organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzodioxol-5-yl)-3-phenyl­quinazolin-4(3H)-one

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Physics, St Philomena's College, Mysore, India
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

(Received 7 June 2013; accepted 12 June 2013; online 19 June 2013)

In the mol­ecule of the title compound, C21H14N2O3, the quinazoline ring system [maximum deviation = 0.076 (1) Å] makes dihedral angles of 40.57 (9) and 42.31 (11)°, respectively, with the phenyl and 1,3-benzodioxole rings. The dihedral angle between the phenyl ring and the 1,3-benzodioxole ring is 4.34 (10)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into infinite zigzag chains extending along [100].

Related literature

For the biological and pharmaceutical importance of quinazolines, see: Arfan et al. (2008[Arfan, M., Khan, R., Imran, M., Khan, H. & Mehmood, J. (2008). J. Chem. Soc. Pak. 30, 299-305.]); Bartroli et al. (1998[Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869-1882.]); Kung et al. (1999[Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705-4713.]); Mannschreck et al. (1984[Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381-383.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14N2O3

  • Mr = 342.34

  • Monoclinic, P 21

  • a = 8.984 (4) Å

  • b = 6.056 (3) Å

  • c = 15.248 (6) Å

  • β = 95.357 (6)°

  • V = 826.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 9157 measured reflections

  • 3751 independent reflections

  • 3163 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.04

  • 3751 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O5i 0.93 2.37 3.185 (3) 146
C25—H23A⋯O5ii 0.97 2.49 3.416 (3) 160
Symmetry codes: (i) x, y+1, z; (ii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinazoline and their derivatives are an interesting class of heterocyclic compounds that have drawn much attention because of their biological and pharmaceutical activities; such as anti-bacterial (Kung et al., 1999), antimicrobial (Arfan et al., 2008) antifungal (Bartroli et al., 1998) and anticonvulsant activities (Mannschreck et al., 1984). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein.

In the molecular structure of the title compound (Fig. 1), the dihedral angles between the quinazoline moiety (N3–C4/C6–C11/N1–C2) and the phenyl ring (C12/C13/C14/C15/C16/C17) as well as the 1,3-benzodioxole ring (C18–C19/C20–C24/C25–C26) are 40.57 (9)° and 42.31 (11)°, respectively. The dihedral angle between the phenyl ring (C12/C13/C14/C15/C16/C17) and 1,3-benzodioxole ring (C18–C19/C20–C24/C25–C26) is 4.34 (10)°. The crystal packing exhibits intermolecular C—H···O interactions (Fig. 2) that link molecules into endless zig-zag chains extended along [100].

Related literature top

For the biological and pharmaceutical importance of quinazolines, see: Arfan et al. (2008); Bartroli et al. (1998); Kung et al. (1999); Mannschreck et al. (1984).

Experimental top

To a solution of 2-amino-N-phenylbenzamide (1 mmol) and benzo[d][1,3]dioxole-5-carbaldehyde (1 mmol) in ethyl acetate (2 ml) was added propyl phosphonic anhydride (1 mmol) and the reaction mixture was stirred for about 2 hrs at room temperature, then 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (1 mmol) was added and stirred for about 30 minutes. The reaction mixture was diluted with water and extracted to ethyl acetate and it was washed with 10% NaHCO3, water, brine solution and dried over anhydrous sodium sulfate and concentrated under reduced pressure to get a crude product which was recrystalized by slow evaporation in ethyl acetate at room temperature to get the title compound.

Refinement top

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range of 0.93 to 0.97 Å; Uiso(H) = 1.2Ueq(C).

The title compound crystallizes in the non-centrosymmetric space group P 21; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless.

Structure description top

Quinazoline and their derivatives are an interesting class of heterocyclic compounds that have drawn much attention because of their biological and pharmaceutical activities; such as anti-bacterial (Kung et al., 1999), antimicrobial (Arfan et al., 2008) antifungal (Bartroli et al., 1998) and anticonvulsant activities (Mannschreck et al., 1984). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein.

In the molecular structure of the title compound (Fig. 1), the dihedral angles between the quinazoline moiety (N3–C4/C6–C11/N1–C2) and the phenyl ring (C12/C13/C14/C15/C16/C17) as well as the 1,3-benzodioxole ring (C18–C19/C20–C24/C25–C26) are 40.57 (9)° and 42.31 (11)°, respectively. The dihedral angle between the phenyl ring (C12/C13/C14/C15/C16/C17) and 1,3-benzodioxole ring (C18–C19/C20–C24/C25–C26) is 4.34 (10)°. The crystal packing exhibits intermolecular C—H···O interactions (Fig. 2) that link molecules into endless zig-zag chains extended along [100].

For the biological and pharmaceutical importance of quinazolines, see: Arfan et al. (2008); Bartroli et al. (1998); Kung et al. (1999); Mannschreck et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the molecule viewed along b-axis. Intermolecular hydrogen bonding drawn as dotted lines.
2-(1,3-Benzodioxol-5-yl)-3-phenylquinazolin-4(3H)-one top
Crystal data top
C21H14N2O3F(000) = 356
Mr = 342.34Dx = 1.377 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3751 reflections
a = 8.984 (4) Åθ = 1.3–28.0°
b = 6.056 (3) ŵ = 0.09 mm1
c = 15.248 (6) ÅT = 273 K
β = 95.357 (6)°Block, yellow
V = 826.0 (6) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
Rint = 0.023
ω and φ scansθmax = 28.0°, θmin = 1.3°
9157 measured reflectionsh = 1111
3751 independent reflectionsk = 87
3163 reflections with I > 2σ(I)l = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.0215P]
where P = (Fo2 + 2Fc2)/3
3751 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C21H14N2O3V = 826.0 (6) Å3
Mr = 342.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.984 (4) ŵ = 0.09 mm1
b = 6.056 (3) ÅT = 273 K
c = 15.248 (6) Å0.30 × 0.25 × 0.20 mm
β = 95.357 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3163 reflections with I > 2σ(I)
9157 measured reflectionsRint = 0.023
3751 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
3751 reflectionsΔρmin = 0.20 e Å3
235 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O51.05179 (14)0.2056 (2)0.70071 (8)0.0591 (4)
O240.44816 (14)1.2103 (3)0.88187 (8)0.0637 (4)
O260.47712 (16)1.2832 (2)0.73629 (9)0.0690 (5)
N10.69195 (15)0.5808 (3)0.61645 (9)0.0552 (5)
N30.88645 (14)0.4809 (2)0.72424 (8)0.0416 (4)
C20.76074 (16)0.6048 (3)0.69362 (10)0.0435 (5)
C40.93930 (17)0.3085 (3)0.67377 (10)0.0443 (5)
C60.85398 (17)0.2701 (3)0.58978 (11)0.0490 (5)
C70.8883 (2)0.0937 (4)0.53638 (13)0.0621 (7)
C80.8062 (2)0.0598 (5)0.45769 (15)0.0835 (9)
C90.6918 (3)0.2064 (6)0.42996 (16)0.1048 (12)
C100.6579 (3)0.3796 (6)0.48092 (14)0.0923 (9)
C110.73748 (19)0.4136 (4)0.56322 (11)0.0569 (6)
C120.98242 (16)0.5453 (3)0.80117 (9)0.0413 (5)
C131.00197 (18)0.4050 (3)0.87253 (10)0.0487 (5)
C141.09842 (19)0.4651 (4)0.94460 (12)0.0591 (6)
C151.1735 (2)0.6638 (4)0.94456 (12)0.0608 (7)
C161.15312 (19)0.8023 (3)0.87348 (13)0.0588 (6)
C171.05718 (18)0.7432 (3)0.80046 (11)0.0490 (5)
C180.69538 (15)0.7673 (3)0.75203 (10)0.0423 (5)
C190.67842 (17)0.7258 (3)0.84001 (10)0.0484 (5)
C200.59554 (18)0.8651 (3)0.88969 (11)0.0526 (6)
C210.53344 (17)1.0466 (3)0.84817 (11)0.0476 (5)
C220.55001 (18)1.0905 (3)0.76149 (11)0.0490 (5)
C230.62930 (17)0.9549 (3)0.71145 (10)0.0471 (5)
C250.3916 (2)1.3373 (4)0.80727 (13)0.0644 (7)
H70.967000.000500.554400.0750*
H80.826500.060400.422800.1000*
H90.637800.185100.375600.1260*
H100.581600.476100.461100.1110*
H130.950900.271300.872200.0580*
H141.112600.371700.993100.0710*
H151.238200.703900.993100.0730*
H161.203700.936400.874100.0710*
H171.043800.836200.751800.0590*
H190.723600.601500.866600.0580*
H200.583300.835400.948400.0630*
H23A0.286901.303000.791700.0770*
H23B0.400201.493700.820500.0770*
H260.639000.986100.652500.0570*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0584 (7)0.0551 (7)0.0635 (7)0.0186 (6)0.0045 (6)0.0065 (6)
O240.0545 (7)0.0728 (9)0.0645 (7)0.0097 (7)0.0101 (6)0.0164 (7)
O260.0705 (9)0.0601 (8)0.0795 (8)0.0209 (7)0.0228 (7)0.0092 (7)
N10.0408 (7)0.0766 (11)0.0470 (7)0.0126 (8)0.0016 (6)0.0096 (8)
N30.0370 (6)0.0445 (7)0.0430 (6)0.0033 (6)0.0025 (5)0.0029 (6)
C20.0338 (7)0.0526 (10)0.0441 (8)0.0033 (7)0.0035 (6)0.0023 (7)
C40.0430 (8)0.0414 (9)0.0497 (9)0.0006 (7)0.0105 (7)0.0053 (7)
C60.0392 (8)0.0560 (11)0.0533 (9)0.0022 (8)0.0125 (7)0.0040 (8)
C70.0522 (10)0.0674 (13)0.0688 (11)0.0017 (9)0.0163 (9)0.0163 (10)
C80.0590 (12)0.108 (2)0.0847 (14)0.0021 (14)0.0134 (11)0.0491 (15)
C90.0626 (13)0.169 (3)0.0792 (14)0.0229 (17)0.0125 (11)0.0633 (17)
C100.0616 (12)0.142 (2)0.0694 (13)0.0328 (15)0.0145 (10)0.0415 (15)
C110.0403 (8)0.0769 (13)0.0534 (9)0.0035 (9)0.0033 (7)0.0150 (9)
C120.0325 (7)0.0455 (9)0.0458 (8)0.0052 (7)0.0040 (6)0.0019 (7)
C130.0408 (8)0.0539 (10)0.0514 (9)0.0014 (8)0.0039 (6)0.0096 (8)
C140.0481 (9)0.0804 (14)0.0480 (9)0.0125 (10)0.0005 (7)0.0101 (9)
C150.0433 (9)0.0767 (15)0.0607 (11)0.0098 (9)0.0041 (8)0.0119 (10)
C160.0437 (9)0.0525 (10)0.0799 (12)0.0023 (9)0.0036 (8)0.0120 (10)
C170.0425 (8)0.0440 (9)0.0601 (10)0.0036 (7)0.0026 (7)0.0071 (8)
C180.0303 (7)0.0518 (9)0.0444 (8)0.0002 (7)0.0013 (6)0.0016 (7)
C190.0390 (8)0.0597 (10)0.0458 (8)0.0077 (8)0.0001 (6)0.0028 (8)
