organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,7-Di­phenyl-1,10-phenanthroline methanol hemisolvate

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, bEnvironmental Engineering Department, University of Valladolid, P-34004 Palencia, Spain, and cChemistry Department, University of Coimbra, P-3004 Coimbra, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 2 May 2013; accepted 28 May 2013; online 8 June 2013)

The asymmetric unit of the title compound, C24H16N2·0.5CH3OH, is comprised of two independent bathophenanthroline mol­ecules (systematic name: 4,7-diphenyl-1,10-phenanthroline) and one methanol mol­ecule. The bathophenanthroline mol­ecules are not planar as there is a considerable rotation of all terminal phenyl rings with respect to the central phenanthroline units [dihedral angles in the range 52.21 (12)–62.14 (10)°]. In addition, a non-negligible torsion is apparent in one of the phenanthroline units: the angle between the mean planes of the two pyridine rings is 14.84 (13)°. The methanol solvent mol­ecule is linked to both N atoms of a bathophenanthroline mol­ecule through a bifurcated O—H⋯(N,N) hydrogen bond.

Related literature

For background on aromatic N-donor lanthanide complexes, see: Martín-Ramos et al. (2013a[Martín-Ramos, P., Coya, C., Alvarez, A. L., Ramos Silva, M., Zaldo, C., Paixão, J. A., Chamorro-Posada, P. & Martín-Gil, J. (2013a). J. Phys. Chem. C, 117, 10020-10030.],b[Martín-Ramos, P., Ramos-Silva, M., Coya, C., Zaldo, C., Alvarez, A. L., Alvarez-García, S., Matos-Beja, A. M. & Martín-Gil, J. (2013b). J. Mater. Chem. C, 1, 2725-2734.]); Reifernberger et al. (2005[Reifernberger, J. G., Ge, P. & Selvin, P. R. (2005). Rev. Fluoresc. 2, 399-431.]). For information on pure bathophenanthroline, see: Ceolin et al. (1979[Ceolin, R., Mariaud, M., Levillain, P. & Rodier, N. (1979). Acta Cryst. B35, 1630-1632.]).

[Scheme 1]

Experimental

Crystal data
  • C24H16N2·0.5CH4O

  • Mr = 348.41

  • Triclinic, [P \overline 1]

  • a = 7.2094 (3) Å

  • b = 14.8067 (6) Å

  • c = 18.1459 (7) Å

  • α = 109.797 (2)°

  • β = 99.921 (3)°

  • γ = 92.056 (3)°

  • V = 1785.99 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.22 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.865, Tmax = 0.999

  • 36139 measured reflections

  • 6169 independent reflections

  • 3407 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.170

  • S = 0.98

  • 6160 reflections

  • 489 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.13 2.873 (3) 151
O1—H1A⋯N2i 0.82 2.65 3.318 (3) 140
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex (I), Fig. 1, was obtained as part of scientific project to synthesize new Lanthanide coordination complexes and study their light emission properties in order to assess the suitability of such complexes as emissive layers in Organic Light Emitting Diodes (OLED) (Martín-Ramos et al., 2013a, 2013b). The introduction of an aromatic N-donor in the lanthanide coordination sphere enlarges the absorption range of the excitation light and allows energy transfer to the lanthanide ion.

This complex was a result of an attempt to synthesize an Europium(tris(1,14- chlorophenyl-4,4,4- trifluoro-1,3-butanedionate)mono(bathophenanthroline)) coordination complex. Light pink crystals were recovered from this batch and after X-Ray diffraction structure determination the new bathophenanthroline solvate was revealed.

All bathophenanthroline phenyl groups presented in this compound show a considerable rotation with respect to the phenanthroline groups. This geometry can be explained by the single bond between the phenanthroline and phenyl rings. In bathophenanthroline molecule one the phenyl group C1—C5 shows a rotation of 58.04 (11)° with respect to the quasi-planar phenanthroline group C7—C18 whereas the other phenyl group C19—C24 shows a rotation of 52.21 (12)°. In the other bathophenanthroline molecule the angles between the mean plane of the non-planar phenanthroline group C31—C42 and the phenyl groups C25—C30 and C43—C48 are 56.49 (11)° and 62.14 (10)°, respectively. Furthermore, a non-negligible torsion is observed in one of the phenanthroline groups, the pseudo-torsion angle between C31..C32 and C41..C42 is 17.6 (5)° in the non-planar phenanthroline whereas in the quasi-planar one the angle between C7..C8 and C16..C17 is 4.6 (5)°. A similar torsion has been observed in the structure of the pure bathophenanthroline (Ceolin et al., 1979)

The solvent methanol molecules are linked to one of the bathophenanthroline through O—H···N hidrogen bonds (Table 2).

When viewed along the a axis direction (Fig. 2) the packing diagram shows alternating layers. One layer contains the non-planar bathophenanthroline molecules packed so as to maximize π···π interaction between neighbouring molecules. The Cg1···Cg1i distance is 4.2318 (17) Å (Cg1 is the centroid of the six-membered ring containing N3; i: 1 - x, -y, 1 - z). The Cg2..Cg2ii distance is 4.5147 (17) Å (Cg2 is the centroid of the six-membered ring containing N4; ii: 1 - x, 1 - y, 1 - z). The other layer contains the quasi-planar bathophenanthroline molecules linked to the methanol molecules. The angle between the mean planes of the phenanthroline moieties of the quasi-planar and non-planar bathophenanthroline molecules is 32.59 (6)°.

Related literature top

For background on aromatic N-donor lanthanide complexes, see: Martín-Ramos et al. (2013a,b); Reifernberger et al. (2005). For information on pure bathophenanthroline, see: Ceolin et al. (1979).

Experimental top

First, 0.5 mmol of Europium(III) nitrate pentahydrate was dissolved in 20 ml of methanol, followed by the addition of 0.9 ml of potassium methoxide. This solution was left in reflux at 75°C for 10 minutes. Secondly, 1.5 mmol of 1,14 chlorophenyl-4,4,4-trifluoro-1,3-butanedionate was dissolved in 15 ml of methanol and added to the main solution. After decanting the resultant solution, 0.5 mmol of bathophenanthroline was dissolved in 10 ml of methanol and added to the main solution. The resultant solution was left in reflux at 75°C and 900 rpm for 4 h. After the evaporation process had been completed all the material from this batch was dissolved in 50% of methanol and 50% of chloroform with the intent of obtaining crystals. After the second evaporation process a yellow powder, which is believed to be the target complex was recovered alongside with some light pink crystals and some transparent crystals. The powder has proven to be amorphous while the light pink crystals turned out to be the title complex and the transparent ones potassium nitrate.

Refinement top

All hydrogen atoms bound to carbon atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C). The H atom belonging to the OH group was found in a difference electron density synthesis and subsequently refined with a fixed distance (0.82 Å) and angle (109.5°). In the final cycles of refinement, 14 bad outlier reflections, partially attenuated by the beamstop, were omitted.

Structure description top

The title complex (I), Fig. 1, was obtained as part of scientific project to synthesize new Lanthanide coordination complexes and study their light emission properties in order to assess the suitability of such complexes as emissive layers in Organic Light Emitting Diodes (OLED) (Martín-Ramos et al., 2013a, 2013b). The introduction of an aromatic N-donor in the lanthanide coordination sphere enlarges the absorption range of the excitation light and allows energy transfer to the lanthanide ion.

This complex was a result of an attempt to synthesize an Europium(tris(1,14- chlorophenyl-4,4,4- trifluoro-1,3-butanedionate)mono(bathophenanthroline)) coordination complex. Light pink crystals were recovered from this batch and after X-Ray diffraction structure determination the new bathophenanthroline solvate was revealed.

All bathophenanthroline phenyl groups presented in this compound show a considerable rotation with respect to the phenanthroline groups. This geometry can be explained by the single bond between the phenanthroline and phenyl rings. In bathophenanthroline molecule one the phenyl group C1—C5 shows a rotation of 58.04 (11)° with respect to the quasi-planar phenanthroline group C7—C18 whereas the other phenyl group C19—C24 shows a rotation of 52.21 (12)°. In the other bathophenanthroline molecule the angles between the mean plane of the non-planar phenanthroline group C31—C42 and the phenyl groups C25—C30 and C43—C48 are 56.49 (11)° and 62.14 (10)°, respectively. Furthermore, a non-negligible torsion is observed in one of the phenanthroline groups, the pseudo-torsion angle between C31..C32 and C41..C42 is 17.6 (5)° in the non-planar phenanthroline whereas in the quasi-planar one the angle between C7..C8 and C16..C17 is 4.6 (5)°. A similar torsion has been observed in the structure of the pure bathophenanthroline (Ceolin et al., 1979)

The solvent methanol molecules are linked to one of the bathophenanthroline through O—H···N hidrogen bonds (Table 2).

When viewed along the a axis direction (Fig. 2) the packing diagram shows alternating layers. One layer contains the non-planar bathophenanthroline molecules packed so as to maximize π···π interaction between neighbouring molecules. The Cg1···Cg1i distance is 4.2318 (17) Å (Cg1 is the centroid of the six-membered ring containing N3; i: 1 - x, -y, 1 - z). The Cg2..Cg2ii distance is 4.5147 (17) Å (Cg2 is the centroid of the six-membered ring containing N4; ii: 1 - x, 1 - y, 1 - z). The other layer contains the quasi-planar bathophenanthroline molecules linked to the methanol molecules. The angle between the mean planes of the phenanthroline moieties of the quasi-planar and non-planar bathophenanthroline molecules is 32.59 (6)°.

