organic compounds
Methyl N-(dimethoxyphosphoryl)carbamate
aDepartment of Inorganic Chemistry, Kiev National Taras Shevchenko University, Vladimirskaya St. 64/13, Kiev 01601, Ukraine
*Correspondence e-mail: ovchynnikov@univ.kiev.ua
In the title compound, CH3OC(O)NHP(O)(OCH3)2, the P atom has a slightly distorted tetrahedral configuration. The mixed imide moiety can be described as cisoid–transoid in which the two opposing dipoles (P=O and C=O) are oriented with a O=C⋯P=O torsion angle of 150.88(18)°. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.
Related literature
For the use of phosphorylated carbamides as potential new ligands, see: Safin et al. (2009); Znovjyak et al. (2009); Sokolov et al. (2008). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1984); Tsibulskaya & Orlacheva (1956). For P=O bond lengths, see: Mizrahi & Modro (1982): Amirkhanov et al. (1997). For the synthesis of the title compound, see: Kirsanov & Marenetc (1959). For short O⋯O contacts see: Bianchi et al. (2000); Zhurova et al. (2002)
Experimental
Crystal data
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813017637/gg2115sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813017637/gg2115Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813017637/gg2115Isup3.cml
All chemicals were commercial products of reagent grade, used without further purification. Methyl(dimethoxyphosphoryl)carbamate (I) was prepared as in (Kirsanov et al. 1959). Single crystals of (I) were prepared by slow crystallization from benzene solution.
The H atoms bonded to C and N were located in differnce Fourier maps but subsequently introduced in calculated positions and treated as riding on their parent atoms (C or N) with C–H = 0.98 Å with Uiso(H) = 1.5 and N–H = 0.86 Å with Uiso (H) = 1.2 Ueq.
Phosphorylated carbamate of the general formula ROC(O)NHP(O)R2 are potential new ligands for metal ions (Sokolov et al. 2008). Many of these compounds also show biological activity (Amirkhanov et al. 1996, Rebrova et al. 1984, Tsibulskaya et al. 1956). This work reports the structure of methyl(dimethoxyphosphoryl)carbamate (I) (C4H10NO5P).
In the title compound (I), the phosphorus atom has a slightly distorted tetrahedral configuration. The average values of the angles OPN and OPO in the molecule are close to the tetrahedral, with the exception O3—P1—O4 and O1–P1–O4, which can be explained by interaction of nucleophilic carbonyl oxygen atom O2 with electrophilic phosphorus atom P1, corresponding distance less than the sum of the Van der Waals Radii 3.3 Å. There is repulsion between the oxygen atoms O2 and O4 distorting the tetrahedral environment of the phosphorus atom, the O···O distance is less than the sum of the Van der Waals radii 3.04 Å. Short O···O interactions have also been reported for dinitramide anion (Zhurova et al., 2002) and dimanganese decacarbonyl (Bianchi et al., 2000).
The P1–O1 and P1–N1 bond lengths for compound (I) have values 1.451 Å and 1.658 Å, which are typical for carbacylamidophosphates with ether-type substituents (Amirkhanov et al. 1997). The mixed imide moiety can be described as cisoid-transoid in which the two opposing dipoles (P=O and C=O) are oriented with torsion angle O2=C1···P1=O1 150.88 (18)° (Fig.1).
Molecules are linked in centrosymmetric dimmers by hydrogen bonds of the phosphoryl oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules (Fig.2, Table 2).
Fragment C4 O5 C1 O2 N1 P1 is practically planar, with deviations from the mean plane not exceeding 0.052 (2) Å. The O1 and O4 atoms are adjacent to it with deviations of 0.453 (3) Å and 0.582 (3) Å, respectively. The P=O bond has an angle of deviation from this plane of 23.4 (2)°.
For the use of phosphorylated carbamide as potential new ligands, see: Safin et al. (2009); Znovjyak et al. (2009); Sokolov et al. (2008). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1984); Tsibulskaya et al. (1956). For P═O bond lengths, see: Mizrahi et al., (1982): Amirkhanov et al. (1997). For the synthesis of the title compound, see: Kirsanov et al., (1959). For short O···O contacts see: Bianchi et al. (2000); Zhurova et al. (2002)
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C4H10NO5P | Z = 2 |
Mr = 183.10 | F(000) = 192 |
Triclinic, P1 | Dx = 1.507 Mg m−3 |
Hall symbol: -P 1 | Melting point: 337 K |
a = 6.441 (1) Å | Mo Kα radiation, λ = 0.71069 Å |
b = 7.018 (1) Å | Cell parameters from 1635 reflections |
c = 9.298 (2) Å | θ = 2.2–25.0° |
α = 99.05 (3)° | µ = 0.32 mm−1 |
β = 96.70 (3)° | T = 293 K |
γ = 100.54 (3)° | Block, colourless |
V = 403.46 (14) Å3 | 0.30 × 0.30 × 0.25 mm |
Enraf–Nonius CAD-4 diffractometer | 1322 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 25.5°, θmin = 2.2° |
ω/Θ scans | h = 0→7 |
Absorption correction: ψ scan (North et al., 1968) | k = −8→8 |
Tmin = 0.910, Tmax = 0.924 | l = −10→10 |
1417 measured reflections | 3 standard reflections every 200 reflections |
1417 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0766P)2 + 0.3565P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
1417 reflections | Δρmax = 0.74 e Å−3 |
101 parameters | Δρmin = −0.37 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.38 (3) |
C4H10NO5P | γ = 100.54 (3)° |
Mr = 183.10 | V = 403.46 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.441 (1) Å | Mo Kα radiation |
b = 7.018 (1) Å | µ = 0.32 mm−1 |
c = 9.298 (2) Å | T = 293 K |
α = 99.05 (3)° | 0.30 × 0.30 × 0.25 mm |
β = 96.70 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1322 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.910, Tmax = 0.924 | 3 standard reflections every 200 reflections |
1417 measured reflections | intensity decay: 1% |
1417 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.74 e Å−3 |
1417 reflections | Δρmin = −0.37 e Å−3 |
101 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.12950 (10) | 0.49103 (10) | 0.73507 (7) | 0.0377 (3) | |
O1 | −0.0897 (3) | 0.4420 (3) | 0.6611 (2) | 0.0544 (6) | |
O4 | 0.1726 (3) | 0.5989 (3) | 0.8985 (2) | 0.0502 (6) | |
O3 | 0.2109 (4) | 0.2955 (3) | 0.7485 (3) | 0.0576 (6) | |
O2 | 0.5735 (3) | 0.7814 (3) | 0.8088 (2) | 0.0574 (6) | |
O5 | 0.5569 (3) | 0.8030 (3) | 0.5700 (2) | 0.0503 (6) | |
N1 | 0.2820 (3) | 0.6223 (3) | 0.6387 (3) | 0.0420 (6) | |
H1N | 0.2292 | 0.6164 | 0.5484 | 0.050* | |
C3 | 0.1084 (6) | 0.7823 (5) | 0.9409 (4) | 0.0648 (9) | |
H3A | 0.1479 | 0.8264 | 1.0453 | 0.097* | |
H3B | −0.0436 | 0.7643 | 0.9155 | 0.097* | |
H3C | 0.1780 | 0.8790 | 0.8903 | 0.097* | |
C2 | 0.4229 (6) | 0.2930 (5) | 0.8115 (5) | 0.0668 (9) | |
H2A | 0.4385 | 0.1591 | 0.8085 | 0.100* | |
H2B | 0.4501 | 0.3612 | 0.9119 | 0.100* | |
H2C | 0.5229 | 0.3572 | 0.7566 | 0.100* | |
C1 | 0.4822 (4) | 0.7395 (4) | 0.6847 (3) | 0.0388 (6) | |
C4 | 0.7664 (5) | 0.9297 (5) | 0.6001 (4) | 0.0560 (8) | |
H4A | 0.8054 | 0.9672 | 0.5105 | 0.084* | |
H4B | 0.8684 | 0.8605 | 0.6400 | 0.084* | |
H4C | 0.7647 | 1.0455 | 0.6700 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0299 (4) | 0.0452 (5) | 0.0342 (5) | 0.0002 (3) | 0.0036 (3) | 0.0054 (3) |
O1 | 0.0403 (11) | 0.0678 (13) | 0.0464 (13) | −0.0103 (9) | 0.0021 (9) | 0.0123 (10) |
O4 | 0.0469 (11) | 0.0594 (12) | 0.0423 (13) | 0.0087 (9) | 0.0053 (9) | 0.0069 (9) |
O3 | 0.0582 (13) | 0.0456 (11) | 0.0650 (15) | 0.0035 (9) | 0.0062 (11) | 0.0084 (10) |
O2 | 0.0387 (11) | 0.0747 (15) | 0.0468 (14) | −0.0092 (10) | −0.0027 (9) | 0.0066 (10) |
O5 | 0.0385 (11) | 0.0550 (12) | 0.0500 (13) | −0.0104 (8) | 0.0027 (8) | 0.0138 (9) |
N1 | 0.0351 (11) | 0.0490 (12) | 0.0355 (13) | −0.0065 (9) | −0.0007 (9) | 0.0100 (10) |
C3 | 0.063 (2) | 0.0623 (19) | 0.064 (2) | 0.0168 (16) | 0.0072 (16) | −0.0071 (16) |
C2 | 0.065 (2) | 0.0559 (18) | 0.081 (3) | 0.0213 (16) | 0.0028 (18) | 0.0142 (17) |
C1 | 0.0321 (12) | 0.0388 (13) | 0.0426 (16) | 0.0031 (10) | 0.0034 (11) | 0.0054 (11) |
C4 | 0.0374 (15) | 0.0576 (17) | 0.066 (2) | −0.0091 (12) | 0.0085 (13) | 0.0117 (15) |
P1—O1 | 1.451 (2) | N1—C1 | 1.377 (3) |
P1—O4 | 1.556 (2) | N1—H1N | 0.8600 |
P1—O3 | 1.573 (2) | C3—H3A | 0.9600 |
P1—N1 | 1.658 (2) | C3—H3B | 0.9600 |
P1—O2 | 3.126 (2) | C3—H3C | 0.9600 |
O4—C3 | 1.434 (4) | C2—H2A | 0.9600 |
O4—O2 | 2.938 (3) | C2—H2B | 0.9600 |
O3—C2 | 1.427 (4) | C2—H2C | 0.9600 |
O2—C1 | 1.198 (3) | C4—H4A | 0.9600 |
O5—C1 | 1.326 (3) | C4—H4B | 0.9600 |
O5—C4 | 1.444 (3) | C4—H4C | 0.9600 |
O1—P1—O4 | 117.63 (12) | O4—C3—H3B | 109.5 |
O1—P1—O3 | 109.28 (13) | H3A—C3—H3B | 109.5 |
O4—P1—O3 | 101.56 (12) | O4—C3—H3C | 109.5 |
O1—P1—N1 | 109.55 (12) | H3A—C3—H3C | 109.5 |
O4—P1—N1 | 108.84 (12) | H3B—C3—H3C | 109.5 |
O3—P1—N1 | 109.57 (13) | O3—C2—H2A | 109.5 |
O1—P1—O2 | 149.38 (10) | O3—C2—H2B | 109.5 |
O4—P1—O2 | 68.54 (9) | H2A—C2—H2B | 109.5 |
O3—P1—O2 | 97.78 (10) | O3—C2—H2C | 109.5 |
N1—P1—O2 | 45.52 (9) | H2A—C2—H2C | 109.5 |
C3—O4—P1 | 121.2 (2) | H2B—C2—H2C | 109.5 |
C3—O4—O2 | 94.46 (19) | O2—C1—O5 | 125.1 (2) |
P1—O4—O2 | 81.92 (10) | O2—C1—N1 | 125.7 (3) |
C2—O3—P1 | 123.2 (2) | O5—C1—N1 | 109.1 (2) |
C1—O2—O4 | 87.22 (16) | O5—C4—H4A | 109.5 |
C1—O2—P1 | 60.15 (15) | O5—C4—H4B | 109.5 |
C1—O5—C4 | 116.0 (2) | H4A—C4—H4B | 109.5 |
C1—N1—P1 | 128.4 (2) | O5—C4—H4C | 109.5 |
C1—N1—H1N | 115.8 | H4A—C4—H4C | 109.5 |
P1—N1—H1N | 115.8 | H4B—C4—H4C | 109.5 |
O4—C3—H3A | 109.5 | ||
O1—P1—O4—C3 | −56.6 (3) | N1—P1—O2—C1 | −3.4 (2) |
O3—P1—O4—C3 | −175.8 (2) | O1—P1—O2—O4 | 108.3 (2) |
N1—P1—O4—C3 | 68.7 (2) | O3—P1—O2—O4 | −99.42 (13) |
O2—P1—O4—C3 | 90.3 (2) | N1—P1—O2—O4 | 150.72 (16) |
O1—P1—O4—O2 | −146.92 (12) | O1—P1—N1—C1 | 161.9 (2) |
O3—P1—O4—O2 | 93.90 (11) | O4—P1—N1—C1 | 32.0 (3) |
N1—P1—O4—O2 | −21.63 (11) | O3—P1—N1—C1 | −78.2 (3) |
O1—P1—O3—C2 | 177.8 (2) | O2—P1—N1—C1 | 3.27 (19) |
O4—P1—O3—C2 | −57.2 (3) | O4—O2—C1—O5 | 169.5 (3) |
N1—P1—O3—C2 | 57.8 (3) | P1—O2—C1—O5 | −178.1 (3) |
O2—P1—O3—C2 | 12.3 (3) | O4—O2—C1—N1 | −8.8 (3) |
C3—O4—O2—C1 | −98.7 (2) | P1—O2—C1—N1 | 3.6 (2) |
P1—O4—O2—C1 | 22.27 (18) | C4—O5—C1—O2 | 1.1 (4) |
C3—O4—O2—P1 | −120.9 (2) | C4—O5—C1—N1 | 179.7 (2) |
O1—P1—O2—C1 | −45.8 (3) | P1—N1—C1—O2 | −7.5 (4) |
O4—P1—O2—C1 | −154.1 (2) | P1—N1—C1—O5 | 173.93 (19) |
O3—P1—O2—C1 | 106.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 1.99 | 2.847 (3) | 171 |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C4H10NO5P |
Mr | 183.10 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.441 (1), 7.018 (1), 9.298 (2) |
α, β, γ (°) | 99.05 (3), 96.70 (3), 100.54 (3) |
V (Å3) | 403.46 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.30 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.910, 0.924 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1417, 1417, 1322 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.605 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.133, 1.04 |
No. of reflections | 1417 |
No. of parameters | 101 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.37 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).
P1—O1 | 1.451 (2) | P1—O2 | 3.126 (2) |
P1—O4 | 1.556 (2) | O4—O2 | 2.938 (3) |
P1—O3 | 1.573 (2) | O2—C1 | 1.198 (3) |
P1—N1 | 1.658 (2) | N1—C1 | 1.377 (3) |
O1—P1—O4 | 117.63 (12) | O1—P1—N1 | 109.55 (12) |
O1—P1—O3 | 109.28 (13) | O4—P1—N1 | 108.84 (12) |
O4—P1—O3 | 101.56 (12) | O3—P1—N1 | 109.57 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 1.99 | 2.847 (3) | 171 |
Symmetry code: (i) −x, −y+1, −z+1. |
References
Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336. CAS Google Scholar
Amirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Masalik, L. (1996). Acta Phys. Pol. A, 90, 455–460. CAS Google Scholar
Bianchi, R., Gervasio, G. & Marabello, D. (2000). Inorg. Chem. 39, 2360–2366. Web of Science CSD CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Kirsanov, A. V. & Marenetc, M. C. (1959). Russ. J. Gen. Chem. 29, 2256–2262. CAS Google Scholar
Mizrahi, V. & Modro, T. A. (1982). Cryst. Struct. Commun. 11, 627–631. CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1984). Dokl. Akad. Nauk SSSR, 274, 328–332. CAS PubMed Web of Science Google Scholar
Safin, D. A., Bolte, M., Shakirova, E. R. & Babashkina, M. G. (2009). Polyhedron, 28, 501–501. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sokolov, F. D., Brusko, V. V., Safin, D. A., Cherkasov, R. A. & Zabirov, N. G. (2008). Transition Metal Chemistry: New Research, edited by B. Varga & L. Kis, pp. 101–150. Hauppauge, NY: Nova Science Publishers Inc. Google Scholar
Tsibulskaya, N. P. & Orlacheva, K. A. (1956). DAN UkrSSR, pp. 602–606. Google Scholar
Zhurova, E. A., Tsirelson, V. G., Stash, A. I. & Pinkerton, A. A. (2002). J. Am. Chem. Soc. 124, 4574–4575. Web of Science CrossRef PubMed CAS Google Scholar
Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phosphorylated carbamate of the general formula ROC(O)NHP(O)R2 are potential new ligands for metal ions (Sokolov et al. 2008). Many of these compounds also show biological activity (Amirkhanov et al. 1996, Rebrova et al. 1984, Tsibulskaya et al. 1956). This work reports the structure of methyl(dimethoxyphosphoryl)carbamate (I) (C4H10NO5P).
In the title compound (I), the phosphorus atom has a slightly distorted tetrahedral configuration. The average values of the angles OPN and OPO in the molecule are close to the tetrahedral, with the exception O3—P1—O4 and O1–P1–O4, which can be explained by interaction of nucleophilic carbonyl oxygen atom O2 with electrophilic phosphorus atom P1, corresponding distance less than the sum of the Van der Waals Radii 3.3 Å. There is repulsion between the oxygen atoms O2 and O4 distorting the tetrahedral environment of the phosphorus atom, the O···O distance is less than the sum of the Van der Waals radii 3.04 Å. Short O···O interactions have also been reported for dinitramide anion (Zhurova et al., 2002) and dimanganese decacarbonyl (Bianchi et al., 2000).
The P1–O1 and P1–N1 bond lengths for compound (I) have values 1.451 Å and 1.658 Å, which are typical for carbacylamidophosphates with ether-type substituents (Amirkhanov et al. 1997). The mixed imide moiety can be described as cisoid-transoid in which the two opposing dipoles (P=O and C=O) are oriented with torsion angle O2=C1···P1=O1 150.88 (18)° (Fig.1).
Molecules are linked in centrosymmetric dimmers by hydrogen bonds of the phosphoryl oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules (Fig.2, Table 2).
Fragment C4 O5 C1 O2 N1 P1 is practically planar, with deviations from the mean plane not exceeding 0.052 (2) Å. The O1 and O4 atoms are adjacent to it with deviations of 0.453 (3) Å and 0.582 (3) Å, respectively. The P=O bond has an angle of deviation from this plane of 23.4 (2)°.