C200.0425 (8)0.0740 (13)0.0413 (8)0.0036 (9)0.0035 (6)0.0016 (8)
C210.0345 (7)0.0593 (11)0.0487 (8)0.0016 (7)0.0031 (6)0.0131 (8)
C220.0395 (8)0.0478 (9)0.0599 (10)0.0020 (8)0.0064 (7)0.0001 (8)
C230.0395 (8)0.0580 (10)0.0443 (8)0.0009 (8)0.0063 (6)0.0022 (8)
C250.0517 (10)0.0643 (12)0.0785 (12)0.0096 (9)0.0130 (9)0.0074 (10)
Geometric parameters (Å, º) top
O5—C41.225 (2)C15—C161.369 (3)
O24—C211.381 (2)C16—C171.390 (3)
O24—C251.427 (3)C18—C191.387 (2)
O26—C221.375 (2)C18—C231.399 (3)
O26—C251.423 (2)C19—C201.395 (2)
N1—C21.285 (2)C20—C211.362 (3)
N1—C111.383 (3)C21—C221.370 (2)
N3—C21.399 (2)C22—C231.366 (2)
N3—C41.406 (2)C7—H70.9300
N3—C121.443 (2)C8—H80.9300
C2—C181.485 (2)C9—H90.9300
C4—C61.449 (2)C10—H100.9300
C6—C71.395 (3)C13—H130.9300
C6—C111.391 (3)C14—H140.9300
C7—C81.364 (3)C15—H150.9300
C8—C91.394 (4)C16—H160.9300
C9—C101.357 (5)C17—H170.9300
C10—C111.400 (3)C19—H190.9300
C12—C131.379 (2)C20—H200.9300
C12—C171.374 (3)C23—H260.9300
C13—C141.383 (3)C25—H23A0.9700
C14—C151.380 (3)C25—H23B0.9700
C21—O24—C25105.01 (14)O24—C21—C22109.49 (15)
C22—O26—C25105.05 (14)C20—C21—C22121.91 (16)
C2—N1—C11118.47 (15)O26—C22—C21110.03 (15)
C2—N3—C4121.26 (13)O26—C22—C23127.86 (15)
C2—N3—C12121.91 (13)C21—C22—C23122.12 (16)
C4—N3—C12116.04 (12)C18—C23—C22117.59 (14)
N1—C2—N3123.30 (15)O24—C25—O26107.75 (16)
N1—C2—C18116.16 (14)C6—C7—H7120.00
N3—C2—C18120.49 (13)C8—C7—H7120.00
O5—C4—N3120.30 (14)C7—C8—H8120.00
O5—C4—C6124.52 (16)C9—C8—H8120.00
N3—C4—C6115.17 (14)C8—C9—H9119.00
C4—C6—C7120.76 (16)C10—C9—H9119.00
C4—C6—C11118.60 (16)C9—C10—H10120.00
C7—C6—C11120.64 (16)C11—C10—H10120.00
C6—C7—C8119.9 (2)C12—C13—H13120.00
C7—C8—C9119.6 (2)C14—C13—H13120.00
C8—C9—C10121.2 (2)C13—C14—H14120.00
C9—C10—C11120.3 (3)C15—C14—H14120.00
N1—C11—C6122.83 (15)C14—C15—H15120.00
N1—C11—C10118.6 (2)C16—C15—H15120.00
C6—C11—C10118.4 (2)C15—C16—H16120.00
N3—C12—C13119.83 (15)C17—C16—H16120.00
N3—C12—C17118.99 (14)C12—C17—H17120.00
C13—C12—C17121.15 (14)C16—C17—H17120.00
C12—C13—C14119.28 (17)C18—C19—H19119.00
C13—C14—C15119.95 (18)C20—C19—H19119.00
C14—C15—C16120.36 (17)C19—C20—H20122.00
C15—C16—C17120.23 (17)C21—C20—H20122.00
C12—C17—C16119.03 (16)C18—C23—H26121.00
C2—C18—C19123.05 (16)C22—C23—H26121.00
C2—C18—C23116.63 (14)O24—C25—H23A110.00
C19—C18—C23119.63 (15)O24—C25—H23B110.00
C18—C19—C20121.88 (16)O26—C25—H23A110.00
C19—C20—C21116.88 (15)O26—C25—H23B110.00
O24—C21—C20128.60 (15)H23A—C25—H23B108.00
C25—O24—C21—C20170.35 (18)C11—C6—C7—C80.6 (3)
C25—O24—C21—C229.67 (19)C4—C6—C11—N15.3 (3)
C21—O24—C25—O2615.83 (19)C4—C6—C11—C10178.3 (2)
C25—O26—C22—C2110.09 (19)C7—C6—C11—N1175.08 (18)
C25—O26—C22—C23170.00 (18)C7—C6—C11—C101.4 (3)
C22—O26—C25—O2415.97 (19)C6—C7—C8—C92.2 (3)
C11—N1—C2—N34.8 (3)C7—C8—C9—C101.7 (4)
C11—N1—C2—C18172.49 (16)C8—C9—C10—C110.4 (4)
C2—N1—C11—C60.3 (3)C9—C10—C11—N1174.8 (2)
C2—N1—C11—C10176.7 (2)C9—C10—C11—C61.9 (4)
C4—N3—C2—N14.8 (2)N3—C12—C13—C14177.68 (15)
C4—N3—C2—C18172.43 (14)C17—C12—C13—C140.1 (3)
C12—N3—C2—N1164.67 (16)N3—C12—C17—C16178.07 (15)
C12—N3—C2—C1818.1 (2)C13—C12—C17—C160.5 (2)
C2—N3—C4—O5178.13 (15)C12—C13—C14—C150.1 (3)
C2—N3—C4—C60.4 (2)C13—C14—C15—C160.0 (3)
C12—N3—C4—O58.1 (2)C14—C15—C16—C170.4 (3)
C12—N3—C4—C6170.47 (14)C15—C16—C17—C120.6 (3)
C2—N3—C12—C13120.18 (17)C2—C18—C19—C20169.50 (15)
C2—N3—C12—C1762.2 (2)C23—C18—C19—C200.7 (2)
C4—N3—C12—C1369.84 (18)C2—C18—C23—C22170.86 (14)
C4—N3—C12—C17107.81 (17)C19—C18—C23—C220.1 (2)
N1—C2—C18—C19135.61 (17)C18—C19—C20—C211.0 (2)
N1—C2—C18—C2334.8 (2)C19—C20—C21—O24179.44 (16)
N3—C2—C18—C1941.8 (2)C19—C20—C21—C220.5 (2)
N3—C2—C18—C23147.76 (15)O24—C21—C22—O260.25 (19)
O5—C4—C6—C76.2 (3)O24—C21—C22—C23179.83 (16)
O5—C4—C6—C11173.46 (17)C20—C21—C22—O26179.74 (15)
N3—C4—C6—C7175.32 (16)C20—C21—C22—C230.2 (3)
N3—C4—C6—C115.0 (2)O26—C22—C23—C18179.41 (16)
C4—C6—C7—C8179.72 (19)C21—C22—C23—C180.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O5i0.932.373.185 (3)146
C25—H23A···O5ii0.972.493.416 (3)160
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H14N2O3
Mr342.34
Crystal system, space groupMonoclinic, P21
Temperature (K)273
a, b, c (Å)8.984 (4), 6.056 (3), 15.248 (6)
β (°) 95.357 (6)
V3)826.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9157, 3751, 3163
Rint0.023
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.04
No. of reflections3751
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O5i0.932.373.185 (3)145.8
C25—H23A···O5ii0.972.493.416 (3)160.0
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z.
 

Acknowledgements

Chandra would like to thank the University of Mysore for the award of an RFSMS fellowship under the head DV5/Physics/389/RFSMS/2009–2010/10.07.2012.

References

First citationArfan, M., Khan, R., Imran, M., Khan, H. & Mehmood, J. (2008). J. Chem. Soc. Pak. 30, 299–305.  CAS Google Scholar
First citationBartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869–1882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705–4713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381–383.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds