organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R*,6R*,4′S*,8′R*,3′′R*,6′′R*)-3,3′′-Diiso­propyl-6,6′′-di­methyl-2′,6′-di­phenyl­di­spiro­[cyclo­hexane-1,4′-(3,7-dioxa-2,6-di­aza­bi­cyclo­[3.3.0]octa­ne)-8′,1′′-cyclo­hexa­ne]-2,2′′-dione

aLaboratoire des Substances Naturelles et Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, Errachidia, Morocco, bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France, and cLaboratoire de Chimie Physique des Matériaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco
*Correspondence e-mail: med.azrour@gmail.com

(Received 26 April 2013; accepted 19 June 2013; online 26 June 2013)

The two oxazolidine rings (A and B) of the title compound, C34H44N2O4, display roughly half-chair conformations, which could be described as twisted on the C—O bond. Together, the fused oxazolidine rings have a butterfly shape, with the H atoms attached to the ring junction C atoms in a cis orientation. The cyclo­hexane rings of both p-menthone fragments display chair conformations. The absolute configuration could not be determined from the X-ray diffraction data, but the relative configuration of the stereocentres could be deduced.

Related literature

For a related synthesis, see: Brüning et al. (1973[Brüning, I., Grashey, R., Hauck, R. & Seidel, H. (1973). Org. Synth. Coll. Vol. 5, 1124-1129.]); Tanka et al. (1972[Tanka, A., Tanka, R., Uda, H. & Yosikoshi, A. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1721-1727.]). For the properties of p-menthane derivatives, see: Ito et al. (2009[Ito, F., Kumamoto, T., Yamagachi, K. & Ishikawa, T. (2009). Tetrahedron, 65, 771-785.]); Kharchouf et al. (2011[Kharchouf, S., Majidi, L., Bouklah, M., Hammouti, B., Bouyanzer, A. & Aouniti, A. (2011). Arabian J. Chem. doi:10.1016/j.arabjc.2010.12.002.], 2012[Kharchouf, S., Majidi, L., Znini, M., Costa, J., Hammouti, B. & Paolini, J. (2012). Int. J. Electrochem. Sci. 7, 10325-10337.]); Majidi et al. (2010[Majidi, L., Faska, Z., Znini, M., Kharchouf, S., Bouyanzer, A. & Hammouti, B. (2010). J. Mater. Environ. Sci. 1, 219-226.]); Clark (1990[Clark, G. S. (1990). Perfum. Flavor. 15, 42-44.]); Umemoko (1998[Umemoko, K. (1998). Nat. Prod. Lett. 11, 161-165.]); Boelens (1993[Boelens, M. H. (1993). Perfum. Flavor. 18, 27-30.]); Wagner et al. (2004[Wagner, E., Becan, L. & Nowakowska, E. (2004). Bioorg. Med. Chem. 12, 265-269.]). For related structures, see: Iball et al. (1968[Iball, J., Motherwell, W. D. S., Pollock, J. J. S. & Tedder, J. M. (1968). Chem. Commun. pp. 365-366.], 1986[Iball, J., Motherwell, W. D. S., Barnes, J. C. & Golnazarians, W. (1986). Acta Cryst. C42, 239-241.]); Aurich et al. (1989[Aurich, H. G., Baum, G., Massa, W. & Mogendorf, K.-D. (1989). Acta Cryst. C45, 760-763.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C34H44N2O4

  • Mr = 544.71

  • Orthorhombic, P 21 21 21

  • a = 9.5037 (6) Å

  • b = 12.4162 (10) Å

  • c = 24.8982 (18) Å

  • V = 2938.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 K

  • 0.37 × 0.13 × 0.06 mm

Data collection
  • Agilent Xcalibur diffractometer

  • Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.908, Tmax = 1.000

  • 24309 measured reflections

  • 5963 independent reflections

  • 3751 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.080

  • S = 0.87

  • 5963 reflections

  • 367 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Synthesis of various p-menthane derivatives is studied extensively, with the goal to obtain biologically active and ecofriendly corrosion inhibitor compounds (Ito et al., 2009; Kharchouf et al., 2011; 2012; Majidi et al., 2010). p-Menthan-3-one, 1 (Menthone) have become the key starting natural compound for the synthesis of a number of substances exhibiting various kinds of biological activity (Ito et al., 2009). Menthone, a monoterpene ketone, occurs in nature and is widely present in high concentration in a few Mentha species, such as Mentha specata aromentha (Clark, 1990), M. Avrvensis (Umemoko, 1998) and the essential oils of pepperimint and other mint oils (Boelens, 1993). On the other hand, isoxazolidine rings are the frame of a number of natural products and antibiotics and are extensively used in the synthesis of a great many biologically important compounds (Wagner et al., 2004). The goal of the present study was to obtain a new p-menthane derivative having two isoxazolidine moieties. This latter is of interest, because it can exhibit biological activity and has useful properties as precursor for synthesis.

The structure of the title compound is built up from two fused five membered oxazolidine rings sharing two C atoms to which p-menthone and phenyl rings are attached (Fig. 1). As observed in other diisooxazolidines (Iball et al., 1968; 1986; Aurich et al., 1989), the two oxazolidine rings display roughly half-chair conformation with the puckering parameters Q(2)= 0.366 (2) Å and φ= 350.2 (3)° for ring A (C1, C2, C3, O1, N2) and Q(2)= 0.360 (2) Å and φ(2= 347.7 (3)° for ring B (C2, C3, C4, O2, N3) (Cremer & Pople, 1975). They could be regarded as twisted on C1—O1 and C4—O2, respectively. This two fused rings have a butterfly shape with the H atoms attached to the C2—C3 edge in cis position. Both p-menthone fragments display a chair conformation with the puckering amplitudes of θ= 180.0 (2)°, φ= 74 (10)° and θ= 1.2 (2)°, φ= 314 (8)° respectively. The packing is stabilized only by van der Waals interactions.

Related literature top

For a related synthesis, see: Brüning et al. (1973); Tanka et al. (1972). For the properties of p-menthane derivatives, see: Ito et al. (2009); Kharchouf et al. (2011, 2012); Majidi et al. (2010); Clark (1990); Umemoko (1998); Boelens (1993); Wagner et al. (2004). For related structures, see: Iball et al. (1968, 1986); Aurich et al. (1989). For ring conformations, see: Cremer & Pople (1975).

Experimental top

2-Hydroxymethyle menthone (1) and n-diphenylnitrone (2) were prepared according to literature procedures (Brüning et al., 1973; Tanka et al., 1972).

To a mixture of 6 mmoles of 2-hydroxymethylene menthone and 6 mmoles of n-diphenylnitrone in 20 ml of ethyl acetate (Fig. 2) was added a catalytic amount of K10 (montmorillonite/FeIII). The reaction mixture was stirred for 48 h at 25°C and then filtered. The solvent was removed and the product was purified by recrystallization in ethanol (yield 67%). Single cristals were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined, so any reference to the Flack parameter was removed.

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 1.0 Å (methine), 0.99 Å (methylene) or 0.98 Å (methyl), with Uiso(H) = 1.2Ueq(CH, CH2) or Uiso(H) = 1.5Ueq(CH3).

Structure description top

Synthesis of various p-menthane derivatives is studied extensively, with the goal to obtain biologically active and ecofriendly corrosion inhibitor compounds (Ito et al., 2009; Kharchouf et al., 2011; 2012; Majidi et al., 2010). p-Menthan-3-one, 1 (Menthone) have become the key starting natural compound for the synthesis of a number of substances exhibiting various kinds of biological activity (Ito et al., 2009). Menthone, a monoterpene ketone, occurs in nature and is widely present in high concentration in a few Mentha species, such as Mentha specata aromentha (Clark, 1990), M. Avrvensis (Umemoko, 1998) and the essential oils of pepperimint and other mint oils (Boelens, 1993). On the other hand, isoxazolidine rings are the frame of a number of natural products and antibiotics and are extensively used in the synthesis of a great many biologically important compounds (Wagner et al., 2004). The goal of the present study was to obtain a new p-menthane derivative having two isoxazolidine moieties. This latter is of interest, because it can exhibit biological activity and has useful properties as precursor for synthesis.

The structure of the title compound is built up from two fused five membered oxazolidine rings sharing two C atoms to which p-menthone and phenyl rings are attached (Fig. 1). As observed in other diisooxazolidines (Iball et al., 1968; 1986; Aurich et al., 1989), the two oxazolidine rings display roughly half-chair conformation with the puckering parameters Q(2)= 0.366 (2) Å and φ= 350.2 (3)° for ring A (C1, C2, C3, O1, N2) and Q(2)= 0.360 (2) Å and φ(2= 347.7 (3)° for ring B (C2, C3, C4, O2, N3) (Cremer & Pople, 1975). They could be regarded as twisted on C1—O1 and C4—O2, respectively. This two fused rings have a butterfly shape with the H atoms attached to the C2—C3 edge in cis position. Both p-menthone fragments display a chair conformation with the puckering amplitudes of θ= 180.0 (2)°, φ= 74 (10)° and θ= 1.2 (2)°, φ= 314 (8)° respectively. The packing is stabilized only by van der Waals interactions.

For a related synthesis, see: Brüning et al. (1973); Tanka et al. (1972). For the properties of p-menthane derivatives, see: Ito et al. (2009); Kharchouf et al. (2011, 2012); Majidi et al. (2010); Clark (1990); Umemoko (1998); Boelens (1993); Wagner et al. (2004). For related structures, see: Iball et al. (1968, 1986); Aurich et al. (1989). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Scheme showing the synthetic pathway
(3R*,6R*,4'S*,8'R*,3''R*,6''R*)-3,3''-Diisopropyl-6,6''-dimethyl-2',6'-diphenyldispiro[cyclohexane-1,4'-(3,7-dioxa-2,6-diazabicyclo[3.3.0]octane)-8',1''-cyclohexane]-2,2''-dione top
Crystal data top
C34H44N2O4F(000) = 1176
Mr = 544.71Dx = 1.231 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6434 reflections
a = 9.5037 (6) Åθ = 3.0–28.6°
b = 12.4162 (10) ŵ = 0.08 mm1
c = 24.8982 (18) ÅT = 180 K
V = 2938.0 (4) Å3Parallepiped, colourless
Z = 40.37 × 0.13 × 0.06 mm
Data collection top
Agilent Xcalibur
diffractometer
5963 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1110
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2010)
k = 1515
Tmin = 0.908, Tmax = 1.000l = 3131
24309 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
5963 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C34H44N2O4V = 2938.0 (4) Å3
Mr = 544.71Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5037 (6) ŵ = 0.08 mm1
b = 12.4162 (10) ÅT = 180 K
c = 24.8982 (18) Å0.37 × 0.13 × 0.06 mm
Data collection top
Agilent Xcalibur
diffractometer
5963 independent reflections
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2010)
3751 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 1.000Rint = 0.098
24309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.87Δρmax = 0.17 e Å3
5963 reflectionsΔρmin = 0.19 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19364 (19)0.00584 (18)0.11958 (8)0.0199 (5)
C20.3120 (2)0.07456 (17)0.14271 (9)0.0221 (5)
H20.33710.05160.18000.026*
C30.4346 (2)0.05539 (17)0.10324 (8)0.0218 (5)
H30.51460.01780.12140.026*
C40.47632 (19)0.16842 (17)0.08623 (9)0.0225 (5)
C110.1960 (2)0.10828 (18)0.14225 (9)0.0238 (5)
C120.09059 (19)0.18512 (17)0.11807 (9)0.0241 (5)
H120.11060.18580.07860.029*
C130.0568 (2)0.13708 (18)0.12394 (9)0.0300 (6)
H13A0.12580.18380.10540.036*
H13B0.08260.13420.16240.036*
C140.0626 (2)0.02464 (18)0.10027 (10)0.0306 (6)
H14A0.15820.00530.10560.037*
H14B0.04500.02890.06110.037*
C150.04500 (19)0.05139 (17)0.12565 (9)0.0233 (5)
H150.04040.12230.10670.028*
C210.4178 (2)0.12024 (18)0.05577 (8)0.0240 (5)
C220.3369 (2)0.18798 (19)0.02411 (9)0.0295 (6)
H220.25770.15980.00560.035*
C230.3692 (2)0.2946 (2)0.01916 (9)0.0358 (6)
H230.31070.34010.00190.043*
C240.4860 (2)0.3371 (2)0.04434 (10)0.0397 (7)
H240.50740.41160.04160.048*
C250.5706 (2)0.2691 (2)0.07344 (10)0.0385 (6)
H250.65300.29680.09000.046*
C260.5387 (2)0.1620 (2)0.07909 (9)0.0320 (6)
H260.59940.11630.09900.038*
C310.3156 (2)0.25848 (19)0.18430 (10)0.0290 (6)
C320.3771 (3)0.2242 (2)0.23146 (10)0.0455 (7)
H320.40130.15050.23610.055*
C330.4036 (3)0.2983 (3)0.27216 (12)0.0649 (9)
H330.44690.27490.30450.078*
C340.3683 (3)0.4037 (3)0.26628 (13)0.0607 (9)
H340.38540.45330.29460.073*
C350.3081 (3)0.4380 (2)0.21937 (13)0.0576 (8)
H350.28590.51210.21470.069*
C360.2796 (2)0.3658 (2)0.17905 (11)0.0477 (7)
H360.23460.38980.14720.057*
C410.5902 (2)0.21326 (18)0.12434 (9)0.0244 (5)
C420.6212 (2)0.33086 (18)0.11805 (9)0.0318 (6)
H420.52960.36960.12220.038*
C430.6684 (2)0.3473 (2)0.05962 (10)0.0437 (7)
H43A0.68370.42510.05300.052*
H43B0.75890.30970.05380.052*
C440.5597 (2)0.3048 (2)0.01977 (10)0.0423 (7)
H44A0.47220.34740.02330.051*
H44B0.59580.31480.01720.051*
C450.5259 (2)0.18599 (19)0.02852 (8)0.0316 (6)
H450.44650.16650.00400.038*
C1210.1084 (2)0.30106 (18)0.13674 (9)0.0323 (6)
H1210.21160.31630.13820.039*
C1220.0492 (3)0.3200 (2)0.19291 (10)0.0504 (7)
H12A0.05230.30580.19280.076*
H12B0.09550.27140.21840.076*
H12C0.06620.39480.20360.076*
C1230.0439 (2)0.37914 (19)0.09676 (11)0.0463 (7)
H12D0.05770.36650.09450.069*
H12E0.06120.45320.10860.069*
H12F0.08650.36810.06140.069*
C1510.0135 (2)0.06976 (19)0.18542 (9)0.0314 (6)
H15A0.03180.00330.20540.047*
H15B0.08550.09030.18980.047*
H15C0.07390.12750.19920.047*
C4210.7198 (2)0.37487 (19)0.16169 (11)0.0410 (7)
H4210.69170.34060.19640.049*
C4220.7019 (3)0.4951 (2)0.16820 (14)0.0645 (9)
H42A0.76480.52110.19660.097*
H42B0.60420.51110.17790.097*
H42C0.72520.53120.13430.097*
C4230.8732 (2)0.3466 (2)0.15191 (12)0.0554 (8)
H42D0.90690.38430.11980.083*
H42E0.88220.26870.14660.083*
H42F0.92960.36850.18300.083*
C4510.6509 (2)0.1136 (2)0.01454 (9)0.0402 (7)
H45A0.72890.12860.03920.060*
H45B0.68090.12780.02240.060*
H45C0.62300.03790.01800.060*
N20.37834 (15)0.00963 (14)0.05922 (7)0.0228 (4)
N30.27983 (16)0.18972 (14)0.14028 (7)0.0263 (4)
O10.22708 (13)0.00147 (12)0.06227 (5)0.0229 (3)
O20.34705 (13)0.22877 (12)0.09175 (6)0.0267 (4)
O110.27485 (15)0.13285 (13)0.17847 (6)0.0369 (4)
O410.65421 (14)0.15395 (13)0.15382 (6)0.0333 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (11)0.0246 (12)0.0126 (11)0.0020 (9)0.0001 (9)0.0004 (11)
C20.0219 (11)0.0222 (13)0.0221 (13)0.0006 (9)0.0012 (9)0.0006 (11)
C30.0216 (11)0.0240 (13)0.0199 (12)0.0030 (9)0.0015 (10)0.0009 (11)
C40.0190 (10)0.0247 (13)0.0239 (12)0.0007 (9)0.0005 (9)0.0036 (10)
C110.0192 (11)0.0326 (14)0.0198 (12)0.0032 (10)0.0036 (10)0.0019 (11)
C120.0254 (11)0.0250 (13)0.0219 (13)0.0010 (10)0.0023 (9)0.0036 (11)
C130.0251 (12)0.0310 (15)0.0340 (14)0.0036 (10)0.0006 (10)0.0012 (12)
C140.0241 (12)0.0359 (16)0.0320 (14)0.0019 (11)0.0035 (10)0.0015 (12)
C150.0248 (12)0.0252 (13)0.0200 (12)0.0021 (10)0.0004 (10)0.0009 (11)
C210.0238 (11)0.0293 (14)0.0189 (12)0.0003 (10)0.0059 (10)0.0024 (12)
C220.0270 (12)0.0358 (15)0.0256 (14)0.0010 (11)0.0032 (10)0.0089 (12)
C230.0333 (13)0.0376 (17)0.0366 (15)0.0031 (12)0.0067 (11)0.0171 (13)
C240.0388 (14)0.0302 (15)0.0500 (17)0.0016 (12)0.0097 (12)0.0135 (14)
C250.0353 (14)0.0361 (16)0.0440 (17)0.0091 (12)0.0002 (12)0.0051 (14)
C260.0286 (12)0.0328 (15)0.0347 (15)0.0021 (11)0.0005 (11)0.0090 (12)
C310.0205 (12)0.0317 (15)0.0348 (15)0.0031 (10)0.0007 (10)0.0104 (13)
C320.0694 (18)0.0360 (17)0.0312 (15)0.0123 (14)0.0038 (14)0.0065 (14)
C330.094 (2)0.063 (2)0.0376 (18)0.0190 (18)0.0093 (16)0.0116 (18)
C340.068 (2)0.056 (2)0.059 (2)0.0174 (17)0.0087 (17)0.0305 (19)
C350.0512 (17)0.0399 (18)0.082 (2)0.0032 (14)0.0046 (17)0.0272 (18)
C360.0443 (15)0.0363 (17)0.063 (2)0.0086 (13)0.0112 (13)0.0184 (16)
C410.0216 (12)0.0271 (14)0.0244 (13)0.0013 (10)0.0041 (10)0.0039 (12)
C420.0248 (12)0.0269 (14)0.0437 (16)0.0005 (10)0.0001 (11)0.0061 (12)
C430.0361 (13)0.0358 (15)0.0592 (18)0.0059 (12)0.0021 (13)0.0159 (15)
C440.0451 (14)0.0447 (18)0.0372 (16)0.0022 (13)0.0030 (12)0.0203 (14)
C450.0308 (12)0.0414 (16)0.0225 (13)0.0021 (11)0.0001 (10)0.0096 (12)
C1210.0379 (13)0.0263 (14)0.0327 (14)0.0034 (10)0.0001 (11)0.0063 (12)
C1220.0646 (17)0.0433 (17)0.0431 (17)0.0046 (14)0.0067 (13)0.0184 (14)
C1230.0570 (16)0.0292 (16)0.0526 (18)0.0078 (13)0.0031 (13)0.0004 (15)
C1510.0320 (13)0.0353 (15)0.0269 (14)0.0010 (11)0.0049 (11)0.0020 (12)
C4210.0323 (14)0.0270 (14)0.0637 (18)0.0071 (11)0.0068 (12)0.0021 (14)
C4220.0462 (17)0.0366 (17)0.111 (3)0.0039 (14)0.0063 (17)0.015 (2)
C4230.0355 (15)0.0376 (16)0.093 (2)0.0077 (13)0.0169 (14)0.0026 (17)
C4510.0358 (13)0.0536 (18)0.0313 (15)0.0012 (12)0.0106 (11)0.0028 (14)
N20.0167 (9)0.0292 (11)0.0227 (10)0.0012 (8)0.0007 (8)0.0035 (10)
N30.0275 (10)0.0274 (11)0.0240 (11)0.0036 (8)0.0034 (8)0.0001 (10)
O10.0197 (8)0.0323 (9)0.0166 (8)0.0005 (7)0.0002 (6)0.0007 (8)
O20.0239 (8)0.0286 (9)0.0276 (9)0.0028 (7)0.0002 (7)0.0057 (8)
O110.0371 (9)0.0362 (10)0.0372 (10)0.0018 (8)0.0120 (8)0.0095 (9)
O410.0339 (9)0.0284 (9)0.0375 (10)0.0036 (7)0.0097 (7)0.0073 (8)
Geometric parameters (Å, º) top
C1—O11.463 (2)C34—C351.369 (4)
C1—C21.525 (3)C34—H340.9500
C1—C111.525 (3)C35—C361.373 (3)
C1—C151.529 (3)C35—H350.9500
C2—N31.463 (3)C36—H360.9500
C2—C31.543 (3)C41—O411.204 (2)
C2—H21.0000C41—C421.498 (3)
C3—N21.463 (3)C42—C4211.536 (3)
C3—C41.519 (3)C42—C431.536 (3)
C3—H31.0000C42—H421.0000
C4—O21.446 (2)C43—C441.526 (3)
C4—C451.528 (3)C43—H43A0.9900
C4—C411.543 (3)C43—H43B0.9900
C11—O111.212 (2)C44—C451.525 (3)
C11—C121.509 (3)C44—H44A0.9900
C12—C1211.522 (3)C44—H44B0.9900
C12—C131.530 (3)C45—C4511.530 (3)
C12—H121.0000C45—H451.0000
C13—C141.516 (3)C121—C1231.519 (3)
C13—H13A0.9900C121—C1221.526 (3)
C13—H13B0.9900C121—H1211.0000
C14—C151.529 (3)C122—H12A0.9800
C14—H14A0.9900C122—H12B0.9800
C14—H14B0.9900C122—H12C0.9800
C15—C1511.535 (3)C123—H12D0.9800
C15—H151.0000C123—H12E0.9800
C21—C221.386 (3)C123—H12F0.9800
C21—C261.388 (3)C151—H15A0.9800
C21—N21.426 (3)C151—H15B0.9800
C22—C231.365 (3)C151—H15C0.9800
C22—H220.9500C421—C4221.512 (3)
C23—C241.380 (3)C421—C4231.519 (3)
C23—H230.9500C421—H4211.0000
C24—C251.372 (3)C422—H42A0.9800
C24—H240.9500C422—H42B0.9800
C25—C261.370 (3)C422—H42C0.9800
C25—H250.9500C423—H42D0.9800
C26—H260.9500C423—H42E0.9800
C31—C321.379 (3)C423—H42F0.9800
C31—C361.382 (3)C451—H45A0.9800
C31—N31.430 (3)C451—H45B0.9800
C32—C331.392 (4)C451—H45C0.9800
C32—H320.9500N2—O11.4461 (19)
C33—C341.358 (4)N3—O21.450 (2)
C33—H330.9500
O1—C1—C2103.24 (15)C35—C36—H36119.6
O1—C1—C11108.86 (17)C31—C36—H36119.6
C2—C1—C11111.67 (16)O41—C41—C42124.1 (2)
O1—C1—C15108.11 (15)O41—C41—C4120.54 (19)
C2—C1—C15115.93 (18)C42—C41—C4115.16 (19)
C11—C1—C15108.68 (16)C41—C42—C421113.1 (2)
N3—C2—C1112.15 (17)C41—C42—C43106.6 (2)
N3—C2—C3106.39 (16)C421—C42—C43116.40 (18)
C1—C2—C3103.31 (16)C41—C42—H42106.7
N3—C2—H2111.5C421—C42—H42106.7
C1—C2—H2111.5C43—C42—H42106.7
C3—C2—H2111.5C44—C43—C42111.85 (18)
N2—C3—C4113.36 (17)C44—C43—H43A109.2
N2—C3—C2106.65 (15)C42—C43—H43A109.2
C4—C3—C2103.44 (16)C44—C43—H43B109.2
N2—C3—H3111.0C42—C43—H43B109.2
C4—C3—H3111.0H43A—C43—H43B107.9
C2—C3—H3111.0C45—C44—C43112.6 (2)
O2—C4—C3103.33 (15)C45—C44—H44A109.1
O2—C4—C45106.12 (16)C43—C44—H44A109.1
C3—C4—C45118.35 (18)C45—C44—H44B109.1
O2—C4—C41110.52 (16)C43—C44—H44B109.1
C3—C4—C41110.18 (17)H44A—C44—H44B107.8
C45—C4—C41108.08 (16)C44—C45—C4109.72 (19)
O11—C11—C12123.3 (2)C44—C45—C451111.84 (18)
O11—C11—C1121.21 (19)C4—C45—C451111.68 (18)
C12—C11—C1115.48 (18)C44—C45—H45107.8
C11—C12—C121113.74 (17)C4—C45—H45107.8
C11—C12—C13108.86 (18)C451—C45—H45107.8
C121—C12—C13116.18 (17)C123—C121—C12111.02 (18)
C11—C12—H12105.7C123—C121—C122110.7 (2)
C121—C12—H12105.7C12—C121—C122112.6 (2)
C13—C12—H12105.7C123—C121—H121107.4
C14—C13—C12110.80 (17)C12—C121—H121107.4
C14—C13—H13A109.5C122—C121—H121107.4
C12—C13—H13A109.5C121—C122—H12A109.5
C14—C13—H13B109.5C121—C122—H12B109.5
C12—C13—H13B109.5H12A—C122—H12B109.5
H13A—C13—H13B108.1C121—C122—H12C109.5
C13—C14—C15112.55 (18)H12A—C122—H12C109.5
C13—C14—H14A109.1H12B—C122—H12C109.5
C15—C14—H14A109.1C121—C123—H12D109.5
C13—C14—H14B109.1C121—C123—H12E109.5
C15—C14—H14B109.1H12D—C123—H12E109.5
H14A—C14—H14B107.8C121—C123—H12F109.5
C14—C15—C1110.42 (17)H12D—C123—H12F109.5
C14—C15—C151111.22 (17)H12E—C123—H12F109.5
C1—C15—C151109.34 (17)C15—C151—H15A109.5
C14—C15—H15108.6C15—C151—H15B109.5
C1—C15—H15108.6H15A—C151—H15B109.5
C151—C15—H15108.6C15—C151—H15C109.5
C22—C21—C26118.0 (2)H15A—C151—H15C109.5
C22—C21—N2118.23 (19)H15B—C151—H15C109.5
C26—C21—N2123.5 (2)C422—C421—C423110.71 (19)
C23—C22—C21121.0 (2)C422—C421—C42111.0 (2)
C23—C22—H22119.5C423—C421—C42113.0 (2)
C21—C22—H22119.5C422—C421—H421107.3
C22—C23—C24120.7 (2)C423—C421—H421107.3
C22—C23—H23119.6C42—C421—H421107.3
C24—C23—H23119.6C421—C422—H42A109.5
C25—C24—C23118.4 (2)C421—C422—H42B109.5
C25—C24—H24120.8H42A—C422—H42B109.5
C23—C24—H24120.8C421—C422—H42C109.5
C26—C25—C24121.4 (2)H42A—C422—H42C109.5
C26—C25—H25119.3H42B—C422—H42C109.5
C24—C25—H25119.3C421—C423—H42D109.5
C25—C26—C21120.2 (2)C421—C423—H42E109.5
C25—C26—H26119.9H42D—C423—H42E109.5
C21—C26—H26119.9C421—C423—H42F109.5
C32—C31—C36118.9 (2)H42D—C423—H42F109.5
C32—C31—N3124.7 (2)H42E—C423—H42F109.5
C36—C31—N3116.4 (2)C45—C451—H45A109.5
C31—C32—C33119.5 (3)C45—C451—H45B109.5
C31—C32—H32120.3H45A—C451—H45B109.5
C33—C32—H32120.3C45—C451—H45C109.5
C34—C33—C32120.9 (3)H45A—C451—H45C109.5
C34—C33—H33119.5H45B—C451—H45C109.5
C32—C33—H33119.5C21—N2—O1110.86 (14)
C33—C34—C35119.7 (3)C21—N2—C3118.73 (17)
C33—C34—H34120.2O1—N2—C3105.74 (14)
C35—C34—H34120.2C31—N3—O2109.51 (15)
C34—C35—C36120.2 (3)C31—N3—C2120.11 (18)
C34—C35—H35119.9O2—N3—C2105.61 (15)
C36—C35—H35119.9N2—O1—C1105.71 (13)
C35—C36—C31120.8 (3)C4—O2—N3106.28 (14)

Experimental details

Crystal data
Chemical formulaC34H44N2O4
Mr544.71
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)9.5037 (6), 12.4162 (10), 24.8982 (18)
V3)2938.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.13 × 0.06
Data collection
DiffractometerAgilent Xcalibur
Absorption correctionMulti-scan
(SCALE3 ABSPACK in CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.908, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24309, 5963, 3751
Rint0.098
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.080, 0.87
No. of reflections5963
No. of parameters367
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CrysAlis PRO (Agilent, 2010), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAurich, H. G., Baum, G., Massa, W. & Mogendorf, K.-D. (1989). Acta Cryst. C45, 760–763.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoelens, M. H. (1993). Perfum. Flavor. 18, 27–30.  CAS Google Scholar
First citationBrüning, I., Grashey, R., Hauck, R. & Seidel, H. (1973). Org. Synth. Coll. Vol. 5, 1124–1129.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationClark, G. S. (1990). Perfum. Flavor. 15, 42–44.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIball, J., Motherwell, W. D. S., Barnes, J. C. & Golnazarians, W. (1986). Acta Cryst. C42, 239–241.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIball, J., Motherwell, W. D. S., Pollock, J. J. S. & Tedder, J. M. (1968). Chem. Commun. pp. 365–366.  Google Scholar
First citationIto, F., Kumamoto, T., Yamagachi, K. & Ishikawa, T. (2009). Tetrahedron, 65, 771–785.  Web of Science CrossRef CAS Google Scholar
First citationKharchouf, S., Majidi, L., Bouklah, M., Hammouti, B., Bouyanzer, A. & Aouniti, A. (2011). Arabian J. Chem. doi:10.1016/j.arabjc.2010.12.002.  Google Scholar
First citationKharchouf, S., Majidi, L., Znini, M., Costa, J., Hammouti, B. & Paolini, J. (2012). Int. J. Electrochem. Sci. 7, 10325–10337.  CAS Google Scholar
First citationMajidi, L., Faska, Z., Znini, M., Kharchouf, S., Bouyanzer, A. & Hammouti, B. (2010). J. Mater. Environ. Sci. 1, 219–226.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanka, A., Tanka, R., Uda, H. & Yosikoshi, A. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1721–1727.  Google Scholar
First citationUmemoko, K. (1998). Nat. Prod. Lett. 11, 161–165.  Google Scholar
First citationWagner, E., Becan, L. & Nowakowska, E. (2004). Bioorg. Med. Chem. 12, 265–269.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds