organic compounds
(±)-3-(5-Amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-benzofuran-1(3H)-one
aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
In the title compound, C18H15N3O2, the benzofuran ring system is essentially planar, the rings making a dihedral angle of 0.57 (9)°. The phenyl, furan and benzene rings subtend dihedral angles of 47.07 (10), 85.76 (7) and 86.04 (7)°, respectively, with the pyrazole ring. In the crystal, molecules are linked by weak N—H⋯N, N—H⋯O and C—H⋯O interactions, generating edge-fused R44(20), and R12(7) rings linked into sheets which are parallel to (010).
Related literature
For biological and pharmacological properties of benzofuranones, see: Yoganathan et al. (2003); Shode et al. (2002); Anderson et al. (2005); Puder et al. (2000); Nannei et al. (2006); Brady et al. (2000); Malpani et al. (2013). For the synthesis of diverse pyrazole derivatives, see: Abonia et al. (2010); Insuasty et al. (2012, 2013). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond graph-set motifs, see: Etter (1990); Bernstein et al. (1995).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813017479/gg2119sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813017479/gg2119Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813017479/gg2119Isup3.cml
Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The 5-amino-3-methyl-1-phenyl-1H-pyrazole (117 mg, 0.68 mmol) and 2-formylbenzoic acid (103 mg, 0.69 mmol) were dissolved in a mixture of MeCN/H2O (10:1, 2 mL). The solution was stirred at room temperature for 24 h until the starting materials were not detected by TLC. Then, the solid formed was filtered and washed with cold MeCN (1 mL) without further purification (See scheme 2). White crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in ethanol (87% yield, m.p. 464 (1) K). MS (ESI+): m/z found: 306 [M+H]+, 328 [M+Na]+; elemental analysis found: C 71.13, H 5.01, N 13.69%; C18H15N3O2 requires: C 70.81, H 4.95, N 13.76%.
All H-atoms were positioned at geometrically idealized positions [N—H= 0.86 Å, C—H= 0.93 Å for aromatic, C—H= 0.96 Å for methyl group] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (N—H and aromatic) and to 1.5 (methyl) times Ueq of the respective parent atom. Coordinates for H11 were freely refined.
The title compound (±)-3-(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)isobenzofuran-1(3H)-one, (I), is part of the study of different crystal systems, associated with isobenzofuranones, which are an important class of synthetic and natural occurring products exhibiting diverse biological and pharmacological properties. Particularly, several of its 3-substitued derivatives are part of the framework of natural products such as fuscinarin with anti-HIV properties (Yoganathan et al., 2003), typhaphthalide, a phenolic compound isolated from Typha capensis (Shode et al., 2002), noscapine, with antitussive and anticancer properties (Anderson et al., 2005), rubiginone-H, as antibiotic (Puder et al., 2000), spirolaxine with antibacterial activity against Helicobacter pylori (Nannei et al., 2006), cytosporone E with antibacterial properties (Brady et al., 2000) and some synthetic spirolactones as inhibitors of the influenza virus type B (Malpani et al., 2013). Continuing with our current studies on the use of pyrazoles for the synthesis of diverse pyrazole-derivatives with synthetic and biological interest (Abonia et al., 2010; Insuasty et al., 2012; Insuasty et al., 2013), compound (I) was obtained from the reaction of 2-formylbenzoic acid with 5-amino-3-methyl-1-phenylpyrazole. In order to present the
of (I) and its supramolecular behavior, the title compound was synthesized. The molecular structure of (I) is shown in Fig. 1. In the present molecule rings A (C2—C7) and B (O1—C1—C2—C7—C8) are planar showing a dihedral angle between them A/B = 0.57 (9)°. The phenyl, A and B rings form dihedral angles of 47.07 (10)°, 85.76 (7)° and 86.04 (7)° with the pyrazole ring respectively.Further analysis showed that each molecule is linked to other molecules by weak N—H···N, N—H···O and C—H···O interactions (see table 1, Nardelli, 1995). These intermolecular contacts are explained in terms of the
shown in figure 2. The N3 atom in the molecule at (x,y,z) acts as hydrogen bond donor to pyrazolic N1 atom at (x,-y - 1/2,+z + 1/2). At the same time the N3 atom is linked to another molecule via N—H···O. Indeed, the N3 atom in the molecule at (x,y,z) acts as hydrogen bond donor to C=O O2 atom in the molecule at (x +1,-y - 1/2,+z + 1/2). Growth of the crystal is reinforced by the weak interaction C11—H11···N1, in which the C11 atom of the benzofuranone ring at (x,y,z) acts as hydrogen-bond donor to atom N1 in the molecule at (x,-y - 1/2,+z + 1/2). The combination of these intermolecular contacts generate edge-fused R44(20), and R21(7) (Fig. 2) ring motifs (Etter, 1990; Bernstein et al., 1995), as sheets which stack parallel to (010).For biological and pharmacological properties of benzofuranones, see: Yoganathan et al. (2003); Shode et al. (2002); Anderson et al. (2005); Puder et al. (2000); Nannei et al. (2006); Brady et al. (2000); Malpani et al. (2013). For the synthesis of diverse pyrazole derivatives, see: Abonia et al. (2010); Insuasty et al. (2012, 2013). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond graph-set motifs, see: Etter (1990); Bernstein et al. (1995).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).C18H15N3O2 | F(000) = 640 |
Mr = 305.33 | Dx = 1.314 Mg m−3 |
Monoclinic, P21/c | Melting point: 464(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0451 (2) Å | Cell parameters from 14996 reflections |
b = 15.0631 (5) Å | θ = 2.6–27.5° |
c = 12.2008 (4) Å | µ = 0.09 mm−1 |
β = 123.257 (2)° | T = 295 K |
V = 1543.75 (8) Å3 | Block, white |
Z = 4 | 0.32 × 0.22 × 0.15 mm |
Nonius KappaCCD diffractometer | 2264 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.043 |
Graphite monochromator | θmax = 27.5°, θmin = 3.4° |
CCD rotation images, thick slices scans | h = −13→12 |
15125 measured reflections | k = −19→19 |
3449 independent reflections | l = −15→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.173 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1038P)2 + 0.1468P] where P = (Fo2 + 2Fc2)/3 |
3449 reflections | (Δ/σ)max < 0.001 |
212 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
C18H15N3O2 | V = 1543.75 (8) Å3 |
Mr = 305.33 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.0451 (2) Å | µ = 0.09 mm−1 |
b = 15.0631 (5) Å | T = 295 K |
c = 12.2008 (4) Å | 0.32 × 0.22 × 0.15 mm |
β = 123.257 (2)° |
Nonius KappaCCD diffractometer | 2264 reflections with I > 2σ(I) |
15125 measured reflections | Rint = 0.043 |
3449 independent reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.173 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.29 e Å−3 |
3449 reflections | Δρmin = −0.31 e Å−3 |
212 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O2 | −0.07121 (16) | 0.81568 (8) | 0.27256 (14) | 0.0549 (4) | |
N2 | 0.36978 (18) | 0.72091 (10) | 0.28921 (14) | 0.0438 (4) | |
N3 | 0.27961 (18) | 0.77174 (10) | 0.17675 (13) | 0.0455 (4) | |
C13 | 0.4909 (2) | 0.66591 (12) | 0.29898 (16) | 0.0413 (4) | |
O1 | −0.28573 (17) | 0.90333 (11) | 0.17908 (17) | 0.0733 (5) | |
C11 | 0.1725 (2) | 0.81116 (11) | 0.19068 (17) | 0.0433 (4) | |
N1 | 0.38101 (19) | 0.68232 (11) | 0.48354 (14) | 0.0532 (5) | |
H1A | 0.4582 | 0.6461 | 0.5063 | 0.064* | |
H1B | 0.3447 | 0.6890 | 0.5325 | 0.064* | |
C7 | 0.1242 (2) | 0.92069 (12) | 0.39955 (16) | 0.0426 (4) | |
C10 | 0.3162 (2) | 0.72929 (11) | 0.36959 (16) | 0.0402 (4) | |
C14 | 0.5007 (2) | 0.57697 (13) | 0.33054 (18) | 0.0500 (5) | |
H14 | 0.4357 | 0.5534 | 0.3556 | 0.060* | |
C9 | 0.1904 (2) | 0.78783 (11) | 0.31016 (16) | 0.0411 (4) | |
C2 | −0.0212 (2) | 0.96295 (12) | 0.33066 (17) | 0.0465 (5) | |
C6 | 0.2622 (2) | 0.96761 (14) | 0.48389 (18) | 0.0527 (5) | |
H6 | 0.3608 | 0.9395 | 0.5306 | 0.063* | |
C8 | 0.1023 (2) | 0.82334 (12) | 0.36679 (18) | 0.0446 (4) | |
C18 | 0.5921 (2) | 0.70181 (13) | 0.26633 (18) | 0.0500 (5) | |
H18 | 0.5900 | 0.7624 | 0.2506 | 0.060* | |
C12 | 0.0453 (2) | 0.86596 (14) | 0.08062 (18) | 0.0559 (5) | |
H12A | 0.0652 | 0.8701 | 0.0123 | 0.084* | |
H12B | 0.0454 | 0.9244 | 0.1122 | 0.084* | |
H12C | −0.0564 | 0.8386 | 0.0467 | 0.084* | |
C17 | 0.6953 (2) | 0.64713 (15) | 0.2575 (2) | 0.0588 (5) | |
H17 | 0.7606 | 0.6705 | 0.2326 | 0.071* | |
C1 | −0.1431 (2) | 0.89583 (13) | 0.2522 (2) | 0.0528 (5) | |
C16 | 0.7027 (3) | 0.55779 (16) | 0.2851 (2) | 0.0637 (6) | |
H16 | 0.7713 | 0.5210 | 0.2772 | 0.076* | |
C15 | 0.6087 (3) | 0.52322 (14) | 0.3245 (2) | 0.0603 (5) | |
H15 | 0.6175 | 0.4636 | 0.3471 | 0.072* | |
C3 | −0.0347 (3) | 1.05330 (14) | 0.3422 (2) | 0.0609 (6) | |
H3 | −0.1330 | 1.0816 | 0.2950 | 0.073* | |
C5 | 0.2482 (3) | 1.05762 (15) | 0.4961 (2) | 0.0646 (6) | |
H5 | 0.3388 | 1.0907 | 0.5529 | 0.077* | |
C4 | 0.1022 (3) | 1.09962 (15) | 0.4257 (2) | 0.0676 (6) | |
H4 | 0.0966 | 1.1605 | 0.4351 | 0.081* | |
H8 | 0.130 (2) | 0.7852 (12) | 0.4451 (19) | 0.049 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0481 (8) | 0.0467 (8) | 0.0721 (9) | −0.0027 (6) | 0.0345 (7) | −0.0020 (6) |
N2 | 0.0513 (9) | 0.0464 (8) | 0.0380 (7) | 0.0083 (7) | 0.0272 (7) | 0.0052 (6) |
N3 | 0.0530 (10) | 0.0484 (9) | 0.0372 (8) | 0.0065 (7) | 0.0262 (7) | 0.0059 (6) |
C13 | 0.0418 (10) | 0.0467 (10) | 0.0363 (8) | 0.0021 (8) | 0.0219 (8) | −0.0011 (7) |
O1 | 0.0421 (9) | 0.0777 (11) | 0.0866 (11) | 0.0030 (7) | 0.0267 (8) | −0.0077 (8) |
C11 | 0.0482 (11) | 0.0401 (10) | 0.0405 (9) | −0.0007 (8) | 0.0237 (8) | 0.0005 (7) |
N1 | 0.0624 (11) | 0.0635 (10) | 0.0424 (9) | 0.0210 (8) | 0.0344 (8) | 0.0143 (7) |
C7 | 0.0471 (11) | 0.0470 (10) | 0.0400 (9) | 0.0025 (8) | 0.0280 (8) | 0.0023 (7) |
C10 | 0.0456 (10) | 0.0407 (10) | 0.0363 (9) | −0.0006 (8) | 0.0237 (8) | 0.0002 (7) |
C14 | 0.0509 (12) | 0.0484 (11) | 0.0542 (11) | 0.0019 (9) | 0.0310 (10) | 0.0035 (8) |
C9 | 0.0461 (11) | 0.0398 (9) | 0.0401 (9) | 0.0003 (8) | 0.0253 (8) | −0.0008 (7) |
C2 | 0.0458 (11) | 0.0464 (11) | 0.0514 (10) | 0.0035 (8) | 0.0292 (9) | 0.0017 (8) |
C6 | 0.0486 (12) | 0.0621 (13) | 0.0449 (10) | 0.0009 (10) | 0.0241 (9) | −0.0054 (9) |
C8 | 0.0450 (11) | 0.0462 (10) | 0.0458 (10) | 0.0033 (8) | 0.0270 (9) | 0.0059 (8) |
C18 | 0.0513 (12) | 0.0520 (11) | 0.0476 (10) | −0.0024 (9) | 0.0278 (9) | 0.0015 (8) |
C12 | 0.0569 (13) | 0.0578 (12) | 0.0462 (10) | 0.0067 (10) | 0.0239 (10) | 0.0087 (9) |
C17 | 0.0508 (12) | 0.0746 (15) | 0.0594 (12) | 0.0038 (11) | 0.0355 (10) | 0.0053 (10) |
C1 | 0.0454 (12) | 0.0571 (12) | 0.0591 (11) | 0.0042 (10) | 0.0306 (10) | 0.0026 (9) |
C16 | 0.0555 (13) | 0.0760 (16) | 0.0649 (13) | 0.0159 (11) | 0.0365 (11) | 0.0022 (11) |
C15 | 0.0642 (14) | 0.0516 (12) | 0.0645 (13) | 0.0115 (10) | 0.0349 (11) | 0.0059 (10) |
C3 | 0.0590 (14) | 0.0527 (13) | 0.0714 (13) | 0.0126 (10) | 0.0360 (12) | 0.0047 (10) |
C5 | 0.0663 (14) | 0.0635 (14) | 0.0643 (13) | −0.0121 (12) | 0.0360 (12) | −0.0164 (11) |
C4 | 0.0804 (17) | 0.0472 (12) | 0.0795 (15) | 0.0007 (12) | 0.0465 (14) | −0.0080 (11) |
O2—C1 | 1.358 (2) | C2—C3 | 1.383 (3) |
O2—C8 | 1.475 (2) | C2—C1 | 1.467 (3) |
N2—C10 | 1.359 (2) | C6—C5 | 1.380 (3) |
N2—N3 | 1.388 (2) | C6—H6 | 0.9300 |
N2—C13 | 1.422 (2) | C8—H8 | 1.013 (19) |
N3—C11 | 1.319 (2) | C18—C17 | 1.375 (3) |
C13—C14 | 1.382 (3) | C18—H18 | 0.9300 |
C13—C18 | 1.389 (2) | C12—H12A | 0.9600 |
O1—C1 | 1.208 (2) | C12—H12B | 0.9600 |
C11—C9 | 1.412 (2) | C12—H12C | 0.9600 |
C11—C12 | 1.495 (3) | C17—C16 | 1.379 (3) |
N1—C10 | 1.365 (2) | C17—H17 | 0.9300 |
N1—H1A | 0.8600 | C16—C15 | 1.375 (3) |
N1—H1B | 0.8600 | C16—H16 | 0.9300 |
C7—C2 | 1.377 (3) | C15—H15 | 0.9300 |
C7—C6 | 1.384 (3) | C3—C4 | 1.371 (3) |
C7—C8 | 1.504 (3) | C3—H3 | 0.9300 |
C10—C9 | 1.376 (2) | C5—C4 | 1.381 (3) |
C14—C15 | 1.388 (3) | C5—H5 | 0.9300 |
C14—H14 | 0.9300 | C4—H4 | 0.9300 |
C9—C8 | 1.489 (2) | ||
C1—O2—C8 | 110.83 (14) | C9—C8—C7 | 115.86 (15) |
C10—N2—N3 | 111.11 (13) | O2—C8—H8 | 106.9 (11) |
C10—N2—C13 | 130.77 (14) | C9—C8—H8 | 107.7 (10) |
N3—N2—C13 | 117.96 (13) | C7—C8—H8 | 112.2 (11) |
C11—N3—N2 | 104.90 (13) | C17—C18—C13 | 119.47 (18) |
C14—C13—C18 | 120.37 (17) | C17—C18—H18 | 120.3 |
C14—C13—N2 | 121.01 (16) | C13—C18—H18 | 120.3 |
C18—C13—N2 | 118.44 (16) | C11—C12—H12A | 109.5 |
N3—C11—C9 | 111.71 (16) | C11—C12—H12B | 109.5 |
N3—C11—C12 | 119.26 (15) | H12A—C12—H12B | 109.5 |
C9—C11—C12 | 128.82 (17) | C11—C12—H12C | 109.5 |
C10—N1—H1A | 120.0 | H12A—C12—H12C | 109.5 |
C10—N1—H1B | 120.0 | H12B—C12—H12C | 109.5 |
H1A—N1—H1B | 120.0 | C18—C17—C16 | 120.47 (18) |
C2—C7—C6 | 120.81 (18) | C18—C17—H17 | 119.8 |
C2—C7—C8 | 109.70 (16) | C16—C17—H17 | 119.8 |
C6—C7—C8 | 129.49 (17) | O1—C1—O2 | 120.95 (19) |
N2—C10—N1 | 122.01 (15) | O1—C1—C2 | 130.16 (19) |
N2—C10—C9 | 106.96 (14) | O2—C1—C2 | 108.88 (16) |
N1—C10—C9 | 130.99 (15) | C15—C16—C17 | 119.97 (19) |
C13—C14—C15 | 119.29 (18) | C15—C16—H16 | 120.0 |
C13—C14—H14 | 120.4 | C17—C16—H16 | 120.0 |
C15—C14—H14 | 120.4 | C16—C15—C14 | 120.29 (19) |
C10—C9—C11 | 105.30 (15) | C16—C15—H15 | 119.9 |
C10—C9—C8 | 126.36 (15) | C14—C15—H15 | 119.9 |
C11—C9—C8 | 128.18 (16) | C4—C3—C2 | 117.51 (19) |
C7—C2—C3 | 121.57 (18) | C4—C3—H3 | 121.2 |
C7—C2—C1 | 107.81 (16) | C2—C3—H3 | 121.2 |
C3—C2—C1 | 130.63 (18) | C6—C5—C4 | 121.3 (2) |
C5—C6—C7 | 117.50 (19) | C6—C5—H5 | 119.3 |
C5—C6—H6 | 121.2 | C4—C5—H5 | 119.3 |
C7—C6—H6 | 121.2 | C3—C4—C5 | 121.3 (2) |
O2—C8—C9 | 111.06 (14) | C3—C4—H4 | 119.4 |
O2—C8—C7 | 102.78 (14) | C5—C4—H4 | 119.4 |
C10—N2—N3—C11 | 0.49 (19) | C1—O2—C8—C9 | −124.84 (16) |
C13—N2—N3—C11 | 176.40 (15) | C1—O2—C8—C7 | −0.32 (18) |
C10—N2—C13—C14 | 45.9 (3) | C10—C9—C8—O2 | −131.54 (18) |
N3—N2—C13—C14 | −129.02 (17) | C11—C9—C8—O2 | 53.7 (2) |
C10—N2—C13—C18 | −138.91 (19) | C10—C9—C8—C7 | 111.7 (2) |
N3—N2—C13—C18 | 46.1 (2) | C11—C9—C8—C7 | −63.1 (2) |
N2—N3—C11—C9 | 0.29 (19) | C2—C7—C8—O2 | −0.28 (17) |
N2—N3—C11—C12 | −174.89 (15) | C6—C7—C8—O2 | 179.67 (16) |
N3—N2—C10—N1 | 176.82 (16) | C2—C7—C8—C9 | 121.01 (17) |
C13—N2—C10—N1 | 1.6 (3) | C6—C7—C8—C9 | −59.0 (2) |
N3—N2—C10—C9 | −1.07 (19) | C14—C13—C18—C17 | 4.1 (3) |
C13—N2—C10—C9 | −176.30 (17) | N2—C13—C18—C17 | −171.06 (16) |
C18—C13—C14—C15 | −2.4 (3) | C13—C18—C17—C16 | −2.3 (3) |
N2—C13—C14—C15 | 172.66 (17) | C8—O2—C1—O1 | −179.17 (17) |
N2—C10—C9—C11 | 1.17 (19) | C8—O2—C1—C2 | 0.8 (2) |
N1—C10—C9—C11 | −176.46 (18) | C7—C2—C1—O1 | 179.0 (2) |
N2—C10—C9—C8 | −174.57 (16) | C3—C2—C1—O1 | −0.7 (4) |
N1—C10—C9—C8 | 7.8 (3) | C7—C2—C1—O2 | −0.9 (2) |
N3—C11—C9—C10 | −0.9 (2) | C3—C2—C1—O2 | 179.40 (18) |
C12—C11—C9—C10 | 173.66 (17) | C18—C17—C16—C15 | −1.3 (3) |
N3—C11—C9—C8 | 174.71 (17) | C17—C16—C15—C14 | 3.1 (3) |
C12—C11—C9—C8 | −10.7 (3) | C13—C14—C15—C16 | −1.2 (3) |
C6—C7—C2—C3 | 0.5 (3) | C7—C2—C3—C4 | −0.4 (3) |
C8—C7—C2—C3 | −179.57 (16) | C1—C2—C3—C4 | 179.19 (19) |
C6—C7—C2—C1 | −179.22 (16) | C7—C6—C5—C4 | −0.8 (3) |
C8—C7—C2—C1 | 0.73 (19) | C2—C3—C4—C5 | −0.2 (3) |
C2—C7—C6—C5 | 0.1 (3) | C6—C5—C4—C3 | 0.8 (3) |
C8—C7—C6—C5 | −179.82 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.38 | 3.131 (2) | 146 |
N1—H1B···N3ii | 0.86 | 2.27 | 3.116 (2) | 169 |
C8—H8···N3ii | 1.013 (19) | 2.51 (2) | 3.484 (2) | 159.9 (15) |
Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H15N3O2 |
Mr | 305.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 10.0451 (2), 15.0631 (5), 12.2008 (4) |
β (°) | 123.257 (2) |
V (Å3) | 1543.75 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.32 × 0.22 × 0.15 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15125, 3449, 2264 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.173, 1.03 |
No. of reflections | 3449 |
No. of parameters | 212 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.31 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.38 | 3.131 (2) | 146.0 |
N1—H1B···N3ii | 0.86 | 2.27 | 3.116 (2) | 169.4 |
C8—H8···N3ii | 1.013 (19) | 2.51 (2) | 3.484 (2) | 159.9 (15) |
Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) x, −y+3/2, z+1/2. |
Acknowledgements
RMF and RA are grateful to the Universidad del Valle, Colombia, for partial financial support. JCC acknowledges his doctoral fellowship granted by COLCIENCIAS.
References
Abonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. 33, 6454–6463. Web of Science CrossRef Google Scholar
Anderson, J. T., Ting, A. E., Boozer, S., Brunden, K. R., Crumrine, C., Danzig, J., Dent, T., Faga, L., Harrington, J. J., Hodnick, W. F., Murphy, S. M., Pawlowski, G., Perry, R., Raber, A., Rundlett, S. E., Stricker-Krongrad, A., Wang, J. & Bennani, Y. L. (2005). J. Med. Chem. 48, 7096–7098. Web of Science CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brady, S. F., Wagenaar, M. M., Singh, M. P., Janson, J. E. & Clardy, J. (2000). Org. Lett. 2, 4043–4046. Web of Science CSD CrossRef PubMed CAS Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Insuasty, B., Chamizo, L., Muñoz, J., Tigreros, A., Quiroga, J., Abonia, R., Nogueras, M. & Cobo, J. (2012). Arch. Pharm. 345, 275–286. Web of Science CrossRef CAS Google Scholar
Insuasty, H., Insuasty, B., Castro, E., Quiroga, J. & Abonia, R. (2013). Tetrahedron Lett. 54, 1722–1725. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Malpani, Y., Achary, R., Kim, S. Y., Jeong, H. C., Kim, P., Han, S. B., Kim, M., Lee, C.-K., Kim, J. N. & Jung, Y.-S. (2013). Eur. J. Med. Chem. 62, 534–544. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nannei, R., Dallavalle, S., Merlini, L., Bava, A. & Nasini, G. (2006). J. Org. Chem. 71, 6277–6280. Web of Science CrossRef PubMed CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press. Google Scholar
Puder, C., Zeeck, A. & Beil, W. J. (2000). J. Antibiot. 53, 329–336. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shode, F. O., Mahomed, A. S. & Rogers, C. B. (2002). Phytochemistry, 61, 955–957. Web of Science CrossRef PubMed CAS Google Scholar
Yoganathan, K., Rossant, C., Ng, S., Huang, Y., Butler, M. S. & Buss, A. D. (2003). J. Nat. Prod. 66, 1116–1117. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (±)-3-(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)isobenzofuran-1(3H)-one, (I), is part of the study of different crystal systems, associated with isobenzofuranones, which are an important class of synthetic and natural occurring products exhibiting diverse biological and pharmacological properties. Particularly, several of its 3-substitued derivatives are part of the framework of natural products such as fuscinarin with anti-HIV properties (Yoganathan et al., 2003), typhaphthalide, a phenolic compound isolated from Typha capensis (Shode et al., 2002), noscapine, with antitussive and anticancer properties (Anderson et al., 2005), rubiginone-H, as antibiotic (Puder et al., 2000), spirolaxine with antibacterial activity against Helicobacter pylori (Nannei et al., 2006), cytosporone E with antibacterial properties (Brady et al., 2000) and some synthetic spirolactones as inhibitors of the influenza virus type B (Malpani et al., 2013). Continuing with our current studies on the use of pyrazoles for the synthesis of diverse pyrazole-derivatives with synthetic and biological interest (Abonia et al., 2010; Insuasty et al., 2012; Insuasty et al., 2013), compound (I) was obtained from the reaction of 2-formylbenzoic acid with 5-amino-3-methyl-1-phenylpyrazole. In order to present the molecular conformation of (I) and its supramolecular behavior, the title compound was synthesized. The molecular structure of (I) is shown in Fig. 1. In the present molecule rings A (C2—C7) and B (O1—C1—C2—C7—C8) are planar showing a dihedral angle between them A/B = 0.57 (9)°. The phenyl, A and B rings form dihedral angles of 47.07 (10)°, 85.76 (7)° and 86.04 (7)° with the pyrazole ring respectively.
Further analysis showed that each molecule is linked to other molecules by weak N—H···N, N—H···O and C—H···O interactions (see table 1, Nardelli, 1995). These intermolecular contacts are explained in terms of the substructure shown in figure 2. The N3 atom in the molecule at (x,y,z) acts as hydrogen bond donor to pyrazolic N1 atom at (x,-y - 1/2,+z + 1/2). At the same time the N3 atom is linked to another molecule via N—H···O. Indeed, the N3 atom in the molecule at (x,y,z) acts as hydrogen bond donor to C=O O2 atom in the molecule at (x +1,-y - 1/2,+z + 1/2). Growth of the crystal is reinforced by the weak interaction C11—H11···N1, in which the C11 atom of the benzofuranone ring at (x,y,z) acts as hydrogen-bond donor to atom N1 in the molecule at (x,-y - 1/2,+z + 1/2). The combination of these intermolecular contacts generate edge-fused R44(20), and R21(7) (Fig. 2) ring motifs (Etter, 1990; Bernstein et al., 1995), as sheets which stack parallel to (010).