organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-3-(5-Amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-benzo­furan-1(3H)-one

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 17 June 2013; accepted 25 June 2013; online 29 June 2013)

In the title compound, C18H15N3O2, the benzo­furan ring system is essentially planar, the rings making a dihedral angle of 0.57 (9)°. The phenyl, furan and benzene rings subtend dihedral angles of 47.07 (10), 85.76 (7) and 86.04 (7)°, respectively, with the pyrazole ring. In the crystal, mol­ecules are linked by weak N—H⋯N, N—H⋯O and C—H⋯O inter­actions, generating edge-fused R44(20), and R12(7) rings linked into sheets which are parallel to (010).

Related literature

For biological and pharmacological properties of benzo­furan­ones, see: Yoganathan et al. (2003[Yoganathan, K., Rossant, C., Ng, S., Huang, Y., Butler, M. S. & Buss, A. D. (2003). J. Nat. Prod. 66, 1116-1117.]); Shode et al. (2002[Shode, F. O., Mahomed, A. S. & Rogers, C. B. (2002). Phytochemistry, 61, 955-957.]); Anderson et al. (2005[Anderson, J. T., Ting, A. E., Boozer, S., Brunden, K. R., Crumrine, C., Danzig, J., Dent, T., Faga, L., Harrington, J. J., Hodnick, W. F., Murphy, S. M., Pawlowski, G., Perry, R., Raber, A., Rundlett, S. E., Stricker-Krongrad, A., Wang, J. & Bennani, Y. L. (2005). J. Med. Chem. 48, 7096-7098.]); Puder et al. (2000[Puder, C., Zeeck, A. & Beil, W. J. (2000). J. Antibiot. 53, 329-336.]); Nannei et al. (2006[Nannei, R., Dallavalle, S., Merlini, L., Bava, A. & Nasini, G. (2006). J. Org. Chem. 71, 6277-6280.]); Brady et al. (2000[Brady, S. F., Wagenaar, M. M., Singh, M. P., Janson, J. E. & Clardy, J. (2000). Org. Lett. 2, 4043-4046.]); Malpani et al. (2013[Malpani, Y., Achary, R., Kim, S. Y., Jeong, H. C., Kim, P., Han, S. B., Kim, M., Lee, C.-K., Kim, J. N. & Jung, Y.-S. (2013). Eur. J. Med. Chem. 62, 534-544.]). For the synthesis of diverse pyrazole derivatives, see: Abonia et al. (2010[Abonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. 33, 6454-6463.]); Insuasty et al. (2012[Insuasty, B., Chamizo, L., Muñoz, J., Tigreros, A., Quiroga, J., Abonia, R., Nogueras, M. & Cobo, J. (2012). Arch. Pharm. 345, 275-286.], 2013[Insuasty, H., Insuasty, B., Castro, E., Quiroga, J. & Abonia, R. (2013). Tetrahedron Lett. 54, 1722-1725.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and for hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3O2

  • Mr = 305.33

  • Monoclinic, P 21 /c

  • a = 10.0451 (2) Å

  • b = 15.0631 (5) Å

  • c = 12.2008 (4) Å

  • β = 123.257 (2)°

  • V = 1543.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.32 × 0.22 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 15125 measured reflections

  • 3449 independent reflections

  • 2264 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.173

  • S = 1.03

  • 3449 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.38 3.131 (2) 146
N1—H1B⋯N3ii 0.86 2.27 3.116 (2) 169
C8—H8⋯N3ii 1.013 (19) 2.51 (2) 3.484 (2) 159.9 (15)
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound (±)-3-(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)isobenzofuran-1(3H)-one, (I), is part of the study of different crystal systems, associated with isobenzofuranones, which are an important class of synthetic and natural occurring products exhibiting diverse biological and pharmacological properties. Particularly, several of its 3-substitued derivatives are part of the framework of natural products such as fuscinarin with anti-HIV properties (Yoganathan et al., 2003), typhaphthalide, a phenolic compound isolated from Typha capensis (Shode et al., 2002), noscapine, with antitussive and anticancer properties (Anderson et al., 2005), rubiginone-H, as antibiotic (Puder et al., 2000), spirolaxine with antibacterial activity against Helicobacter pylori (Nannei et al., 2006), cytosporone E with antibacterial properties (Brady et al., 2000) and some synthetic spirolactones as inhibitors of the influenza virus type B (Malpani et al., 2013). Continuing with our current studies on the use of pyrazoles for the synthesis of diverse pyrazole-derivatives with synthetic and biological interest (Abonia et al., 2010; Insuasty et al., 2012; Insuasty et al., 2013), compound (I) was obtained from the reaction of 2-formylbenzoic acid with 5-amino-3-methyl-1-phenylpyrazole. In order to present the molecular conformation of (I) and its supramolecular behavior, the title compound was synthesized. The molecular structure of (I) is shown in Fig. 1. In the present molecule rings A (C2—C7) and B (O1—C1—C2—C7—C8) are planar showing a dihedral angle between them A/B = 0.57 (9)°. The phenyl, A and B rings form dihedral angles of 47.07 (10)°, 85.76 (7)° and 86.04 (7)° with the pyrazole ring respectively.

Further analysis showed that each molecule is linked to other molecules by weak N—H···N, N—H···O and C—H···O interactions (see table 1, Nardelli, 1995). These intermolecular contacts are explained in terms of the substructure shown in figure 2. The N3 atom in the molecule at (x,y,z) acts as hydrogen bond donor to pyrazolic N1 atom at (x,-y - 1/2,+z + 1/2). At the same time the N3 atom is linked to another molecule via N—H···O. Indeed, the N3 atom in the molecule at (x,y,z) acts as hydrogen bond donor to C=O O2 atom in the molecule at (x +1,-y - 1/2,+z + 1/2). Growth of the crystal is reinforced by the weak interaction C11—H11···N1, in which the C11 atom of the benzofuranone ring at (x,y,z) acts as hydrogen-bond donor to atom N1 in the molecule at (x,-y - 1/2,+z + 1/2). The combination of these intermolecular contacts generate edge-fused R44(20), and R21(7) (Fig. 2) ring motifs (Etter, 1990; Bernstein et al., 1995), as sheets which stack parallel to (010).

Related literature top

For biological and pharmacological properties of benzofuranones, see: Yoganathan et al. (2003); Shode et al. (2002); Anderson et al. (2005); Puder et al. (2000); Nannei et al. (2006); Brady et al. (2000); Malpani et al. (2013). For the synthesis of diverse pyrazole derivatives, see: Abonia et al. (2010); Insuasty et al. (2012, 2013). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond graph-set motifs, see: Etter (1990); Bernstein et al. (1995).

Experimental top

Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The 5-amino-3-methyl-1-phenyl-1H-pyrazole (117 mg, 0.68 mmol) and 2-formylbenzoic acid (103 mg, 0.69 mmol) were dissolved in a mixture of MeCN/H2O (10:1, 2 mL). The solution was stirred at room temperature for 24 h until the starting materials were not detected by TLC. Then, the solid formed was filtered and washed with cold MeCN (1 mL) without further purification (See scheme 2). White crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in ethanol (87% yield, m.p. 464 (1) K). MS (ESI+): m/z found: 306 [M+H]+, 328 [M+Na]+; elemental analysis found: C 71.13, H 5.01, N 13.69%; C18H15N3O2 requires: C 70.81, H 4.95, N 13.76%.

Refinement top

All H-atoms were positioned at geometrically idealized positions [N—H= 0.86 Å, C—H= 0.93 Å for aromatic, C—H= 0.96 Å for methyl group] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (N—H and aromatic) and to 1.5 (methyl) times Ueq of the respective parent atom. Coordinates for H11 were freely refined.

Structure description top

The title compound (±)-3-(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)isobenzofuran-1(3H)-one, (I), is part of the study of different crystal systems, associated with isobenzofuranones, which are an important class of synthetic and natural occurring products exhibiting diverse biological and pharmacological properties. Particularly, several of its 3-substitued derivatives are part of the framework of natural products such as fuscinarin with anti-HIV properties (Yoganathan et al., 2003), typhaphthalide, a phenolic compound isolated from Typha capensis (Shode et al., 2002), noscapine, with antitussive and anticancer properties (Anderson et al., 2005), rubiginone-H, as antibiotic (Puder et al., 2000), spirolaxine with antibacterial activity against Helicobacter pylori (Nannei et al., 2006), cytosporone E with antibacterial properties (Brady et al., 2000) and some synthetic spirolactones as inhibitors of the influenza virus type B (Malpani et al., 2013). Continuing with our current studies on the use of pyrazoles for the synthesis of diverse pyrazole-derivatives with synthetic and biological interest (Abonia et al., 2010; Insuasty et al., 2012; Insuasty et al., 2013), compound (I) was obtained from the reaction of 2-formylbenzoic acid with 5-amino-3-methyl-1-phenylpyrazole. In order to present the molecular conformation of (I) and its supramolecular behavior, the title compound was synthesized. The molecular structure of (I) is shown in Fig. 1. In the present molecule rings A (C2—C7) and B (O1—C1—C2—C7—C8) are planar showing a dihedral angle between them A/B = 0.57 (9)°. The phenyl, A and B rings form dihedral angles of 47.07 (10)°, 85.76 (7)° and 86.04 (7)° with the pyrazole ring respectively.

Further analysis showed that each molecule is linked to other molecules by weak N—H···N, N—H···O and C—H···O interactions (see table 1, Nardelli, 1995). These intermolecular contacts are explained in terms of the substructure shown in figure 2. The N3 atom in the molecule at (x,y,z) acts as hydrogen bond donor to pyrazolic N1 atom at (x,-y - 1/2,+z + 1/2). At the same time the N3 atom is linked to another molecule via N—H···O. Indeed, the N3 atom in the molecule at (x,y,z) acts as hydrogen bond donor to C=O O2 atom in the molecule at (x +1,-y - 1/2,+z + 1/2). Growth of the crystal is reinforced by the weak interaction C11—H11···N1, in which the C11 atom of the benzofuranone ring at (x,y,z) acts as hydrogen-bond donor to atom N1 in the molecule at (x,-y - 1/2,+z + 1/2). The combination of these intermolecular contacts generate edge-fused R44(20), and R21(7) (Fig. 2) ring motifs (Etter, 1990; Bernstein et al., 1995), as sheets which stack parallel to (010).

For biological and pharmacological properties of benzofuranones, see: Yoganathan et al. (2003); Shode et al. (2002); Anderson et al. (2005); Puder et al. (2000); Nannei et al. (2006); Brady et al. (2000); Malpani et al. (2013). For the synthesis of diverse pyrazole derivatives, see: Abonia et al. (2010); Insuasty et al. (2012, 2013). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond graph-set motifs, see: Etter (1990); Bernstein et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of chains of molecules which running parallel to (010). Symmetry code: (i) x + 1,-y + 1/2 + 1,+z + 1/2; (ii) x,-y + 1/2 + 1,+z + 1/2.
[Figure 3] Fig. 3. Reaction scheme.
(I) top
Crystal data top
C18H15N3O2F(000) = 640
Mr = 305.33Dx = 1.314 Mg m3
Monoclinic, P21/cMelting point: 464(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.0451 (2) ÅCell parameters from 14996 reflections
b = 15.0631 (5) Åθ = 2.6–27.5°
c = 12.2008 (4) ŵ = 0.09 mm1
β = 123.257 (2)°T = 295 K
V = 1543.75 (8) Å3Block, white
Z = 40.32 × 0.22 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2264 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
CCD rotation images, thick slices scansh = 1312
15125 measured reflectionsk = 1919
3449 independent reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1038P)2 + 0.1468P]
where P = (Fo2 + 2Fc2)/3
3449 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C18H15N3O2V = 1543.75 (8) Å3
Mr = 305.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0451 (2) ŵ = 0.09 mm1
b = 15.0631 (5) ÅT = 295 K
c = 12.2008 (4) Å0.32 × 0.22 × 0.15 mm
β = 123.257 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2264 reflections with I > 2σ(I)
15125 measured reflectionsRint = 0.043
3449 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.29 e Å3
3449 reflectionsΔρmin = 0.31 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.07121 (16)0.81568 (8)0.27256 (14)0.0549 (4)
N20.36978 (18)0.72091 (10)0.28921 (14)0.0438 (4)
N30.27961 (18)0.77174 (10)0.17675 (13)0.0455 (4)
C130.4909 (2)0.66591 (12)0.29898 (16)0.0413 (4)
O10.28573 (17)0.90333 (11)0.17908 (17)0.0733 (5)
C110.1725 (2)0.81116 (11)0.19068 (17)0.0433 (4)
N10.38101 (19)0.68232 (11)0.48354 (14)0.0532 (5)
H1A0.45820.64610.50630.064*
H1B0.34470.68900.53250.064*
C70.1242 (2)0.92069 (12)0.39955 (16)0.0426 (4)
C100.3162 (2)0.72929 (11)0.36959 (16)0.0402 (4)
C140.5007 (2)0.57697 (13)0.33054 (18)0.0500 (5)
H140.43570.55340.35560.060*
C90.1904 (2)0.78783 (11)0.31016 (16)0.0411 (4)
C20.0212 (2)0.96295 (12)0.33066 (17)0.0465 (5)
C60.2622 (2)0.96761 (14)0.48389 (18)0.0527 (5)
H60.36080.93950.53060.063*
C80.1023 (2)0.82334 (12)0.36679 (18)0.0446 (4)
C180.5921 (2)0.70181 (13)0.26633 (18)0.0500 (5)
H180.59000.76240.25060.060*
C120.0453 (2)0.86596 (14)0.08062 (18)0.0559 (5)
H12A0.06520.87010.01230.084*
H12B0.04540.92440.11220.084*
H12C0.05640.83860.04670.084*
C170.6953 (2)0.64713 (15)0.2575 (2)0.0588 (5)
H170.76060.67050.23260.071*
C10.1431 (2)0.89583 (13)0.2522 (2)0.0528 (5)
C160.7027 (3)0.55779 (16)0.2851 (2)0.0637 (6)
H160.77130.52100.27720.076*
C150.6087 (3)0.52322 (14)0.3245 (2)0.0603 (5)
H150.61750.46360.34710.072*
C30.0347 (3)1.05330 (14)0.3422 (2)0.0609 (6)
H30.13301.08160.29500.073*
C50.2482 (3)1.05762 (15)0.4961 (2)0.0646 (6)
H50.33881.09070.55290.077*
C40.1022 (3)1.09962 (15)0.4257 (2)0.0676 (6)
H40.09661.16050.43510.081*
H80.130 (2)0.7852 (12)0.4451 (19)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0481 (8)0.0467 (8)0.0721 (9)0.0027 (6)0.0345 (7)0.0020 (6)
N20.0513 (9)0.0464 (8)0.0380 (7)0.0083 (7)0.0272 (7)0.0052 (6)
N30.0530 (10)0.0484 (9)0.0372 (8)0.0065 (7)0.0262 (7)0.0059 (6)
C130.0418 (10)0.0467 (10)0.0363 (8)0.0021 (8)0.0219 (8)0.0011 (7)
O10.0421 (9)0.0777 (11)0.0866 (11)0.0030 (7)0.0267 (8)0.0077 (8)
C110.0482 (11)0.0401 (10)0.0405 (9)0.0007 (8)0.0237 (8)0.0005 (7)
N10.0624 (11)0.0635 (10)0.0424 (9)0.0210 (8)0.0344 (8)0.0143 (7)
C70.0471 (11)0.0470 (10)0.0400 (9)0.0025 (8)0.0280 (8)0.0023 (7)
C100.0456 (10)0.0407 (10)0.0363 (9)0.0006 (8)0.0237 (8)0.0002 (7)
C140.0509 (12)0.0484 (11)0.0542 (11)0.0019 (9)0.0310 (10)0.0035 (8)
C90.0461 (11)0.0398 (9)0.0401 (9)0.0003 (8)0.0253 (8)0.0008 (7)
C20.0458 (11)0.0464 (11)0.0514 (10)0.0035 (8)0.0292 (9)0.0017 (8)
C60.0486 (12)0.0621 (13)0.0449 (10)0.0009 (10)0.0241 (9)0.0054 (9)
C80.0450 (11)0.0462 (10)0.0458 (10)0.0033 (8)0.0270 (9)0.0059 (8)
C180.0513 (12)0.0520 (11)0.0476 (10)0.0024 (9)0.0278 (9)0.0015 (8)
C120.0569 (13)0.0578 (12)0.0462 (10)0.0067 (10)0.0239 (10)0.0087 (9)
C170.0508 (12)0.0746 (15)0.0594 (12)0.0038 (11)0.0355 (10)0.0053 (10)
C10.0454 (12)0.0571 (12)0.0591 (11)0.0042 (10)0.0306 (10)0.0026 (9)
C160.0555 (13)0.0760 (16)0.0649 (13)0.0159 (11)0.0365 (11)0.0022 (11)
C150.0642 (14)0.0516 (12)0.0645 (13)0.0115 (10)0.0349 (11)0.0059 (10)
C30.0590 (14)0.0527 (13)0.0714 (13)0.0126 (10)0.0360 (12)0.0047 (10)
C50.0663 (14)0.0635 (14)0.0643 (13)0.0121 (12)0.0360 (12)0.0164 (11)
C40.0804 (17)0.0472 (12)0.0795 (15)0.0007 (12)0.0465 (14)0.0080 (11)
Geometric parameters (Å, º) top
O2—C11.358 (2)C2—C31.383 (3)
O2—C81.475 (2)C2—C11.467 (3)
N2—C101.359 (2)C6—C51.380 (3)
N2—N31.388 (2)C6—H60.9300
N2—C131.422 (2)C8—H81.013 (19)
N3—C111.319 (2)C18—C171.375 (3)
C13—C141.382 (3)C18—H180.9300
C13—C181.389 (2)C12—H12A0.9600
O1—C11.208 (2)C12—H12B0.9600
C11—C91.412 (2)C12—H12C0.9600
C11—C121.495 (3)C17—C161.379 (3)
N1—C101.365 (2)C17—H170.9300
N1—H1A0.8600C16—C151.375 (3)
N1—H1B0.8600C16—H160.9300
C7—C21.377 (3)C15—H150.9300
C7—C61.384 (3)C3—C41.371 (3)
C7—C81.504 (3)C3—H30.9300
C10—C91.376 (2)C5—C41.381 (3)
C14—C151.388 (3)C5—H50.9300
C14—H140.9300C4—H40.9300
C9—C81.489 (2)
C1—O2—C8110.83 (14)C9—C8—C7115.86 (15)
C10—N2—N3111.11 (13)O2—C8—H8106.9 (11)
C10—N2—C13130.77 (14)C9—C8—H8107.7 (10)
N3—N2—C13117.96 (13)C7—C8—H8112.2 (11)
C11—N3—N2104.90 (13)C17—C18—C13119.47 (18)
C14—C13—C18120.37 (17)C17—C18—H18120.3
C14—C13—N2121.01 (16)C13—C18—H18120.3
C18—C13—N2118.44 (16)C11—C12—H12A109.5
N3—C11—C9111.71 (16)C11—C12—H12B109.5
N3—C11—C12119.26 (15)H12A—C12—H12B109.5
C9—C11—C12128.82 (17)C11—C12—H12C109.5
C10—N1—H1A120.0H12A—C12—H12C109.5
C10—N1—H1B120.0H12B—C12—H12C109.5
H1A—N1—H1B120.0C18—C17—C16120.47 (18)
C2—C7—C6120.81 (18)C18—C17—H17119.8
C2—C7—C8109.70 (16)C16—C17—H17119.8
C6—C7—C8129.49 (17)O1—C1—O2120.95 (19)
N2—C10—N1122.01 (15)O1—C1—C2130.16 (19)
N2—C10—C9106.96 (14)O2—C1—C2108.88 (16)
N1—C10—C9130.99 (15)C15—C16—C17119.97 (19)
C13—C14—C15119.29 (18)C15—C16—H16120.0
C13—C14—H14120.4C17—C16—H16120.0
C15—C14—H14120.4C16—C15—C14120.29 (19)
C10—C9—C11105.30 (15)C16—C15—H15119.9
C10—C9—C8126.36 (15)C14—C15—H15119.9
C11—C9—C8128.18 (16)C4—C3—C2117.51 (19)
C7—C2—C3121.57 (18)C4—C3—H3121.2
C7—C2—C1107.81 (16)C2—C3—H3121.2
C3—C2—C1130.63 (18)C6—C5—C4121.3 (2)
C5—C6—C7117.50 (19)C6—C5—H5119.3
C5—C6—H6121.2C4—C5—H5119.3
C7—C6—H6121.2C3—C4—C5121.3 (2)
O2—C8—C9111.06 (14)C3—C4—H4119.4
O2—C8—C7102.78 (14)C5—C4—H4119.4
C10—N2—N3—C110.49 (19)C1—O2—C8—C9124.84 (16)
C13—N2—N3—C11176.40 (15)C1—O2—C8—C70.32 (18)
C10—N2—C13—C1445.9 (3)C10—C9—C8—O2131.54 (18)
N3—N2—C13—C14129.02 (17)C11—C9—C8—O253.7 (2)
C10—N2—C13—C18138.91 (19)C10—C9—C8—C7111.7 (2)
N3—N2—C13—C1846.1 (2)C11—C9—C8—C763.1 (2)
N2—N3—C11—C90.29 (19)C2—C7—C8—O20.28 (17)
N2—N3—C11—C12174.89 (15)C6—C7—C8—O2179.67 (16)
N3—N2—C10—N1176.82 (16)C2—C7—C8—C9121.01 (17)
C13—N2—C10—N11.6 (3)C6—C7—C8—C959.0 (2)
N3—N2—C10—C91.07 (19)C14—C13—C18—C174.1 (3)
C13—N2—C10—C9176.30 (17)N2—C13—C18—C17171.06 (16)
C18—C13—C14—C152.4 (3)C13—C18—C17—C162.3 (3)
N2—C13—C14—C15172.66 (17)C8—O2—C1—O1179.17 (17)
N2—C10—C9—C111.17 (19)C8—O2—C1—C20.8 (2)
N1—C10—C9—C11176.46 (18)C7—C2—C1—O1179.0 (2)
N2—C10—C9—C8174.57 (16)C3—C2—C1—O10.7 (4)
N1—C10—C9—C87.8 (3)C7—C2—C1—O20.9 (2)
N3—C11—C9—C100.9 (2)C3—C2—C1—O2179.40 (18)
C12—C11—C9—C10173.66 (17)C18—C17—C16—C151.3 (3)
N3—C11—C9—C8174.71 (17)C17—C16—C15—C143.1 (3)
C12—C11—C9—C810.7 (3)C13—C14—C15—C161.2 (3)
C6—C7—C2—C30.5 (3)C7—C2—C3—C40.4 (3)
C8—C7—C2—C3179.57 (16)C1—C2—C3—C4179.19 (19)
C6—C7—C2—C1179.22 (16)C7—C6—C5—C40.8 (3)
C8—C7—C2—C10.73 (19)C2—C3—C4—C50.2 (3)
C2—C7—C6—C50.1 (3)C6—C5—C4—C30.8 (3)
C8—C7—C6—C5179.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.383.131 (2)146
N1—H1B···N3ii0.862.273.116 (2)169
C8—H8···N3ii1.013 (19)2.51 (2)3.484 (2)159.9 (15)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H15N3O2
Mr305.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.0451 (2), 15.0631 (5), 12.2008 (4)
β (°) 123.257 (2)
V3)1543.75 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.22 × 0.15
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15125, 3449, 2264
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.173, 1.03
No. of reflections3449
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.383.131 (2)146.0
N1—H1B···N3ii0.862.273.116 (2)169.4
C8—H8···N3ii1.013 (19)2.51 (2)3.484 (2)159.9 (15)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

RMF and RA are grateful to the Universidad del Valle, Colombia, for partial financial support. JCC acknowledges his doctoral fellowship granted by COLCIENCIAS.

References

First citationAbonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. 33, 6454–6463.  Web of Science CrossRef Google Scholar
First citationAnderson, J. T., Ting, A. E., Boozer, S., Brunden, K. R., Crumrine, C., Danzig, J., Dent, T., Faga, L., Harrington, J. J., Hodnick, W. F., Murphy, S. M., Pawlowski, G., Perry, R., Raber, A., Rundlett, S. E., Stricker-Krongrad, A., Wang, J. & Bennani, Y. L. (2005). J. Med. Chem. 48, 7096–7098.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrady, S. F., Wagenaar, M. M., Singh, M. P., Janson, J. E. & Clardy, J. (2000). Org. Lett. 2, 4043–4046.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInsuasty, B., Chamizo, L., Muñoz, J., Tigreros, A., Quiroga, J., Abonia, R., Nogueras, M. & Cobo, J. (2012). Arch. Pharm. 345, 275–286.  Web of Science CrossRef CAS Google Scholar
First citationInsuasty, H., Insuasty, B., Castro, E., Quiroga, J. & Abonia, R. (2013). Tetrahedron Lett. 54, 1722–1725.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalpani, Y., Achary, R., Kim, S. Y., Jeong, H. C., Kim, P., Han, S. B., Kim, M., Lee, C.-K., Kim, J. N. & Jung, Y.-S. (2013). Eur. J. Med. Chem. 62, 534–544.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNannei, R., Dallavalle, S., Merlini, L., Bava, A. & Nasini, G. (2006). J. Org. Chem. 71, 6277–6280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPuder, C., Zeeck, A. & Beil, W. J. (2000). J. Antibiot. 53, 329–336.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShode, F. O., Mahomed, A. S. & Rogers, C. B. (2002). Phytochemistry, 61, 955–957.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoganathan, K., Rossant, C., Ng, S., Huang, Y., Butler, M. S. & Buss, A. D. (2003). J. Nat. Prod. 66, 1116–1117.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds