organic compounds
(3R*,6R*,4′S*,8′R*,3′′R*,6′′R*)-3,3′′-Diisopropyl-6,6′′-dimethyl-2′,6′-diphenyldispiro[cyclohexane-1,4′-(3,7-dioxa-2,6-diazabicyclo[3.3.0]octane)-8′,1′′-cyclohexane]-2,2′′-dione
aLaboratoire des Substances Naturelles et Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, Errachidia, Morocco, bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France, and cLaboratoire de Chimie Physique des Matériaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco
*Correspondence e-mail: med.azrour@gmail.com
The two oxazolidine rings (A and B) of the title compound, C34H44N2O4, display roughly half-chair conformations, which could be described as twisted on the C—O bond. Together, the fused oxazolidine rings have a butterfly shape, with the H atoms attached to the ring junction C atoms in a cis orientation. The cyclohexane rings of both p-menthone fragments display chair conformations. The could not be determined from the X-ray diffraction data, but the of the stereocentres could be deduced.
Related literature
For a related synthesis, see: Brüning et al. (1973); Tanka et al. (1972). For the properties of p-menthane derivatives, see: Ito et al. (2009); Kharchouf et al. (2011, 2012); Majidi et al. (2010); Clark (1990); Umemoko (1998); Boelens (1993); Wagner et al. (2004). For related structures, see: Iball et al. (1968, 1986); Aurich et al. (1989). For ring conformations, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813017054/fy2097sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813017054/fy2097Isup2.hkl
2-Hydroxymethyle menthone (1) and n-diphenylnitrone (2) were prepared according to literature procedures (Brüning et al., 1973; Tanka et al., 1972).
To a mixture of 6 mmoles of 2-hydroxymethylene menthone and 6 mmoles of n-diphenylnitrone in 20 ml of ethyl acetate (Fig. 2) was added a catalytic amount of K10 (montmorillonite/FeIII). The reaction mixture was stirred for 48 h at 25°C and then filtered. The solvent was removed and the product was purified by recrystallization in ethanol (yield 67%). Single cristals were obtained by slow evaporation of an ethanol solution at room temperature.
In the absence of significant
the could not be reliably determined, so any reference to the was removed.All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 1.0 Å (methine), 0.99 Å (methylene) or 0.98 Å (methyl), with Uiso(H) = 1.2Ueq(CH, CH2) or Uiso(H) = 1.5Ueq(CH3).
Synthesis of various p-menthane derivatives is studied extensively, with the goal to obtain biologically active and ecofriendly corrosion inhibitor compounds (Ito et al., 2009; Kharchouf et al., 2011; 2012; Majidi et al., 2010). p-Menthan-3-one, 1 (Menthone) have become the key starting natural compound for the synthesis of a number of substances exhibiting various kinds of biological activity (Ito et al., 2009). Menthone, a monoterpene ketone, occurs in nature and is widely present in high concentration in a few Mentha species, such as Mentha specata aromentha (Clark, 1990), M. Avrvensis (Umemoko, 1998) and the essential oils of pepperimint and other mint oils (Boelens, 1993). On the other hand, isoxazolidine rings are the frame of a number of natural products and antibiotics and are extensively used in the synthesis of a great many biologically important compounds (Wagner et al., 2004). The goal of the present study was to obtain a new p-menthane derivative having two isoxazolidine moieties. This latter is of interest, because it can exhibit biological activity and has useful properties as precursor for synthesis.
The structure of the title compound is built up from two fused five membered oxazolidine rings sharing two C atoms to which p-menthone and phenyl rings are attached (Fig. 1). As observed in other diisooxazolidines (Iball et al., 1968; 1986; Aurich et al., 1989), the two oxazolidine rings display roughly half-chair conformation with the puckering parameters Q(2)= 0.366 (2) Å and φ= 350.2 (3)° for ring A (C1, C2, C3, O1, N2) and Q(2)= 0.360 (2) Å and φ(2= 347.7 (3)° for ring B (C2, C3, C4, O2, N3) (Cremer & Pople, 1975). They could be regarded as twisted on C1—O1 and C4—O2, respectively. This two fused rings have a butterfly shape with the H atoms attached to the C2—C3 edge in cis position. Both p-menthone fragments display a chair conformation with the puckering amplitudes of θ= 180.0 (2)°, φ= 74 (10)° and θ= 1.2 (2)°, φ= 314 (8)° respectively. The packing is stabilized only by van der Waals interactions.
For a related synthesis, see: Brüning et al. (1973); Tanka et al. (1972). For the properties of p-menthane derivatives, see: Ito et al. (2009); Kharchouf et al. (2011, 2012); Majidi et al. (2010); Clark (1990); Umemoko (1998); Boelens (1993); Wagner et al. (2004). For related structures, see: Iball et al. (1968, 1986); Aurich et al. (1989). For ring conformations, see: Cremer & Pople (1975).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C34H44N2O4 | F(000) = 1176 |
Mr = 544.71 | Dx = 1.231 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 6434 reflections |
a = 9.5037 (6) Å | θ = 3.0–28.6° |
b = 12.4162 (10) Å | µ = 0.08 mm−1 |
c = 24.8982 (18) Å | T = 180 K |
V = 2938.0 (4) Å3 | Parallepiped, colourless |
Z = 4 | 0.37 × 0.13 × 0.06 mm |
Agilent Xcalibur diffractometer | 5963 independent reflections |
Radiation source: fine-focus sealed tube | 3751 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.098 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 26.4°, θmin = 3.0° |
ω scans | h = −11→10 |
Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2010) | k = −15→15 |
Tmin = 0.908, Tmax = 1.000 | l = −31→31 |
24309 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.87 | w = 1/[σ2(Fo2) + (0.0302P)2] where P = (Fo2 + 2Fc2)/3 |
5963 reflections | (Δ/σ)max = 0.001 |
367 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C34H44N2O4 | V = 2938.0 (4) Å3 |
Mr = 544.71 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.5037 (6) Å | µ = 0.08 mm−1 |
b = 12.4162 (10) Å | T = 180 K |
c = 24.8982 (18) Å | 0.37 × 0.13 × 0.06 mm |
Agilent Xcalibur diffractometer | 5963 independent reflections |
Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2010) | 3751 reflections with I > 2σ(I) |
Tmin = 0.908, Tmax = 1.000 | Rint = 0.098 |
24309 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.87 | Δρmax = 0.17 e Å−3 |
5963 reflections | Δρmin = −0.19 e Å−3 |
367 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.19364 (19) | 0.00584 (18) | 0.11958 (8) | 0.0199 (5) | |
C2 | 0.3120 (2) | 0.07456 (17) | 0.14271 (9) | 0.0221 (5) | |
H2 | 0.3371 | 0.0516 | 0.1800 | 0.026* | |
C3 | 0.4346 (2) | 0.05539 (17) | 0.10324 (8) | 0.0218 (5) | |
H3 | 0.5146 | 0.0178 | 0.1214 | 0.026* | |
C4 | 0.47632 (19) | 0.16842 (17) | 0.08623 (9) | 0.0225 (5) | |
C11 | 0.1960 (2) | −0.10828 (18) | 0.14225 (9) | 0.0238 (5) | |
C12 | 0.09059 (19) | −0.18512 (17) | 0.11807 (9) | 0.0241 (5) | |
H12 | 0.1106 | −0.1858 | 0.0786 | 0.029* | |
C13 | −0.0568 (2) | −0.13708 (18) | 0.12394 (9) | 0.0300 (6) | |
H13A | −0.1258 | −0.1838 | 0.1054 | 0.036* | |
H13B | −0.0826 | −0.1342 | 0.1624 | 0.036* | |
C14 | −0.0626 (2) | −0.02464 (18) | 0.10027 (10) | 0.0306 (6) | |
H14A | −0.1582 | 0.0053 | 0.1056 | 0.037* | |
H14B | −0.0450 | −0.0289 | 0.0611 | 0.037* | |
C15 | 0.04500 (19) | 0.05139 (17) | 0.12565 (9) | 0.0233 (5) | |
H15 | 0.0404 | 0.1223 | 0.1067 | 0.028* | |
C21 | 0.4178 (2) | −0.12024 (18) | 0.05577 (8) | 0.0240 (5) | |
C22 | 0.3369 (2) | −0.18798 (19) | 0.02411 (9) | 0.0295 (6) | |
H22 | 0.2577 | −0.1598 | 0.0056 | 0.035* | |
C23 | 0.3692 (2) | −0.2946 (2) | 0.01916 (9) | 0.0358 (6) | |
H23 | 0.3107 | −0.3401 | −0.0019 | 0.043* | |
C24 | 0.4860 (2) | −0.3371 (2) | 0.04434 (10) | 0.0397 (7) | |
H24 | 0.5074 | −0.4116 | 0.0416 | 0.048* | |
C25 | 0.5706 (2) | −0.2691 (2) | 0.07344 (10) | 0.0385 (6) | |
H25 | 0.6530 | −0.2968 | 0.0900 | 0.046* | |
C26 | 0.5387 (2) | −0.1620 (2) | 0.07909 (9) | 0.0320 (6) | |
H26 | 0.5994 | −0.1163 | 0.0990 | 0.038* | |
C31 | 0.3156 (2) | 0.25848 (19) | 0.18430 (10) | 0.0290 (6) | |
C32 | 0.3771 (3) | 0.2242 (2) | 0.23146 (10) | 0.0455 (7) | |
H32 | 0.4013 | 0.1505 | 0.2361 | 0.055* | |
C33 | 0.4036 (3) | 0.2983 (3) | 0.27216 (12) | 0.0649 (9) | |
H33 | 0.4469 | 0.2749 | 0.3045 | 0.078* | |
C34 | 0.3683 (3) | 0.4037 (3) | 0.26628 (13) | 0.0607 (9) | |
H34 | 0.3854 | 0.4533 | 0.2946 | 0.073* | |
C35 | 0.3081 (3) | 0.4380 (2) | 0.21937 (13) | 0.0576 (8) | |
H35 | 0.2859 | 0.5121 | 0.2147 | 0.069* | |
C36 | 0.2796 (2) | 0.3658 (2) | 0.17905 (11) | 0.0477 (7) | |
H36 | 0.2346 | 0.3898 | 0.1472 | 0.057* | |
C41 | 0.5902 (2) | 0.21326 (18) | 0.12434 (9) | 0.0244 (5) | |
C42 | 0.6212 (2) | 0.33086 (18) | 0.11805 (9) | 0.0318 (6) | |
H42 | 0.5296 | 0.3696 | 0.1222 | 0.038* | |
C43 | 0.6684 (2) | 0.3473 (2) | 0.05962 (10) | 0.0437 (7) | |
H43A | 0.6837 | 0.4251 | 0.0530 | 0.052* | |
H43B | 0.7589 | 0.3097 | 0.0538 | 0.052* | |
C44 | 0.5597 (2) | 0.3048 (2) | 0.01977 (10) | 0.0423 (7) | |
H44A | 0.4722 | 0.3474 | 0.0233 | 0.051* | |
H44B | 0.5958 | 0.3148 | −0.0172 | 0.051* | |
C45 | 0.5259 (2) | 0.18599 (19) | 0.02852 (8) | 0.0316 (6) | |
H45 | 0.4465 | 0.1665 | 0.0040 | 0.038* | |
C121 | 0.1084 (2) | −0.30106 (18) | 0.13674 (9) | 0.0323 (6) | |
H121 | 0.2116 | −0.3163 | 0.1382 | 0.039* | |
C122 | 0.0492 (3) | −0.3200 (2) | 0.19291 (10) | 0.0504 (7) | |
H12A | −0.0523 | −0.3058 | 0.1928 | 0.076* | |
H12B | 0.0955 | −0.2714 | 0.2184 | 0.076* | |
H12C | 0.0662 | −0.3948 | 0.2036 | 0.076* | |
C123 | 0.0439 (2) | −0.37914 (19) | 0.09676 (11) | 0.0463 (7) | |
H12D | −0.0577 | −0.3665 | 0.0945 | 0.069* | |
H12E | 0.0612 | −0.4532 | 0.1086 | 0.069* | |
H12F | 0.0865 | −0.3681 | 0.0614 | 0.069* | |
C151 | 0.0135 (2) | 0.06976 (19) | 0.18542 (9) | 0.0314 (6) | |
H15A | 0.0318 | 0.0033 | 0.2054 | 0.047* | |
H15B | −0.0855 | 0.0903 | 0.1898 | 0.047* | |
H15C | 0.0739 | 0.1275 | 0.1992 | 0.047* | |
C421 | 0.7198 (2) | 0.37487 (19) | 0.16169 (11) | 0.0410 (7) | |
H421 | 0.6917 | 0.3406 | 0.1964 | 0.049* | |
C422 | 0.7019 (3) | 0.4951 (2) | 0.16820 (14) | 0.0645 (9) | |
H42A | 0.7648 | 0.5211 | 0.1966 | 0.097* | |
H42B | 0.6042 | 0.5111 | 0.1779 | 0.097* | |
H42C | 0.7252 | 0.5312 | 0.1343 | 0.097* | |
C423 | 0.8732 (2) | 0.3466 (2) | 0.15191 (12) | 0.0554 (8) | |
H42D | 0.9069 | 0.3843 | 0.1198 | 0.083* | |
H42E | 0.8822 | 0.2687 | 0.1466 | 0.083* | |
H42F | 0.9296 | 0.3685 | 0.1830 | 0.083* | |
C451 | 0.6509 (2) | 0.1136 (2) | 0.01454 (9) | 0.0402 (7) | |
H45A | 0.7289 | 0.1286 | 0.0392 | 0.060* | |
H45B | 0.6809 | 0.1278 | −0.0224 | 0.060* | |
H45C | 0.6230 | 0.0379 | 0.0180 | 0.060* | |
N2 | 0.37834 (15) | −0.00963 (14) | 0.05922 (7) | 0.0228 (4) | |
N3 | 0.27983 (16) | 0.18972 (14) | 0.14028 (7) | 0.0263 (4) | |
O1 | 0.22708 (13) | 0.00147 (12) | 0.06227 (5) | 0.0229 (3) | |
O2 | 0.34705 (13) | 0.22877 (12) | 0.09175 (6) | 0.0267 (4) | |
O11 | 0.27485 (15) | −0.13285 (13) | 0.17847 (6) | 0.0369 (4) | |
O41 | 0.65421 (14) | 0.15395 (13) | 0.15382 (6) | 0.0333 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0225 (11) | 0.0246 (12) | 0.0126 (11) | −0.0020 (9) | −0.0001 (9) | 0.0004 (11) |
C2 | 0.0219 (11) | 0.0222 (13) | 0.0221 (13) | −0.0006 (9) | −0.0012 (9) | −0.0006 (11) |
C3 | 0.0216 (11) | 0.0240 (13) | 0.0199 (12) | −0.0030 (9) | −0.0015 (10) | −0.0009 (11) |
C4 | 0.0190 (10) | 0.0247 (13) | 0.0239 (12) | 0.0007 (9) | −0.0005 (9) | 0.0036 (10) |
C11 | 0.0192 (11) | 0.0326 (14) | 0.0198 (12) | 0.0032 (10) | 0.0036 (10) | 0.0019 (11) |
C12 | 0.0254 (11) | 0.0250 (13) | 0.0219 (13) | −0.0010 (10) | −0.0023 (9) | 0.0036 (11) |
C13 | 0.0251 (12) | 0.0310 (15) | 0.0340 (14) | −0.0036 (10) | −0.0006 (10) | −0.0012 (12) |
C14 | 0.0241 (12) | 0.0359 (16) | 0.0320 (14) | 0.0019 (11) | −0.0035 (10) | −0.0015 (12) |
C15 | 0.0248 (12) | 0.0252 (13) | 0.0200 (12) | 0.0021 (10) | 0.0004 (10) | 0.0009 (11) |
C21 | 0.0238 (11) | 0.0293 (14) | 0.0189 (12) | 0.0003 (10) | 0.0059 (10) | −0.0024 (12) |
C22 | 0.0270 (12) | 0.0358 (15) | 0.0256 (14) | 0.0010 (11) | 0.0032 (10) | −0.0089 (12) |
C23 | 0.0333 (13) | 0.0376 (17) | 0.0366 (15) | −0.0031 (12) | 0.0067 (11) | −0.0171 (13) |
C24 | 0.0388 (14) | 0.0302 (15) | 0.0500 (17) | 0.0016 (12) | 0.0097 (12) | −0.0135 (14) |
C25 | 0.0353 (14) | 0.0361 (16) | 0.0440 (17) | 0.0091 (12) | 0.0002 (12) | −0.0051 (14) |
C26 | 0.0286 (12) | 0.0328 (15) | 0.0347 (15) | 0.0021 (11) | −0.0005 (11) | −0.0090 (12) |
C31 | 0.0205 (12) | 0.0317 (15) | 0.0348 (15) | −0.0031 (10) | 0.0007 (10) | −0.0104 (13) |
C32 | 0.0694 (18) | 0.0360 (17) | 0.0312 (15) | −0.0123 (14) | −0.0038 (14) | −0.0065 (14) |
C33 | 0.094 (2) | 0.063 (2) | 0.0376 (18) | −0.0190 (18) | −0.0093 (16) | −0.0116 (18) |
C34 | 0.068 (2) | 0.056 (2) | 0.059 (2) | −0.0174 (17) | 0.0087 (17) | −0.0305 (19) |
C35 | 0.0512 (17) | 0.0399 (18) | 0.082 (2) | 0.0032 (14) | −0.0046 (17) | −0.0272 (18) |
C36 | 0.0443 (15) | 0.0363 (17) | 0.063 (2) | 0.0086 (13) | −0.0112 (13) | −0.0184 (16) |
C41 | 0.0216 (12) | 0.0271 (14) | 0.0244 (13) | 0.0013 (10) | 0.0041 (10) | 0.0039 (12) |
C42 | 0.0248 (12) | 0.0269 (14) | 0.0437 (16) | 0.0005 (10) | 0.0001 (11) | 0.0061 (12) |
C43 | 0.0361 (13) | 0.0358 (15) | 0.0592 (18) | −0.0059 (12) | 0.0021 (13) | 0.0159 (15) |
C44 | 0.0451 (14) | 0.0447 (18) | 0.0372 (16) | −0.0022 (13) | 0.0030 (12) | 0.0203 (14) |
C45 | 0.0308 (12) | 0.0414 (16) | 0.0225 (13) | −0.0021 (11) | −0.0001 (10) | 0.0096 (12) |
C121 | 0.0379 (13) | 0.0263 (14) | 0.0327 (14) | −0.0034 (10) | 0.0001 (11) | 0.0063 (12) |
C122 | 0.0646 (17) | 0.0433 (17) | 0.0431 (17) | −0.0046 (14) | 0.0067 (13) | 0.0184 (14) |
C123 | 0.0570 (16) | 0.0292 (16) | 0.0526 (18) | −0.0078 (13) | 0.0031 (13) | −0.0004 (15) |
C151 | 0.0320 (13) | 0.0353 (15) | 0.0269 (14) | 0.0010 (11) | 0.0049 (11) | −0.0020 (12) |
C421 | 0.0323 (14) | 0.0270 (14) | 0.0637 (18) | −0.0071 (11) | −0.0068 (12) | −0.0021 (14) |
C422 | 0.0462 (17) | 0.0366 (17) | 0.111 (3) | −0.0039 (14) | −0.0063 (17) | −0.015 (2) |
C423 | 0.0355 (15) | 0.0376 (16) | 0.093 (2) | −0.0077 (13) | −0.0169 (14) | 0.0026 (17) |
C451 | 0.0358 (13) | 0.0536 (18) | 0.0313 (15) | 0.0012 (12) | 0.0106 (11) | 0.0028 (14) |
N2 | 0.0167 (9) | 0.0292 (11) | 0.0227 (10) | −0.0012 (8) | 0.0007 (8) | −0.0035 (10) |
N3 | 0.0275 (10) | 0.0274 (11) | 0.0240 (11) | −0.0036 (8) | 0.0034 (8) | −0.0001 (10) |
O1 | 0.0197 (8) | 0.0323 (9) | 0.0166 (8) | 0.0005 (7) | −0.0002 (6) | 0.0007 (8) |
O2 | 0.0239 (8) | 0.0286 (9) | 0.0276 (9) | 0.0028 (7) | 0.0002 (7) | 0.0057 (8) |
O11 | 0.0371 (9) | 0.0362 (10) | 0.0372 (10) | −0.0018 (8) | −0.0120 (8) | 0.0095 (9) |
O41 | 0.0339 (9) | 0.0284 (9) | 0.0375 (10) | −0.0036 (7) | −0.0097 (7) | 0.0073 (8) |
C1—O1 | 1.463 (2) | C34—C35 | 1.369 (4) |
C1—C2 | 1.525 (3) | C34—H34 | 0.9500 |
C1—C11 | 1.525 (3) | C35—C36 | 1.373 (3) |
C1—C15 | 1.529 (3) | C35—H35 | 0.9500 |
C2—N3 | 1.463 (3) | C36—H36 | 0.9500 |
C2—C3 | 1.543 (3) | C41—O41 | 1.204 (2) |
C2—H2 | 1.0000 | C41—C42 | 1.498 (3) |
C3—N2 | 1.463 (3) | C42—C421 | 1.536 (3) |
C3—C4 | 1.519 (3) | C42—C43 | 1.536 (3) |
C3—H3 | 1.0000 | C42—H42 | 1.0000 |
C4—O2 | 1.446 (2) | C43—C44 | 1.526 (3) |
C4—C45 | 1.528 (3) | C43—H43A | 0.9900 |
C4—C41 | 1.543 (3) | C43—H43B | 0.9900 |
C11—O11 | 1.212 (2) | C44—C45 | 1.525 (3) |
C11—C12 | 1.509 (3) | C44—H44A | 0.9900 |
C12—C121 | 1.522 (3) | C44—H44B | 0.9900 |
C12—C13 | 1.530 (3) | C45—C451 | 1.530 (3) |
C12—H12 | 1.0000 | C45—H45 | 1.0000 |
C13—C14 | 1.516 (3) | C121—C123 | 1.519 (3) |
C13—H13A | 0.9900 | C121—C122 | 1.526 (3) |
C13—H13B | 0.9900 | C121—H121 | 1.0000 |
C14—C15 | 1.529 (3) | C122—H12A | 0.9800 |
C14—H14A | 0.9900 | C122—H12B | 0.9800 |
C14—H14B | 0.9900 | C122—H12C | 0.9800 |
C15—C151 | 1.535 (3) | C123—H12D | 0.9800 |
C15—H15 | 1.0000 | C123—H12E | 0.9800 |
C21—C22 | 1.386 (3) | C123—H12F | 0.9800 |
C21—C26 | 1.388 (3) | C151—H15A | 0.9800 |
C21—N2 | 1.426 (3) | C151—H15B | 0.9800 |
C22—C23 | 1.365 (3) | C151—H15C | 0.9800 |
C22—H22 | 0.9500 | C421—C422 | 1.512 (3) |
C23—C24 | 1.380 (3) | C421—C423 | 1.519 (3) |
C23—H23 | 0.9500 | C421—H421 | 1.0000 |
C24—C25 | 1.372 (3) | C422—H42A | 0.9800 |
C24—H24 | 0.9500 | C422—H42B | 0.9800 |
C25—C26 | 1.370 (3) | C422—H42C | 0.9800 |
C25—H25 | 0.9500 | C423—H42D | 0.9800 |
C26—H26 | 0.9500 | C423—H42E | 0.9800 |
C31—C32 | 1.379 (3) | C423—H42F | 0.9800 |
C31—C36 | 1.382 (3) | C451—H45A | 0.9800 |
C31—N3 | 1.430 (3) | C451—H45B | 0.9800 |
C32—C33 | 1.392 (4) | C451—H45C | 0.9800 |
C32—H32 | 0.9500 | N2—O1 | 1.4461 (19) |
C33—C34 | 1.358 (4) | N3—O2 | 1.450 (2) |
C33—H33 | 0.9500 | ||
O1—C1—C2 | 103.24 (15) | C35—C36—H36 | 119.6 |
O1—C1—C11 | 108.86 (17) | C31—C36—H36 | 119.6 |
C2—C1—C11 | 111.67 (16) | O41—C41—C42 | 124.1 (2) |
O1—C1—C15 | 108.11 (15) | O41—C41—C4 | 120.54 (19) |
C2—C1—C15 | 115.93 (18) | C42—C41—C4 | 115.16 (19) |
C11—C1—C15 | 108.68 (16) | C41—C42—C421 | 113.1 (2) |
N3—C2—C1 | 112.15 (17) | C41—C42—C43 | 106.6 (2) |
N3—C2—C3 | 106.39 (16) | C421—C42—C43 | 116.40 (18) |
C1—C2—C3 | 103.31 (16) | C41—C42—H42 | 106.7 |
N3—C2—H2 | 111.5 | C421—C42—H42 | 106.7 |
C1—C2—H2 | 111.5 | C43—C42—H42 | 106.7 |
C3—C2—H2 | 111.5 | C44—C43—C42 | 111.85 (18) |
N2—C3—C4 | 113.36 (17) | C44—C43—H43A | 109.2 |
N2—C3—C2 | 106.65 (15) | C42—C43—H43A | 109.2 |
C4—C3—C2 | 103.44 (16) | C44—C43—H43B | 109.2 |
N2—C3—H3 | 111.0 | C42—C43—H43B | 109.2 |
C4—C3—H3 | 111.0 | H43A—C43—H43B | 107.9 |
C2—C3—H3 | 111.0 | C45—C44—C43 | 112.6 (2) |
O2—C4—C3 | 103.33 (15) | C45—C44—H44A | 109.1 |
O2—C4—C45 | 106.12 (16) | C43—C44—H44A | 109.1 |
C3—C4—C45 | 118.35 (18) | C45—C44—H44B | 109.1 |
O2—C4—C41 | 110.52 (16) | C43—C44—H44B | 109.1 |
C3—C4—C41 | 110.18 (17) | H44A—C44—H44B | 107.8 |
C45—C4—C41 | 108.08 (16) | C44—C45—C4 | 109.72 (19) |
O11—C11—C12 | 123.3 (2) | C44—C45—C451 | 111.84 (18) |
O11—C11—C1 | 121.21 (19) | C4—C45—C451 | 111.68 (18) |
C12—C11—C1 | 115.48 (18) | C44—C45—H45 | 107.8 |
C11—C12—C121 | 113.74 (17) | C4—C45—H45 | 107.8 |
C11—C12—C13 | 108.86 (18) | C451—C45—H45 | 107.8 |
C121—C12—C13 | 116.18 (17) | C123—C121—C12 | 111.02 (18) |
C11—C12—H12 | 105.7 | C123—C121—C122 | 110.7 (2) |
C121—C12—H12 | 105.7 | C12—C121—C122 | 112.6 (2) |
C13—C12—H12 | 105.7 | C123—C121—H121 | 107.4 |
C14—C13—C12 | 110.80 (17) | C12—C121—H121 | 107.4 |
C14—C13—H13A | 109.5 | C122—C121—H121 | 107.4 |
C12—C13—H13A | 109.5 | C121—C122—H12A | 109.5 |
C14—C13—H13B | 109.5 | C121—C122—H12B | 109.5 |
C12—C13—H13B | 109.5 | H12A—C122—H12B | 109.5 |
H13A—C13—H13B | 108.1 | C121—C122—H12C | 109.5 |
C13—C14—C15 | 112.55 (18) | H12A—C122—H12C | 109.5 |
C13—C14—H14A | 109.1 | H12B—C122—H12C | 109.5 |
C15—C14—H14A | 109.1 | C121—C123—H12D | 109.5 |
C13—C14—H14B | 109.1 | C121—C123—H12E | 109.5 |
C15—C14—H14B | 109.1 | H12D—C123—H12E | 109.5 |
H14A—C14—H14B | 107.8 | C121—C123—H12F | 109.5 |
C14—C15—C1 | 110.42 (17) | H12D—C123—H12F | 109.5 |
C14—C15—C151 | 111.22 (17) | H12E—C123—H12F | 109.5 |
C1—C15—C151 | 109.34 (17) | C15—C151—H15A | 109.5 |
C14—C15—H15 | 108.6 | C15—C151—H15B | 109.5 |
C1—C15—H15 | 108.6 | H15A—C151—H15B | 109.5 |
C151—C15—H15 | 108.6 | C15—C151—H15C | 109.5 |
C22—C21—C26 | 118.0 (2) | H15A—C151—H15C | 109.5 |
C22—C21—N2 | 118.23 (19) | H15B—C151—H15C | 109.5 |
C26—C21—N2 | 123.5 (2) | C422—C421—C423 | 110.71 (19) |
C23—C22—C21 | 121.0 (2) | C422—C421—C42 | 111.0 (2) |
C23—C22—H22 | 119.5 | C423—C421—C42 | 113.0 (2) |
C21—C22—H22 | 119.5 | C422—C421—H421 | 107.3 |
C22—C23—C24 | 120.7 (2) | C423—C421—H421 | 107.3 |
C22—C23—H23 | 119.6 | C42—C421—H421 | 107.3 |
C24—C23—H23 | 119.6 | C421—C422—H42A | 109.5 |
C25—C24—C23 | 118.4 (2) | C421—C422—H42B | 109.5 |
C25—C24—H24 | 120.8 | H42A—C422—H42B | 109.5 |
C23—C24—H24 | 120.8 | C421—C422—H42C | 109.5 |
C26—C25—C24 | 121.4 (2) | H42A—C422—H42C | 109.5 |
C26—C25—H25 | 119.3 | H42B—C422—H42C | 109.5 |
C24—C25—H25 | 119.3 | C421—C423—H42D | 109.5 |
C25—C26—C21 | 120.2 (2) | C421—C423—H42E | 109.5 |
C25—C26—H26 | 119.9 | H42D—C423—H42E | 109.5 |
C21—C26—H26 | 119.9 | C421—C423—H42F | 109.5 |
C32—C31—C36 | 118.9 (2) | H42D—C423—H42F | 109.5 |
C32—C31—N3 | 124.7 (2) | H42E—C423—H42F | 109.5 |
C36—C31—N3 | 116.4 (2) | C45—C451—H45A | 109.5 |
C31—C32—C33 | 119.5 (3) | C45—C451—H45B | 109.5 |
C31—C32—H32 | 120.3 | H45A—C451—H45B | 109.5 |
C33—C32—H32 | 120.3 | C45—C451—H45C | 109.5 |
C34—C33—C32 | 120.9 (3) | H45A—C451—H45C | 109.5 |
C34—C33—H33 | 119.5 | H45B—C451—H45C | 109.5 |
C32—C33—H33 | 119.5 | C21—N2—O1 | 110.86 (14) |
C33—C34—C35 | 119.7 (3) | C21—N2—C3 | 118.73 (17) |
C33—C34—H34 | 120.2 | O1—N2—C3 | 105.74 (14) |
C35—C34—H34 | 120.2 | C31—N3—O2 | 109.51 (15) |
C34—C35—C36 | 120.2 (3) | C31—N3—C2 | 120.11 (18) |
C34—C35—H35 | 119.9 | O2—N3—C2 | 105.61 (15) |
C36—C35—H35 | 119.9 | N2—O1—C1 | 105.71 (13) |
C35—C36—C31 | 120.8 (3) | C4—O2—N3 | 106.28 (14) |
Experimental details
Crystal data | |
Chemical formula | C34H44N2O4 |
Mr | 544.71 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 180 |
a, b, c (Å) | 9.5037 (6), 12.4162 (10), 24.8982 (18) |
V (Å3) | 2938.0 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.37 × 0.13 × 0.06 |
Data collection | |
Diffractometer | Agilent Xcalibur |
Absorption correction | Multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.908, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24309, 5963, 3751 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.080, 0.87 |
No. of reflections | 5963 |
No. of parameters | 367 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.19 |
Computer programs: CrysAlis PRO (Agilent, 2010), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).
References
Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aurich, H. G., Baum, G., Massa, W. & Mogendorf, K.-D. (1989). Acta Cryst. C45, 760–763. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Boelens, M. H. (1993). Perfum. Flavor. 18, 27–30. CAS Google Scholar
Brüning, I., Grashey, R., Hauck, R. & Seidel, H. (1973). Org. Synth. Coll. Vol. 5, 1124–1129. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Clark, G. S. (1990). Perfum. Flavor. 15, 42–44. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Iball, J., Motherwell, W. D. S., Barnes, J. C. & Golnazarians, W. (1986). Acta Cryst. C42, 239–241. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Iball, J., Motherwell, W. D. S., Pollock, J. J. S. & Tedder, J. M. (1968). Chem. Commun. pp. 365–366. Google Scholar
Ito, F., Kumamoto, T., Yamagachi, K. & Ishikawa, T. (2009). Tetrahedron, 65, 771–785. Web of Science CrossRef CAS Google Scholar
Kharchouf, S., Majidi, L., Bouklah, M., Hammouti, B., Bouyanzer, A. & Aouniti, A. (2011). Arabian J. Chem. doi:10.1016/j.arabjc.2010.12.002. Google Scholar
Kharchouf, S., Majidi, L., Znini, M., Costa, J., Hammouti, B. & Paolini, J. (2012). Int. J. Electrochem. Sci. 7, 10325–10337. CAS Google Scholar
Majidi, L., Faska, Z., Znini, M., Kharchouf, S., Bouyanzer, A. & Hammouti, B. (2010). J. Mater. Environ. Sci. 1, 219–226. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanka, A., Tanka, R., Uda, H. & Yosikoshi, A. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1721–1727. Google Scholar
Umemoko, K. (1998). Nat. Prod. Lett. 11, 161–165. Google Scholar
Wagner, E., Becan, L. & Nowakowska, E. (2004). Bioorg. Med. Chem. 12, 265–269. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Synthesis of various p-menthane derivatives is studied extensively, with the goal to obtain biologically active and ecofriendly corrosion inhibitor compounds (Ito et al., 2009; Kharchouf et al., 2011; 2012; Majidi et al., 2010). p-Menthan-3-one, 1 (Menthone) have become the key starting natural compound for the synthesis of a number of substances exhibiting various kinds of biological activity (Ito et al., 2009). Menthone, a monoterpene ketone, occurs in nature and is widely present in high concentration in a few Mentha species, such as Mentha specata aromentha (Clark, 1990), M. Avrvensis (Umemoko, 1998) and the essential oils of pepperimint and other mint oils (Boelens, 1993). On the other hand, isoxazolidine rings are the frame of a number of natural products and antibiotics and are extensively used in the synthesis of a great many biologically important compounds (Wagner et al., 2004). The goal of the present study was to obtain a new p-menthane derivative having two isoxazolidine moieties. This latter is of interest, because it can exhibit biological activity and has useful properties as precursor for synthesis.
The structure of the title compound is built up from two fused five membered oxazolidine rings sharing two C atoms to which p-menthone and phenyl rings are attached (Fig. 1). As observed in other diisooxazolidines (Iball et al., 1968; 1986; Aurich et al., 1989), the two oxazolidine rings display roughly half-chair conformation with the puckering parameters Q(2)= 0.366 (2) Å and φ= 350.2 (3)° for ring A (C1, C2, C3, O1, N2) and Q(2)= 0.360 (2) Å and φ(2= 347.7 (3)° for ring B (C2, C3, C4, O2, N3) (Cremer & Pople, 1975). They could be regarded as twisted on C1—O1 and C4—O2, respectively. This two fused rings have a butterfly shape with the H atoms attached to the C2—C3 edge in cis position. Both p-menthone fragments display a chair conformation with the puckering amplitudes of θ= 180.0 (2)°, φ= 74 (10)° and θ= 1.2 (2)°, φ= 314 (8)° respectively. The packing is stabilized only by van der Waals interactions.