For background on aromatic N-donor lanthanide complexes, see: Martín-Ramos et al. (2013a,b); Reifernberger et al. (2005). For information on pure bathophenanthroline, see: Ceolin et al. (1979).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Packing of the molecules in the unit cell showing the H-bonds as dashed lines. H-atoms not involved in H-bonding were omitted for clarity.
4,7-Diphenyl-1,10-phenanthroline methanol hemisolvate top
Crystal data top
C24H16N2·0.5CH4OZ = 4
Mr = 348.41F(000) = 732
Triclinic, P1Dx = 1.296 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2094 (3) ÅCell parameters from 4091 reflections
b = 14.8067 (6) Åθ = 3.1–23.9°
c = 18.1459 (7) ŵ = 0.08 mm1
α = 109.797 (2)°T = 293 K
β = 99.921 (3)°Prism, light pink
γ = 92.056 (3)°0.50 × 0.22 × 0.10 mm
V = 1785.99 (12) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
6169 independent reflections
Radiation source: fine-focus sealed tube3407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ and ω scansθmax = 24.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 88
Tmin = 0.865, Tmax = 0.999k = 1717
36139 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0921P)2]
where P = (Fo2 + 2Fc2)/3
6160 reflections(Δ/σ)max < 0.001
489 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C24H16N2·0.5CH4Oγ = 92.056 (3)°
Mr = 348.41V = 1785.99 (12) Å3
Triclinic, P1Z = 4
a = 7.2094 (3) ÅMo Kα radiation
b = 14.8067 (6) ŵ = 0.08 mm1
c = 18.1459 (7) ÅT = 293 K
α = 109.797 (2)°0.50 × 0.22 × 0.10 mm
β = 99.921 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6169 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3407 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.999Rint = 0.066
36139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 0.98Δρmax = 0.47 e Å3
6160 reflectionsΔρmin = 0.31 e Å3
489 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9651 (3)0.38369 (17)0.08387 (13)0.0448 (6)
N20.9368 (3)0.20160 (17)0.08314 (14)0.0487 (6)
N30.4206 (3)0.17336 (17)0.52893 (14)0.0458 (6)
N40.4034 (3)0.31882 (17)0.46951 (14)0.0478 (6)
C110.8091 (3)0.35319 (19)0.10489 (15)0.0378 (7)
C130.6376 (4)0.22144 (18)0.12922 (15)0.0382 (7)
C120.7945 (3)0.25552 (19)0.10455 (15)0.0381 (7)
C350.5712 (3)0.28105 (19)0.47868 (15)0.0396 (7)
C150.5014 (4)0.37245 (19)0.14451 (16)0.0437 (7)
H150.40080.40930.15480.052*
C370.7644 (3)0.18523 (18)0.54400 (15)0.0371 (6)
C100.6667 (3)0.41336 (18)0.12773 (15)0.0373 (6)
C380.9256 (3)0.22017 (19)0.52145 (16)0.0407 (7)
H381.04480.20410.53870.049*
C430.9538 (3)0.10005 (19)0.62919 (15)0.0380 (7)
C80.8483 (4)0.5384 (2)0.10858 (17)0.0494 (8)
H80.86770.60100.10900.059*
C420.7740 (3)0.12261 (19)0.58904 (15)0.0391 (7)
C140.4895 (4)0.28238 (19)0.14559 (16)0.0434 (7)
H140.38130.25880.15740.052*
C410.6061 (4)0.0850 (2)0.59819 (16)0.0440 (7)
H410.60590.04230.62580.053*
C360.5849 (4)0.2110 (2)0.51828 (15)0.0395 (7)
C300.8575 (4)0.3986 (2)0.37038 (16)0.0446 (7)
C461.2725 (4)0.0591 (2)0.71830 (18)0.0515 (8)
H461.37760.04530.74870.062*
C340.7317 (3)0.30917 (19)0.45299 (15)0.0386 (7)
C310.7088 (4)0.3727 (2)0.40934 (16)0.0420 (7)
C190.4808 (4)0.0849 (2)0.16078 (17)0.0422 (7)
C70.6889 (4)0.50933 (19)0.12980 (16)0.0395 (7)
C60.5452 (4)0.57764 (18)0.15246 (17)0.0416 (7)
C390.9087 (4)0.27546 (19)0.47600 (16)0.0407 (7)
H391.01480.29250.45890.049*
C330.3949 (4)0.3835 (2)0.43481 (18)0.0522 (8)
H330.28460.41390.43200.063*
C170.7826 (4)0.0759 (2)0.11293 (18)0.0525 (8)
H170.78580.01430.11560.063*
C180.6352 (4)0.12801 (19)0.13395 (16)0.0423 (7)
C400.4355 (4)0.1113 (2)0.56576 (17)0.0467 (7)
H400.32410.08240.57080.056*
C240.3922 (4)0.0055 (2)0.11419 (18)0.0505 (8)
H240.42470.03760.06520.061*
C320.5389 (4)0.4100 (2)0.40190 (18)0.0511 (8)
H320.51960.45320.37480.061*
C90.9801 (4)0.4735 (2)0.08660 (17)0.0511 (8)
H91.08710.49520.07270.061*
C50.4975 (4)0.6028 (2)0.22745 (19)0.0543 (8)
H50.55330.57570.26410.065*
C441.0808 (4)0.1737 (2)0.68614 (17)0.0460 (7)
H441.05970.23770.69400.055*
C471.1523 (4)0.0142 (2)0.66091 (18)0.0514 (8)
H471.17830.07780.65130.062*
C451.2371 (4)0.1536 (2)0.73091 (17)0.0489 (7)
H451.31900.20370.76970.059*
C10.4597 (4)0.61961 (19)0.10000 (18)0.0484 (7)
H10.49140.60410.04990.058*
C480.9925 (4)0.0054 (2)0.61697 (17)0.0452 (7)
H480.91030.04520.57890.054*
C290.9413 (4)0.3288 (2)0.31805 (17)0.0529 (8)
H290.91380.26400.31040.063*
C250.9042 (4)0.4949 (2)0.38128 (18)0.0582 (8)
H250.84940.54280.41630.070*
C160.9279 (4)0.1146 (2)0.08762 (18)0.0553 (8)
H161.02480.07670.07300.066*
C261.0302 (5)0.5202 (3)0.3410 (2)0.0672 (9)
H261.06130.58500.34960.081*
C20.3278 (4)0.6843 (2)0.1204 (2)0.0593 (9)
H20.27030.71110.08380.071*
C230.2552 (4)0.0490 (2)0.1397 (2)0.0569 (8)
H230.19570.10980.10760.068*
C271.1099 (5)0.4507 (3)0.2884 (2)0.0679 (10)
H271.19320.46790.26050.082*
C281.0662 (4)0.3554 (3)0.27703 (18)0.0616 (9)
H281.12090.30810.24140.074*
C220.2072 (4)0.0025 (2)0.2121 (2)0.0620 (9)
H220.11560.03190.22930.074*
C200.4307 (4)0.1310 (2)0.23362 (19)0.0542 (8)
H200.48900.19210.26580.065*
C210.2940 (5)0.0869 (3)0.2590 (2)0.0615 (9)
H210.26150.11830.30810.074*
C40.3653 (5)0.6691 (2)0.2472 (2)0.0648 (10)
H40.33380.68630.29740.078*
C30.2817 (4)0.7090 (2)0.1939 (2)0.0644 (10)
H30.19340.75290.20770.077*
O10.1335 (5)0.2689 (2)0.04489 (19)0.1219 (11)
H1A0.09240.28410.00340.183*
C490.2363 (5)0.1943 (3)0.0499 (2)0.0913 (13)
H49A0.36750.21770.02950.137*
H49B0.22000.15280.10480.137*
H49C0.19500.15880.01910.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0382 (13)0.0512 (16)0.0519 (15)0.0066 (11)0.0152 (11)0.0239 (12)
N20.0446 (14)0.0482 (15)0.0581 (16)0.0158 (12)0.0198 (12)0.0186 (13)
N30.0329 (13)0.0593 (16)0.0508 (15)0.0039 (11)0.0114 (11)0.0250 (13)
N40.0353 (13)0.0610 (16)0.0539 (16)0.0102 (12)0.0083 (11)0.0287 (14)
C110.0356 (15)0.0444 (17)0.0347 (15)0.0043 (13)0.0089 (12)0.0147 (13)
C130.0393 (15)0.0373 (16)0.0393 (16)0.0062 (13)0.0079 (12)0.0146 (13)
C120.0350 (15)0.0417 (17)0.0388 (16)0.0067 (13)0.0087 (12)0.0147 (13)
C350.0291 (14)0.0498 (17)0.0396 (16)0.0026 (13)0.0052 (12)0.0162 (14)
C150.0401 (16)0.0398 (17)0.0555 (19)0.0122 (13)0.0184 (14)0.0172 (14)
C370.0331 (15)0.0419 (16)0.0368 (15)0.0059 (12)0.0100 (12)0.0129 (13)
C100.0396 (15)0.0371 (16)0.0371 (16)0.0047 (13)0.0099 (12)0.0140 (13)
C380.0290 (14)0.0496 (17)0.0431 (17)0.0046 (12)0.0086 (12)0.0148 (15)
C430.0341 (15)0.0453 (17)0.0381 (16)0.0049 (13)0.0122 (13)0.0164 (14)
C80.0496 (18)0.0449 (18)0.062 (2)0.0049 (14)0.0195 (15)0.0247 (16)
C420.0321 (15)0.0458 (16)0.0360 (16)0.0070 (13)0.0077 (12)0.0093 (14)
C140.0388 (15)0.0417 (17)0.0552 (19)0.0048 (13)0.0201 (14)0.0188 (15)
C410.0387 (16)0.0523 (18)0.0456 (18)0.0047 (14)0.0113 (13)0.0215 (15)
C360.0314 (15)0.0503 (17)0.0358 (16)0.0013 (13)0.0077 (12)0.0138 (14)
C300.0396 (16)0.055 (2)0.0392 (17)0.0008 (14)0.0038 (13)0.0194 (15)
C460.0383 (16)0.073 (2)0.053 (2)0.0088 (16)0.0061 (15)0.0356 (18)
C340.0332 (15)0.0455 (16)0.0353 (15)0.0027 (13)0.0066 (12)0.0121 (14)
C310.0400 (16)0.0469 (17)0.0378 (16)0.0001 (13)0.0064 (13)0.0143 (14)
C190.0426 (16)0.0388 (17)0.0517 (19)0.0087 (14)0.0096 (14)0.0233 (15)
C70.0411 (16)0.0402 (16)0.0395 (16)0.0044 (13)0.0092 (13)0.0165 (13)
C60.0433 (16)0.0332 (15)0.0491 (18)0.0009 (13)0.0116 (14)0.0146 (14)
C390.0308 (15)0.0492 (17)0.0418 (16)0.0008 (13)0.0102 (12)0.0146 (15)
C330.0414 (17)0.062 (2)0.058 (2)0.0147 (15)0.0077 (15)0.0271 (17)
C170.0537 (19)0.0428 (18)0.070 (2)0.0109 (15)0.0160 (16)0.0282 (16)
C180.0417 (16)0.0409 (16)0.0444 (17)0.0057 (13)0.0059 (13)0.0160 (14)
C400.0348 (16)0.0578 (19)0.0504 (18)0.0006 (14)0.0114 (14)0.0217 (16)
C240.0484 (18)0.0505 (19)0.0548 (19)0.0073 (15)0.0075 (15)0.0223 (16)
C320.0429 (17)0.059 (2)0.0576 (19)0.0071 (15)0.0100 (15)0.0287 (16)
C90.0453 (17)0.055 (2)0.064 (2)0.0058 (15)0.0194 (15)0.0293 (17)
C50.068 (2)0.0423 (17)0.061 (2)0.0074 (15)0.0273 (17)0.0214 (16)
C440.0414 (16)0.0473 (18)0.0503 (19)0.0071 (14)0.0093 (14)0.0179 (15)
C470.0499 (18)0.0523 (19)0.059 (2)0.0123 (16)0.0136 (16)0.0260 (17)
C450.0407 (17)0.058 (2)0.0448 (18)0.0028 (15)0.0047 (14)0.0167 (15)
C10.0516 (18)0.0394 (17)0.0503 (18)0.0068 (14)0.0085 (15)0.0113 (15)
C480.0429 (17)0.0459 (18)0.0463 (18)0.0021 (14)0.0082 (14)0.0161 (15)
C290.0464 (17)0.064 (2)0.0428 (18)0.0016 (15)0.0075 (15)0.0132 (16)
C250.060 (2)0.062 (2)0.057 (2)0.0040 (17)0.0197 (17)0.0235 (17)
C160.0501 (18)0.050 (2)0.072 (2)0.0204 (15)0.0214 (16)0.0229 (17)
C260.070 (2)0.073 (2)0.068 (2)0.0039 (19)0.0191 (19)0.034 (2)
C20.0540 (19)0.0483 (19)0.070 (2)0.0077 (16)0.0016 (17)0.0188 (18)
C230.0486 (18)0.0482 (19)0.076 (2)0.0022 (15)0.0001 (17)0.0304 (18)
C270.057 (2)0.107 (3)0.051 (2)0.006 (2)0.0099 (17)0.043 (2)
C280.0512 (19)0.089 (3)0.0406 (19)0.0080 (18)0.0126 (15)0.0160 (18)
C220.0494 (19)0.069 (2)0.081 (3)0.0040 (18)0.0148 (18)0.043 (2)
C200.063 (2)0.0447 (18)0.060 (2)0.0063 (15)0.0154 (17)0.0231 (16)
C210.064 (2)0.071 (2)0.062 (2)0.0113 (18)0.0231 (18)0.034 (2)
C40.078 (2)0.0450 (19)0.074 (2)0.0027 (18)0.040 (2)0.0113 (18)
C30.053 (2)0.045 (2)0.096 (3)0.0123 (16)0.026 (2)0.019 (2)
O10.165 (3)0.133 (3)0.115 (3)0.070 (2)0.075 (2)0.074 (2)
C490.092 (3)0.078 (3)0.074 (3)0.049 (2)0.004 (2)0.010 (2)
Geometric parameters (Å, º) top
N1—C91.314 (3)C39—H390.9300
N1—C111.358 (3)C33—C321.390 (4)
N2—C161.318 (3)C33—H330.9300
N2—C121.352 (3)C17—C181.367 (3)
N3—C401.304 (3)C17—C161.392 (4)
N3—C361.362 (3)C17—H170.9300
N4—C331.311 (3)C40—H400.9300
N4—C351.359 (3)C24—C231.384 (4)
C11—C101.407 (3)C24—H240.9300
C11—C121.444 (4)C32—H320.9300
C13—C181.414 (3)C9—H90.9300
C13—C121.421 (3)C5—C41.396 (4)
C13—C141.428 (3)C5—H50.9300
C35—C341.418 (3)C44—C451.375 (4)
C35—C361.446 (4)C44—H440.9300
C15—C141.340 (3)C47—C481.383 (4)
C15—C101.442 (3)C47—H470.9300
C15—H150.9300C45—H450.9300
C37—C361.410 (3)C1—C21.380 (4)
C37—C421.425 (4)C1—H10.9300
C37—C381.432 (3)C48—H480.9300
C10—C71.411 (3)C29—C281.387 (4)
C38—C391.340 (4)C29—H290.9300
C38—H380.9300C25—C261.374 (4)
C43—C481.389 (4)C25—H250.9300
C43—C441.391 (4)C16—H160.9300
C43—C421.481 (3)C26—C271.367 (4)
C8—C71.373 (3)C26—H260.9300
C8—C91.386 (4)C2—C31.362 (4)
C8—H80.9300C2—H20.9300
C42—C411.374 (3)C23—C221.372 (4)
C14—H140.9300C23—H230.9300
C41—C401.396 (4)C27—C281.372 (4)
C41—H410.9300C27—H270.9300
C30—C291.383 (4)C28—H280.9300
C30—C251.391 (4)C22—C211.364 (4)
C30—C311.487 (4)C22—H220.9300
C46—C471.367 (4)C20—C211.387 (4)
C46—C451.381 (4)C20—H200.9300
C46—H460.9300C21—H210.9300
C34—C311.418 (4)C4—C31.364 (4)
C34—C391.434 (3)C4—H40.9300
C31—C321.365 (4)C3—H30.9300
C19—C241.379 (4)O1—C491.339 (4)
C19—C201.384 (4)O1—H1A0.8200
C19—C181.493 (4)C49—H49A0.9600
C7—C61.485 (3)C49—H49B0.9600
C6—C11.378 (4)C49—H49C0.9600
C6—C51.391 (4)
C9—N1—C11117.0 (2)C13—C18—C19123.1 (2)
C16—N2—C12117.1 (2)N3—C40—C41125.0 (3)
C40—N3—C36116.6 (2)N3—C40—H40117.5
C33—N4—C35116.6 (2)C41—C40—H40117.5
N1—C11—C10122.5 (2)C19—C24—C23120.6 (3)
N1—C11—C12117.3 (2)C19—C24—H24119.7
C10—C11—C12120.2 (2)C23—C24—H24119.7
C18—C13—C12118.0 (2)C31—C32—C33120.0 (3)
C18—C13—C14123.9 (2)C31—C32—H32120.0
C12—C13—C14118.1 (2)C33—C32—H32120.0
N2—C12—C13123.0 (2)N1—C9—C8124.9 (3)
N2—C12—C11117.5 (2)N1—C9—H9117.6
C13—C12—C11119.5 (2)C8—C9—H9117.6
N4—C35—C34122.9 (3)C6—C5—C4119.4 (3)
N4—C35—C36117.5 (2)C6—C5—H5120.3
C34—C35—C36119.6 (2)C4—C5—H5120.3
C14—C15—C10121.4 (2)C45—C44—C43121.1 (3)
C14—C15—H15119.3C45—C44—H44119.5
C10—C15—H15119.3C43—C44—H44119.5
C36—C37—C42117.7 (2)C46—C47—C48120.6 (3)
C36—C37—C38118.8 (2)C46—C47—H47119.7
C42—C37—C38123.5 (2)C48—C47—H47119.7
C11—C10—C7118.5 (2)C44—C45—C46120.0 (3)
C11—C10—C15118.2 (2)C44—C45—H45120.0
C7—C10—C15123.2 (2)C46—C45—H45120.0
C39—C38—C37121.5 (2)C6—C1—C2121.2 (3)
C39—C38—H38119.3C6—C1—H1119.4
C37—C38—H38119.3C2—C1—H1119.4
C48—C43—C44118.1 (3)C47—C48—C43120.5 (3)
C48—C43—C42121.4 (2)C47—C48—H48119.7
C44—C43—C42120.2 (2)C43—C48—H48119.7
C7—C8—C9119.3 (3)C30—C29—C28120.0 (3)
C7—C8—H8120.3C30—C29—H29120.0
C9—C8—H8120.3C28—C29—H29120.0
C41—C42—C37117.5 (2)C26—C25—C30121.0 (3)
C41—C42—C43118.8 (3)C26—C25—H25119.5
C37—C42—C43123.6 (2)C30—C25—H25119.5
C15—C14—C13122.1 (2)N2—C16—C17124.1 (3)
C15—C14—H14118.9N2—C16—H16117.9
C13—C14—H14118.9C17—C16—H16117.9
C42—C41—C40119.6 (3)C27—C26—C25120.3 (3)
C42—C41—H41120.2C27—C26—H26119.9
C40—C41—H41120.2C25—C26—H26119.9
N3—C36—C37123.3 (3)C3—C2—C1120.2 (3)
N3—C36—C35117.4 (2)C3—C2—H2119.9
C37—C36—C35119.3 (2)C1—C2—H2119.9
C29—C30—C25118.4 (3)C22—C23—C24120.1 (3)
C29—C30—C31121.6 (3)C22—C23—H23119.9
C25—C30—C31119.8 (3)C24—C23—H23119.9
C47—C46—C45119.8 (3)C26—C27—C28119.6 (3)
C47—C46—H46120.1C26—C27—H27120.2
C45—C46—H46120.1C28—C27—H27120.2
C35—C34—C31117.8 (2)C27—C28—C29120.7 (3)
C35—C34—C39118.1 (3)C27—C28—H28119.6
C31—C34—C39124.0 (2)C29—C28—H28119.6
C32—C31—C34117.5 (2)C21—C22—C23119.9 (3)
C32—C31—C30119.0 (3)C21—C22—H22120.0
C34—C31—C30123.5 (2)C23—C22—H22120.0
C24—C19—C20118.6 (3)C19—C20—C21120.4 (3)
C24—C19—C18119.6 (3)C19—C20—H20119.8
C20—C19—C18121.7 (3)C21—C20—H20119.8
C8—C7—C10117.8 (2)C22—C21—C20120.2 (3)
C8—C7—C6119.9 (2)C22—C21—H21119.9
C10—C7—C6122.3 (2)C20—C21—H21119.9
C1—C6—C5118.5 (3)C3—C4—C5120.9 (3)
C1—C6—C7120.4 (2)C3—C4—H4119.6
C5—C6—C7121.1 (3)C5—C4—H4119.6
C38—C39—C34121.8 (2)C4—C3—C2119.8 (3)
C38—C39—H39119.1C4—C3—H3120.1
C34—C39—H39119.1C2—C3—H3120.1
N4—C33—C32124.7 (3)C49—O1—H1A109.5
N4—C33—H33117.6O1—C49—H49A109.5
C32—C33—H33117.6O1—C49—H49B109.5
C18—C17—C16120.3 (3)H49A—C49—H49B109.5
C18—C17—H17119.8O1—C49—H49C109.5
C16—C17—H17119.8H49A—C49—H49C109.5
C17—C18—C13117.6 (2)H49B—C49—H49C109.5
C17—C18—C19119.3 (2)
C9—N1—C11—C100.8 (4)C11—C10—C7—C6179.4 (2)
C9—N1—C11—C12178.0 (2)C15—C10—C7—C62.2 (4)
C16—N2—C12—C131.5 (4)C8—C7—C6—C157.8 (4)
C16—N2—C12—C11176.0 (3)C10—C7—C6—C1121.1 (3)
C18—C13—C12—N22.2 (4)C8—C7—C6—C5120.5 (3)
C14—C13—C12—N2176.1 (2)C10—C7—C6—C560.7 (4)
C18—C13—C12—C11175.3 (2)C37—C38—C39—C345.2 (4)
C14—C13—C12—C116.4 (4)C35—C34—C39—C381.0 (4)
N1—C11—C12—N20.2 (4)C31—C34—C39—C38175.8 (3)
C10—C11—C12—N2179.1 (2)C35—N4—C33—C325.1 (4)
N1—C11—C12—C13177.5 (2)C16—C17—C18—C130.3 (4)
C10—C11—C12—C131.5 (4)C16—C17—C18—C19179.9 (3)
C33—N4—C35—C340.3 (4)C12—C13—C18—C171.2 (4)
C33—N4—C35—C36178.8 (2)C14—C13—C18—C17177.0 (3)
N1—C11—C10—C70.9 (4)C12—C13—C18—C19178.6 (2)
C12—C11—C10—C7178.0 (2)C14—C13—C18—C193.2 (4)
N1—C11—C10—C15176.5 (2)C24—C19—C18—C1751.8 (4)
C12—C11—C10—C154.7 (4)C20—C19—C18—C17124.6 (3)
C14—C15—C10—C116.0 (4)C24—C19—C18—C13128.4 (3)
C14—C15—C10—C7176.8 (3)C20—C19—C18—C1355.2 (4)
C36—C37—C38—C390.8 (4)C36—N3—C40—C413.5 (4)
C42—C37—C38—C39176.9 (2)C42—C41—C40—N32.9 (4)
C36—C37—C42—C415.6 (4)C20—C19—C24—C230.3 (4)
C38—C37—C42—C41172.2 (2)C18—C19—C24—C23176.8 (2)
C36—C37—C42—C43171.4 (2)C34—C31—C32—C331.5 (4)
C38—C37—C42—C4310.8 (4)C30—C31—C32—C33177.2 (3)
C48—C43—C42—C4155.3 (3)N4—C33—C32—C314.6 (5)
C44—C43—C42—C41118.6 (3)C11—N1—C9—C80.6 (4)
C48—C43—C42—C37127.7 (3)C7—C8—C9—N10.3 (5)
C44—C43—C42—C3758.4 (3)C1—C6—C5—C40.1 (4)
C10—C15—C14—C130.9 (4)C7—C6—C5—C4178.4 (3)
C18—C13—C14—C15176.5 (3)C48—C43—C44—C452.0 (4)
C12—C13—C14—C155.4 (4)C42—C43—C44—C45172.1 (2)
C37—C42—C41—C401.9 (4)C45—C46—C47—C482.0 (4)
C43—C42—C41—C40175.2 (2)C43—C44—C45—C461.6 (4)
C40—N3—C36—C370.8 (4)C47—C46—C45—C440.4 (4)
C40—N3—C36—C35179.0 (2)C5—C6—C1—C20.8 (4)
C42—C37—C36—N35.3 (4)C7—C6—C1—C2179.1 (2)
C38—C37—C36—N3172.6 (2)C46—C47—C48—C431.5 (4)
C42—C37—C36—C35174.5 (2)C44—C43—C48—C470.5 (4)
C38—C37—C36—C357.6 (4)C42—C43—C48—C47173.6 (2)
N4—C35—C36—N313.0 (4)C25—C30—C29—C281.0 (4)
C34—C35—C36—N3168.5 (2)C31—C30—C29—C28173.9 (3)
N4—C35—C36—C37166.8 (2)C29—C30—C25—C260.1 (4)
C34—C35—C36—C3711.7 (4)C31—C30—C25—C26174.8 (3)
N4—C35—C34—C316.0 (4)C12—N2—C16—C170.1 (4)
C36—C35—C34—C31175.6 (2)C18—C17—C16—N21.0 (5)
N4—C35—C34—C39171.0 (2)C30—C25—C26—C271.0 (5)
C36—C35—C34—C397.4 (4)C6—C1—C2—C31.0 (4)
C35—C34—C31—C326.4 (4)C19—C24—C23—C220.5 (4)
C39—C34—C31—C32170.5 (2)C25—C26—C27—C281.2 (5)
C35—C34—C31—C30172.3 (2)C26—C27—C28—C290.3 (5)
C39—C34—C31—C3010.9 (4)C30—C29—C28—C270.8 (4)
C29—C30—C31—C32125.5 (3)C24—C23—C22—C210.3 (5)
C25—C30—C31—C3249.3 (4)C24—C19—C20—C210.0 (4)
C29—C30—C31—C3453.2 (4)C18—C19—C20—C21176.4 (3)
C25—C30—C31—C34132.0 (3)C23—C22—C21—C200.1 (5)
C9—C8—C7—C100.3 (4)C19—C20—C21—C220.2 (4)
C9—C8—C7—C6179.2 (3)C6—C5—C4—C30.4 (5)
C11—C10—C7—C80.6 (4)C5—C4—C3—C20.2 (5)
C15—C10—C7—C8176.6 (3)C1—C2—C3—C40.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.132.873 (3)151
O1—H1A···N2i0.822.653.318 (3)140
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H16N2·0.5CH4O
Mr348.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2094 (3), 14.8067 (6), 18.1459 (7)
α, β, γ (°)109.797 (2), 99.921 (3), 92.056 (3)
V3)1785.99 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.22 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.865, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
36139, 6169, 3407
Rint0.066
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.170, 0.98
No. of reflections6160
No. of parameters489
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.31

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.132.873 (3)150.6
O1—H1A···N2i0.822.653.318 (3)139.6
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Fundo Europeu de Desenvolvimento Regional-QREN-COMPETE through projects PEst-C/FIS/UI0036/2011, PTDC/FIS/102284/2008, PTDC/AAC-CLI/098308/2008 and PTDC/AAC-CLI/118092/2010-Fundação para a Ciência e a Tecnologia (FCT).

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCeolin, R., Mariaud, M., Levillain, P. & Rodier, N. (1979). Acta Cryst. B35, 1630–1632.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMartín-Ramos, P., Coya, C., Alvarez, A. L., Ramos Silva, M., Zaldo, C., Paixão, J. A., Chamorro-Posada, P. & Martín-Gil, J. (2013a). J. Phys. Chem. C, 117, 10020–10030.  Google Scholar
First citationMartín-Ramos, P., Ramos-Silva, M., Coya, C., Zaldo, C., Alvarez, A. L., Alvarez-García, S., Matos-Beja, A. M. & Martín-Gil, J. (2013b). J. Mater. Chem. C, 1, 2725–2734.  Google Scholar
First citationReifernberger, J. G., Ge, P. & Selvin, P. R. (2005). Rev. Fluoresc. 2, 399–431.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds