (3)0.0619 (6)
N40.71736 (19)0.18185 (9)0.2805 (2)0.0540 (5)
C10.0899 (2)0.12417 (10)0.2521 (3)0.0543 (6)
H10.01420.13980.22440.065*
C20.2068 (3)0.15693 (11)0.2395 (3)0.0631 (7)
H2A0.20980.19470.20360.076*
C30.3193 (2)0.13453 (11)0.2792 (3)0.0574 (7)
H30.39830.15700.27010.069*
C40.3152 (2)0.07925 (11)0.3320 (3)0.0544 (6)
H40.39110.06390.35990.065*
C50.1976 (2)0.04604 (10)0.3440 (2)0.0453 (6)
H50.19550.00810.37870.054*
C60.0841 (2)0.06820 (9)0.3056 (2)0.0407 (5)
C70.0453 (2)0.03359 (10)0.3232 (2)0.0459 (6)
H7A0.03660.00280.37070.055*
H7B0.11990.05630.37420.055*
C80.19366 (19)0.00386 (9)0.1859 (2)0.0389 (5)
C90.2933 (2)0.01794 (9)0.2933 (2)0.0407 (5)
H90.27960.01120.37910.049*
C100.41497 (19)0.04237 (9)0.2735 (2)0.0378 (5)
C110.43622 (19)0.05309 (9)0.1444 (2)0.0370 (5)
C120.3322 (2)0.03864 (10)0.0385 (2)0.0438 (5)
H120.34430.04590.04770.053*
C130.2125 (2)0.01410 (10)0.0570 (2)0.0443 (5)
H130.14460.00440.01560.053*
C140.5624 (2)0.07781 (9)0.1208 (2)0.0413 (5)
H140.57220.08620.03440.050*
C150.8836 (2)0.11689 (9)0.2939 (2)0.0409 (5)
C161.0138 (2)0.14008 (9)0.2640 (2)0.0389 (5)
C171.1128 (2)0.15662 (10)0.3697 (3)0.0504 (6)
H171.09600.15350.45540.060*
C181.2367 (2)0.17777 (11)0.3517 (3)0.0536 (6)
H181.30350.18900.42390.064*
C191.2585 (2)0.18182 (9)0.2247 (3)0.0456 (6)
C201.1643 (2)0.16467 (12)0.1179 (3)0.0596 (7)
H201.18250.16720.03260.072*
C211.0410 (2)0.14332 (12)0.1380 (3)0.0566 (7)
H210.97560.13100.06560.068*
C220.7086 (3)0.14686 (13)0.1811 (4)0.0675 (8)
H220.66200.11150.20110.081*
C230.6524 (4)0.1653 (2)0.4133 (4)0.1072 (13)
H23A0.61840.12570.41280.161*
H23B0.71720.16740.47060.161*
H23C0.57820.19170.44500.161*
C240.7845 (4)0.23712 (15)0.2607 (5)0.1139 (15)
H24A0.85780.23790.30850.171*
H24B0.82020.24280.16760.171*
H24C0.72100.26810.29270.171*
H2'0.784 (2)0.1204 (10)0.1096 (12)0.046 (7)*
H2O0.580 (2)0.0665 (14)0.355 (3)0.101 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0393 (8)0.0784 (11)0.0368 (10)0.0205 (7)0.0040 (7)0.0106 (8)
O20.0456 (9)0.0794 (12)0.0386 (10)0.0217 (8)0.0021 (8)0.0011 (9)
O30.0497 (9)0.0889 (13)0.0435 (11)0.0115 (8)0.0101 (8)0.0135 (10)
O40.0555 (12)0.156 (2)0.093 (2)0.0442 (13)0.0046 (12)0.0068 (17)
O50.0732 (14)0.1240 (19)0.0883 (19)0.0293 (12)0.0346 (13)0.0187 (15)
O60.0904 (16)0.135 (2)0.0553 (15)0.0031 (13)0.0032 (13)0.0299 (15)
N10.0351 (9)0.0479 (10)0.0477 (13)0.0049 (7)0.0121 (9)0.0053 (9)
N20.0372 (9)0.0523 (11)0.0428 (13)0.0069 (8)0.0121 (9)0.0068 (10)
N30.0455 (12)0.0616 (13)0.0805 (19)0.0063 (9)0.0169 (13)0.0116 (13)
N40.0539 (11)0.0587 (12)0.0504 (14)0.0043 (9)0.0130 (10)0.0082 (11)
C10.0560 (14)0.0531 (14)0.0583 (18)0.0020 (11)0.0222 (13)0.0001 (12)
C20.0785 (18)0.0465 (13)0.069 (2)0.0189 (12)0.0264 (16)0.0068 (13)
C30.0500 (13)0.0650 (16)0.0575 (18)0.0217 (11)0.0111 (12)0.0049 (14)
C40.0387 (12)0.0662 (16)0.0592 (18)0.0036 (10)0.0115 (12)0.0052 (13)
C50.0458 (12)0.0472 (12)0.0432 (15)0.0044 (9)0.0094 (10)0.0019 (11)
C60.0391 (11)0.0490 (12)0.0335 (13)0.0055 (9)0.0056 (9)0.0066 (10)
C70.0397 (11)0.0599 (14)0.0375 (14)0.0100 (9)0.0064 (10)0.0058 (11)
C80.0350 (10)0.0448 (12)0.0361 (13)0.0052 (8)0.0049 (9)0.0061 (10)
C90.0410 (11)0.0499 (12)0.0323 (13)0.0087 (9)0.0096 (10)0.0051 (10)
C100.0358 (10)0.0409 (11)0.0351 (13)0.0031 (8)0.0035 (9)0.0005 (10)
C110.0344 (10)0.0412 (11)0.0359 (13)0.0003 (8)0.0082 (9)0.0017 (9)
C120.0442 (12)0.0561 (13)0.0319 (13)0.0037 (9)0.0095 (10)0.0047 (10)
C130.0376 (11)0.0578 (13)0.0345 (13)0.0071 (9)0.0001 (10)0.0023 (11)
C140.0398 (11)0.0458 (12)0.0407 (14)0.0005 (9)0.0135 (10)0.0046 (10)
C150.0383 (11)0.0431 (12)0.0418 (15)0.0002 (8)0.0087 (10)0.0048 (10)
C160.0374 (10)0.0377 (11)0.0421 (14)0.0013 (8)0.0091 (10)0.0038 (10)
C170.0484 (13)0.0608 (14)0.0415 (15)0.0074 (10)0.0078 (11)0.0054 (12)
C180.0439 (13)0.0612 (15)0.0518 (17)0.0110 (10)0.0003 (12)0.0038 (12)
C190.0371 (11)0.0424 (12)0.0585 (17)0.0011 (9)0.0125 (11)0.0057 (11)
C200.0502 (14)0.0867 (18)0.0447 (17)0.0078 (12)0.0162 (13)0.0039 (14)
C210.0411 (12)0.0855 (18)0.0430 (16)0.0138 (11)0.0081 (11)0.0016 (13)
C220.0493 (15)0.0691 (17)0.083 (3)0.0012 (12)0.0110 (16)0.0108 (18)
C230.091 (2)0.169 (4)0.060 (2)0.023 (2)0.0116 (19)0.025 (2)
C240.099 (3)0.071 (2)0.177 (5)0.0164 (18)0.041 (3)0.016 (2)
Geometric parameters (Å, º) top
O1—C81.362 (2)C8—C91.371 (3)
O1—C71.426 (3)C8—C131.392 (3)
O2—C101.341 (3)C9—C101.389 (3)
O2—H2O0.847 (10)C9—H90.9300
O3—C151.217 (3)C10—C111.403 (3)
O4—N31.205 (3)C11—C121.388 (3)
O5—N31.211 (3)C11—C141.446 (3)
O6—C221.201 (4)C12—C131.369 (3)
N1—C141.271 (3)C12—H120.9300
N1—N21.374 (2)C13—H130.9300
N2—C151.337 (3)C14—H140.9300
N2—H2'0.879 (10)C15—C161.493 (3)
N3—C191.472 (3)C16—C171.370 (3)
N4—C221.308 (4)C16—C211.375 (3)
N4—C241.417 (4)C17—C181.376 (3)
N4—C231.439 (4)C17—H170.9300
C1—C21.371 (3)C18—C191.367 (3)
C1—C61.379 (3)C18—H180.9300
C1—H10.9300C19—C201.354 (4)
C2—C31.369 (4)C20—C211.380 (3)
C2—H2A0.9300C20—H200.9300
C3—C41.363 (3)C21—H210.9300
C3—H30.9300C22—H220.9300
C4—C51.383 (3)C23—H23A0.9600
C4—H40.9300C23—H23B0.9600
C5—C61.370 (3)C23—H23C0.9600
C5—H50.9300C24—H24A0.9600
C6—C71.495 (3)C24—H24B0.9600
C7—H7A0.9700C24—H24C0.9600
C7—H7B0.9700
C8—O1—C7118.47 (17)C10—C11—C14121.7 (2)
C10—O2—H2O107 (2)C13—C12—C11122.0 (2)
C14—N1—N2118.4 (2)C13—C12—H12119.0
C15—N2—N1117.33 (19)C11—C12—H12119.0
C15—N2—H2'122.7 (14)C12—C13—C8119.1 (2)
N1—N2—H2'119.9 (14)C12—C13—H13120.5
O4—N3—O5123.4 (2)C8—C13—H13120.5
O4—N3—C19118.2 (2)N1—C14—C11120.1 (2)
O5—N3—C19118.4 (2)N1—C14—H14119.9
C22—N4—C24121.8 (3)C11—C14—H14119.9
C22—N4—C23119.5 (3)O3—C15—N2122.03 (19)
C24—N4—C23118.6 (3)O3—C15—C16120.9 (2)
C2—C1—C6120.3 (2)N2—C15—C16117.0 (2)
C2—C1—H1119.9C17—C16—C21118.9 (2)
C6—C1—H1119.9C17—C16—C15117.3 (2)
C3—C2—C1120.6 (2)C21—C16—C15123.7 (2)
C3—C2—H2A119.7C16—C17—C18121.3 (2)
C1—C2—H2A119.7C16—C17—H17119.3
C4—C3—C2119.8 (2)C18—C17—H17119.3
C4—C3—H3120.1C19—C18—C17118.0 (2)
C2—C3—H3120.1C19—C18—H18121.0
C3—C4—C5119.6 (2)C17—C18—H18121.0
C3—C4—H4120.2C20—C19—C18122.4 (2)
C5—C4—H4120.2C20—C19—N3118.5 (2)
C6—C5—C4121.0 (2)C18—C19—N3119.1 (2)
C6—C5—H5119.5C19—C20—C21118.7 (2)
C4—C5—H5119.5C19—C20—H20120.6
C5—C6—C1118.66 (19)C21—C20—H20120.6
C5—C6—C7121.5 (2)C16—C21—C20120.6 (2)
C1—C6—C7119.9 (2)C16—C21—H21119.7
O1—C7—C6108.03 (18)C20—C21—H21119.7
O1—C7—H7A110.1O6—C22—N4125.5 (3)
C6—C7—H7A110.1O6—C22—H22117.3
O1—C7—H7B110.1N4—C22—H22117.3
C6—C7—H7B110.1N4—C23—H23A109.5
H7A—C7—H7B108.4N4—C23—H23B109.5
O1—C8—C9124.2 (2)H23A—C23—H23B109.5
O1—C8—C13114.98 (19)N4—C23—H23C109.5
C9—C8—C13120.79 (19)H23A—C23—H23C109.5
C8—C9—C10119.7 (2)H23B—C23—H23C109.5
C8—C9—H9120.2N4—C24—H24A109.5
C10—C9—H9120.2N4—C24—H24B109.5
O2—C10—C9117.4 (2)H24A—C24—H24B109.5
O2—C10—C11122.09 (18)N4—C24—H24C109.5
C9—C10—C11120.6 (2)H24A—C24—H24C109.5
C12—C11—C10117.91 (18)H24B—C24—H24C109.5
C12—C11—C14120.3 (2)
C14—N1—N2—C15176.17 (19)C9—C8—C13—C120.1 (3)
C6—C1—C2—C30.3 (4)N2—N1—C14—C11177.93 (18)
C1—C2—C3—C40.2 (4)C12—C11—C14—N1176.3 (2)
C2—C3—C4—C50.6 (4)C10—C11—C14—N13.1 (3)
C3—C4—C5—C61.1 (4)N1—N2—C15—O30.0 (3)
C4—C5—C6—C11.2 (4)N1—N2—C15—C16179.57 (17)
C4—C5—C6—C7177.5 (2)O3—C15—C16—C1710.9 (3)
C2—C1—C6—C50.8 (4)N2—C15—C16—C17169.57 (19)
C2—C1—C6—C7177.9 (2)O3—C15—C16—C21166.3 (2)
C8—O1—C7—C6171.59 (18)N2—C15—C16—C2113.2 (3)
C5—C6—C7—O1115.3 (2)C21—C16—C17—C181.8 (4)
C1—C6—C7—O166.1 (3)C15—C16—C17—C18179.2 (2)
C7—O1—C8—C90.8 (3)C16—C17—C18—C190.1 (4)
C7—O1—C8—C13178.96 (19)C17—C18—C19—C201.4 (4)
O1—C8—C9—C10179.29 (19)C17—C18—C19—N3179.2 (2)
C13—C8—C9—C100.4 (3)O4—N3—C19—C20176.6 (3)
C8—C9—C10—O2179.93 (19)O5—N3—C19—C204.3 (3)
C8—C9—C10—C110.4 (3)O4—N3—C19—C182.7 (3)
O2—C10—C11—C12179.36 (19)O5—N3—C19—C18176.4 (2)
C9—C10—C11—C120.1 (3)C18—C19—C20—C211.2 (4)
O2—C10—C11—C141.3 (3)N3—C19—C20—C21179.5 (2)
C9—C10—C11—C14179.25 (19)C17—C16—C21—C202.1 (4)
C10—C11—C12—C130.7 (3)C15—C16—C21—C20179.3 (2)
C14—C11—C12—C13178.7 (2)C19—C20—C21—C160.6 (4)
C11—C12—C13—C80.7 (3)C24—N4—C22—O60.9 (4)
O1—C8—C13—C12179.87 (19)C23—N4—C22—O6178.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1-C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O60.88 (1)1.95 (1)2.810 (3)166 (2)
O2—H2O···N10.85 (1)1.82 (2)2.583 (2)149 (3)
C7—H7B···O3i0.972.493.167 (3)127
C13—H13···O1ii0.932.583.448 (3)156
C21—H21···O60.932.423.206 (3)143
C12—H12···Cg1ii0.932.913.673 (2)140
C17—H17···Cg1i0.932.853.630 (3)142
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H17N3O5·C3H7NO
Mr464.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0160 (8), 22.661 (2), 10.2611 (11)
β (°) 101.392 (5)
V3)2283.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
16107, 4910, 2901
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.176, 1.04
No. of reflections4910
No. of parameters318
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.22

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1-C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2'···O60.879 (10)1.950 (11)2.810 (3)166 (2)
O2—H2O···N10.847 (10)1.82 (2)2.583 (2)149 (3)
C7—H7B···O3i0.972.493.167 (3)127
C13—H13···O1ii0.932.583.448 (3)156
C21—H21···O60.932.423.206 (3)143
C12—H12···Cg1ii0.932.913.673 (2)140
C17—H17···Cg1i0.932.853.630 (3)142
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
 

Acknowledgements

BJ is grateful to the Council for Scientific and Industrial Research, New Delhi, India, for the award of a Senior Research Fellowship. MRPK is grateful to UGC, New Delhi, for a UGC-BSR one-time grant to Faculty. The authors are grateful to Dr Matthias Zeller, Department of Chemistry, Youngstown State University, for the support with data refinement. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India for the single-crystal X-ray diffraction measurements.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDespaigne, A. A. R., Silva, J. G. D., Carmo, A. C. M. D. & Piro, O. E. (2009). Inorg. Chim. Acta, 362, 2117–2122.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrande, F., Aiello, F., Grazia, O. D., Brizzi, A., Garofalo, A. & Neamati, N. (2007). Bioorg. Med. Chem. 15, 288–294.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoseph, B., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1421–o1422.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathew, N. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 78, 1424–1428.  Web of Science CrossRef Google Scholar
First citationSavini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds