organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(10-bromo­anthracen-9-yl)acrylate

aInstitute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany, bDepartment of Chemical Engineering, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, and cDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: thies@uaeu.ac.ae

(Received 13 May 2013; accepted 18 June 2013; online 22 June 2013)

In the title mol­ecule, C18H13BrO2, the anthracene unit forms an angle of 46.91 (2)° with the mean plane of the methyl acrylate moiety. In the crystal, the mol­ecules arrange themselves into strands parallel to [010] and, due to the crystal symmetry, there are eight strands crossing the unit cell. In each strand, mol­ecules form short C—H⋯O and C—H⋯π contacts and have their anthracene groups parallel to each other. Neighboring strands, related by a c-glide operation, are connected via C—H⋯O inter­actions and form a layer parallel to (100). The arrangement of the acrylate and anthracene groups in the crystal do not allow for [2 + 2] or [4 + 4] cyclo­addition.

Related literature

For an analogous preparation of the title compound, see: Bugenhagen et al. (2013[Bugenhagen, B., Al Jasem, Y., Hindawi, B. al, Al Rawashdeh, N. & Thiemann, T. (2013). Acta Cryst. E69, o130-o131.]); Nguyen & Weizman (2007[Nguyen, K. & Weizman, H. (2007). J. Chem. Educ. 84, 119-121.]). For crystal structures of photodimerizable aryl-enes, see: Vishnumurthy et al. (2002[Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2002). Photochem. Photobiol. Sci. 1, 427-430.]); Mascitti & Corey (2006[Mascitti, V. & Corey, E. J. (2006). Tetrahedron Lett. 47, 5879-5882.]); Sonoda (2011[Sonoda, Y. (2011). Molecules, 16, 119-148.]); Schmidt (1964[Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.]). For the photodimerization of anthracenes in the crystal, see: Schmidt (1971[Schmidt, G. M. J. (1971). J. Pure Appl. Chem. 27, 647-678.]); Ihmels et al. (2000[Ihmels, H., Leusser, D., Pfeiffer, M. & Stalke, D. (2000). Tetrahedron, 56, 6867-6875.]). For the X-ray crystal structure of a non-planar bromo­anthracene, see: Barkhuizen et al. (2004[Barkhuizen, D. A., Howie, R. A., Maguire, G. E. M. & Rademeyer, M. (2004). Acta Cryst. E60, o571-o573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13BrO2

  • Mr = 341.19

  • Orthorhombic, P b c n

  • a = 40.5848 (4) Å

  • b = 5.32093 (5) Å

  • c = 13.0710 (1) Å

  • V = 2822.67 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.98 mm−1

  • T = 100 K

  • 0.21 × 0.19 × 0.13 mm

Data collection
  • Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.891, Tmax = 0.924

  • 25313 measured reflections

  • 2961 independent reflections

  • 2900 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.12

  • 2961 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg1i 0.93 2.91 (2) 3.5055 (19) 123
C16—H16⋯O2ii 0.93 2.40 3.315 (3) 170
C5—H5⋯O2iii 0.93 2.53 3.372 (2) 150
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

In our interest in [2 + 2]-photocycloaddition of anthracene derivatives in the crystal (Sonoda, 2011; Schmidt, 1964), the authors grew single crystals of the title compound. The bromo atom (C2—Br1—C14 plane) deviates from the averaged plane of the anthracenyl unit (C1—C14) at an angle of 3.66 (2)°. This unusual deviation (Barkhuizen et al., 2004) may be due to the forced closeness of Br1 to the π system (C9—C14) of the underlying anthracenyl unit. Eight strands of molecules of the title compound cross the unit cell and propagate along [010] (Figure 3). The neighboring strands that are related by c-glide operation are connected via C5—H5···O2 interaction (Table 1) and form a layer parallel to (100). The close contacts C16—H16···O2 and C15—H15···Cg1 (π) (Table 1) link the neighboring molecules within each strand (Figure 2). The average plane of an anthracenyl unit of a molecule in one strand forms an angle of 78.37 (2)° with an anthracenyl unit of a molecule in the neighboring strand.While the anthracenyl units of the molecules in one strand are parallel to each other and exhibit an off-set that would be beneficial for π-π interaction, they are too far apart (distance between the averaged planes of the respective anthracenyl units: 3.362 (2) Å) to exhibit a strong π-π interaction, in contrast with the non-brominated parent compound (Bugenhagen et al., 2013).

The closest distance between double bonds of two molecules, which are molecules in one strand, is 5.321 (3) Å. Although this distance is smaller than the smallest distance found in the non-brominated parent compound (5.549 (3) Å) (Bugenhagen et al., 2013), it is larger than in many of those found for aryl-enes that undergo [2 + 2]-photodimerization readily (Vishnumurthy et al. 2002; Mascitti et al. 2006). The anthracenyl units themselves, while aligned parallel to each other in one strand, are off-set to each other and are much further apart (5.321 (3) Å for C1—C1 and C8—C8) than in anthracenes (less than 4.2 Å) that have been reported to undergo [4 + 4]-photodimerization in the crystal (Schmidt, 1971; Ihmels et al., 2000).

Related literature top

For an analogous preparation of the title compound, see: Bugenhagen et al. (2013); Nguyen & Weizman (2007). For crystal structures of photodimerizable aryl-enes, see: Vishnumurthy et al. (2002); Mascitti & Corey (2006); Sonoda (2011); Schmidt (1964). For the photodimerization of anthracenes in the crystal, see: Schmidt (1971); Ihmels et al. (2000). For the X-ray crystal structure of a non-planar bromoanthracene, see: Barkhuizen et al. (2004).

Experimental top

Methyl (E)-3-[10-bromoanthran-9-yl]-2-propenoate: to a solution of (E)-3-[10-bromoanthran-9-yl]-2-propenoic acid (875 mg, 2.68 mmol) in 1,2-dichloroethane (10 ml) was given an excess of thionyl chloride (1.0 g, 8.54 mmol), and the resulting mixture was kept at 70°C for 1.5 h. Thereafter, the ensuing solution was concentrated in vacuo. Thereafter, a solution of methanol (7 ml) in 1,2-dichloroethane (10 ml) was added, and the mixture was stirred at rt for 10 h. Then, it was concentrated in vacuo. The residue was taken up in dichloromethane (20 ml), extracted with water (2 X 10 ml), and dried over MgSO4. The solution was concentrated in vacuo, and the residue was subjected to column chromatography on silica gel (benzene-hexane 1:1) to give the title compound (847 mg, 93%) as a yellow solid; mp. 425 K; IR (KBr/cm-1) nmax 3066, 3021, 2950, 1711 (CO), 1631, 1436, 1338, 1315, 1254, 1203, 1180, 999, 900, 762, 749, 726; dH (400 MHz, CDCl3) 3.92 (3H, s, OCH3), 6.38 (1H, d, 3J = 16.0 Hz), 7.51 – 7.55 (2H, m), 7.59 – 7.63 (2H, m), 8.20 (2H, d, 3J = 8.8 Hz), 8.55 (1H, d, 3J = 16.0 Hz), 8.57 (2H, d, 3J = 7.6 Hz); dC (100.5 MHz, CDCl3) 52.0 (OCH3), 124.5 (Cquat), 125.7 (2 C, CH), 126.4 (2 C, CH), 127.2 (2 C, CH), 127.7 (CH), 128.4 (2 C, CH), 129.8 (2 C, Cquat), 130.1 (Cquat), 130.2 (2 C, Cquat), 142.0 (CH), 166.6 (Cquat, CO).

Refinement top

All carbon-bound hydrogen atoms were placed in calculated positions with C—H distances of 0.93 - 0.96 Å and refined as riding with Uiso(H) =xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

In our interest in [2 + 2]-photocycloaddition of anthracene derivatives in the crystal (Sonoda, 2011; Schmidt, 1964), the authors grew single crystals of the title compound. The bromo atom (C2—Br1—C14 plane) deviates from the averaged plane of the anthracenyl unit (C1—C14) at an angle of 3.66 (2)°. This unusual deviation (Barkhuizen et al., 2004) may be due to the forced closeness of Br1 to the π system (C9—C14) of the underlying anthracenyl unit. Eight strands of molecules of the title compound cross the unit cell and propagate along [010] (Figure 3). The neighboring strands that are related by c-glide operation are connected via C5—H5···O2 interaction (Table 1) and form a layer parallel to (100). The close contacts C16—H16···O2 and C15—H15···Cg1 (π) (Table 1) link the neighboring molecules within each strand (Figure 2). The average plane of an anthracenyl unit of a molecule in one strand forms an angle of 78.37 (2)° with an anthracenyl unit of a molecule in the neighboring strand.While the anthracenyl units of the molecules in one strand are parallel to each other and exhibit an off-set that would be beneficial for π-π interaction, they are too far apart (distance between the averaged planes of the respective anthracenyl units: 3.362 (2) Å) to exhibit a strong π-π interaction, in contrast with the non-brominated parent compound (Bugenhagen et al., 2013).

The closest distance between double bonds of two molecules, which are molecules in one strand, is 5.321 (3) Å. Although this distance is smaller than the smallest distance found in the non-brominated parent compound (5.549 (3) Å) (Bugenhagen et al., 2013), it is larger than in many of those found for aryl-enes that undergo [2 + 2]-photodimerization readily (Vishnumurthy et al. 2002; Mascitti et al. 2006). The anthracenyl units themselves, while aligned parallel to each other in one strand, are off-set to each other and are much further apart (5.321 (3) Å for C1—C1 and C8—C8) than in anthracenes (less than 4.2 Å) that have been reported to undergo [4 + 4]-photodimerization in the crystal (Schmidt, 1971; Ihmels et al., 2000).

For an analogous preparation of the title compound, see: Bugenhagen et al. (2013); Nguyen & Weizman (2007). For crystal structures of photodimerizable aryl-enes, see: Vishnumurthy et al. (2002); Mascitti & Corey (2006); Sonoda (2011); Schmidt (1964). For the photodimerization of anthracenes in the crystal, see: Schmidt (1971); Ihmels et al. (2000). For the X-ray crystal structure of a non-planar bromoanthracene, see: Barkhuizen et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The close contacts C—H···O and C—H···π between two molecules (colored in blue) in one strand, in addition to the C—H···O interaction between molecules of neighboring strands (related by c-glide operation). [Symmetry codes: (i) x,2 - y,-1/2 + z; (ii) x,1 + y,z; (iii) x,y,z; (iv) x,1 - y,1/2 + z]
[Figure 3] Fig. 3. The eight strands crossing the unit cell and propagating along the b axis with C—H···O interaction between neighboring strands shown as dashed lines.
Methyl 3-(10-bromoanthracen-9-yl)prop-2-enoate top
Crystal data top
C18H13BrO2Dx = 1.606 Mg m3
Mr = 341.19Melting point: 425 K
Orthorhombic, PbcnCu Kα radiation, λ = 1.5418 Å
a = 40.5848 (4) ÅCell parameters from 13502 reflections
b = 5.32093 (5) Åθ = 4.3–76.3°
c = 13.0710 (1) ŵ = 3.98 mm1
V = 2822.67 (5) Å3T = 100 K
Z = 8Block, light yellow
F(000) = 13760.21 × 0.19 × 0.13 mm
Data collection top
Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2961 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2900 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.4127 pixels mm-1θmax = 76.3°, θmin = 4.4°
ω scansh = 5044
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
k = 56
Tmin = 0.891, Tmax = 0.924l = 1516
25313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0253P)2 + 4.4132P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.003
2961 reflectionsΔρmax = 0.31 e Å3
191 parametersΔρmin = 0.44 e Å3
0 restraints
Crystal data top
C18H13BrO2V = 2822.67 (5) Å3
Mr = 341.19Z = 8
Orthorhombic, PbcnCu Kα radiation
a = 40.5848 (4) ŵ = 3.98 mm1
b = 5.32093 (5) ÅT = 100 K
c = 13.0710 (1) Å0.21 × 0.19 × 0.13 mm
Data collection top
Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2961 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
2900 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.924Rint = 0.022
25313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.12Δρmax = 0.31 e Å3
2961 reflectionsΔρmin = 0.44 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28462 (2)1.11853 (4)0.77185 (2)0.01637 (8)
C10.32116 (4)0.9076 (3)0.73973 (14)0.0125 (4)
C100.34022 (5)0.3729 (3)0.56492 (14)0.0143 (4)
C110.31165 (5)0.3554 (4)0.51014 (14)0.0159 (4)
C120.28558 (4)0.5263 (4)0.52784 (14)0.0157 (4)
C130.28813 (4)0.7045 (4)0.60248 (14)0.0141 (4)
C140.31732 (4)0.7266 (3)0.66306 (13)0.0121 (3)
C150.40212 (4)0.4163 (3)0.67191 (14)0.0132 (4)
C160.43266 (4)0.4937 (4)0.65111 (14)0.0145 (4)
C170.45923 (4)0.3109 (4)0.63028 (14)0.0147 (4)
C180.51645 (5)0.2672 (4)0.60385 (19)0.0263 (5)
C20.35047 (4)0.9392 (3)0.79499 (14)0.0122 (3)
C30.35474 (5)1.1300 (3)0.87078 (14)0.0144 (4)
C40.38315 (5)1.1478 (4)0.92569 (14)0.0165 (4)
C50.40887 (4)0.9717 (4)0.91069 (14)0.0160 (4)
C60.40616 (4)0.7915 (4)0.83732 (14)0.0148 (4)
C70.37738 (4)0.7705 (3)0.77405 (13)0.0119 (3)
C80.37435 (4)0.5854 (3)0.69716 (14)0.0120 (3)
C90.34444 (4)0.5594 (3)0.64271 (14)0.0120 (3)
H100.35730.26130.55140.017*
H110.30930.23040.46090.019*
H120.26660.51710.48830.019*
H130.27060.81330.61410.017*
H150.39800.24440.67040.016*
H160.43730.66480.64970.017*
H18A0.51460.19470.53680.039*
H18B0.51690.13570.65410.039*
H18C0.53640.36390.60810.039*
H30.33781.24400.88280.017*
H40.38571.27630.97330.020*
H50.42770.97930.95120.019*
H60.42340.67880.82790.018*
O10.48841 (3)0.4289 (3)0.62263 (12)0.0218 (3)
O20.45611 (3)0.0860 (3)0.62159 (11)0.0188 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01322 (11)0.01739 (12)0.01851 (12)0.00440 (7)0.00145 (7)0.00092 (7)
C10.0115 (8)0.0126 (8)0.0134 (8)0.0022 (7)0.0032 (7)0.0026 (7)
C100.0131 (8)0.0149 (9)0.0150 (8)0.0007 (7)0.0037 (7)0.0002 (7)
C110.0174 (9)0.0177 (9)0.0126 (8)0.0038 (7)0.0028 (7)0.0025 (7)
C120.0129 (8)0.0203 (10)0.0140 (9)0.0035 (7)0.0003 (7)0.0027 (8)
C130.0115 (8)0.0151 (9)0.0155 (9)0.0000 (7)0.0014 (7)0.0039 (8)
C140.0111 (8)0.0130 (8)0.0122 (8)0.0004 (7)0.0020 (6)0.0030 (7)
C150.0141 (8)0.0119 (8)0.0137 (8)0.0019 (7)0.0009 (7)0.0001 (7)
C160.0145 (8)0.0111 (8)0.0180 (9)0.0009 (7)0.0015 (7)0.0005 (7)
C170.0118 (8)0.0175 (9)0.0149 (8)0.0002 (7)0.0009 (7)0.0021 (7)
C180.0111 (9)0.0307 (12)0.0371 (12)0.0045 (8)0.0014 (8)0.0118 (10)
C20.0119 (8)0.0121 (8)0.0126 (8)0.0005 (7)0.0024 (7)0.0030 (7)
C30.0144 (8)0.0137 (9)0.0151 (9)0.0008 (7)0.0033 (7)0.0000 (7)
C40.0189 (9)0.0173 (9)0.0134 (8)0.0037 (7)0.0027 (7)0.0017 (7)
C50.0124 (8)0.0207 (10)0.0148 (8)0.0030 (7)0.0016 (7)0.0015 (8)
C60.0117 (8)0.0161 (9)0.0167 (9)0.0009 (7)0.0005 (7)0.0022 (7)
C70.0117 (8)0.0113 (8)0.0128 (8)0.0008 (7)0.0019 (6)0.0031 (7)
C80.0114 (8)0.0109 (8)0.0138 (8)0.0005 (7)0.0021 (7)0.0032 (7)
C90.0119 (8)0.0113 (8)0.0128 (8)0.0009 (7)0.0031 (6)0.0011 (7)
O10.0098 (6)0.0199 (7)0.0356 (8)0.0004 (5)0.0041 (6)0.0088 (6)
O20.0162 (6)0.0136 (7)0.0266 (7)0.0024 (5)0.0007 (6)0.0016 (6)
Geometric parameters (Å, º) top
C1—Br11.9068 (18)C18—H18C0.9600
C1—C141.398 (3)C18—H18B0.9600
C1—C21.402 (3)C18—H18A0.9600
C10—C111.366 (3)C2—C71.440 (2)
C10—H100.9300C2—C31.429 (3)
C11—C121.414 (3)C3—C41.361 (3)
C11—H110.9300C3—H30.9300
C12—C131.364 (3)C4—C51.416 (3)
C12—H120.9300C4—H40.9300
C13—C141.430 (2)C5—C61.361 (3)
C13—H130.9300C5—H50.9300
C15—C161.334 (3)C6—C71.435 (2)
C15—H150.9300C6—H60.9300
C16—C171.478 (3)C7—C81.413 (3)
C16—H160.9300C8—C151.479 (2)
C17—O21.208 (2)C8—C91.414 (2)
C17—O11.344 (2)C9—C141.440 (2)
C18—O11.448 (2)C9—C101.431 (3)
C2—C1—Br1118.41 (14)C11—C10—H10119.3
C14—C1—C2123.12 (17)C10—C11—H11119.8
C14—C1—Br1118.46 (14)C10—C11—C12120.37 (18)
C1—C2—C3123.06 (17)C12—C11—H11119.8
C1—C2—C7118.09 (17)C11—C12—H12119.8
C3—C2—C7118.85 (17)C13—C12—C11120.48 (17)
C2—C3—H3119.4C13—C12—H12119.8
C4—C3—C2121.20 (18)C12—C13—H13119.5
C4—C3—H3119.4C12—C13—C14121.07 (17)
C3—C4—H4119.8C14—C13—H13119.5
C3—C4—C5120.32 (18)C1—C14—C9118.22 (16)
C5—C4—H4119.8C1—C14—C13123.08 (17)
C4—C5—H5119.9C13—C14—C9118.68 (17)
C6—C5—C4120.29 (17)C8—C15—H15117.8
C6—C5—H5119.9C16—C15—C8124.45 (17)
C5—C6—H6119.1C16—C15—H15117.8
C5—C6—C7121.77 (17)C15—C16—H16119.6
C7—C6—H6119.1C15—C16—C17120.83 (18)
C6—C7—C2117.34 (16)C17—C16—H16119.6
C8—C7—C2120.27 (16)O1—C17—C16110.43 (17)
C8—C7—C6122.32 (17)O2—C17—C16126.35 (18)
C7—C8—C9120.06 (16)O2—C17—O1123.22 (18)
C7—C8—C15121.10 (16)H18A—C18—H18B109.5
C9—C8—C15118.84 (16)H18A—C18—H18C109.5
C8—C9—C10121.88 (17)H18B—C18—H18C109.5
C8—C9—C14120.18 (16)O1—C18—H18A109.5
C10—C9—C14117.93 (16)O1—C18—H18B109.5
C9—C10—H10119.3O1—C18—H18C109.5
C11—C10—C9121.42 (18)C17—O1—C18115.31 (16)
C1—C2—C3—C4177.29 (18)C8—C15—C16—C17177.77 (17)
C1—C2—C7—C6174.75 (17)C9—C8—C15—C16128.8 (2)
C1—C2—C7—C82.3 (3)C9—C10—C11—C121.3 (3)
C2—C1—C14—C92.3 (3)C10—C9—C14—C1179.34 (16)
C2—C1—C14—C13176.07 (17)C10—C9—C14—C132.2 (3)
C2—C3—C4—C51.8 (3)C10—C11—C12—C132.5 (3)
C2—C7—C8—C92.1 (3)C11—C12—C13—C141.3 (3)
C2—C7—C8—C15177.76 (16)C12—C13—C14—C1179.44 (18)
C3—C2—C7—C65.1 (2)C12—C13—C14—C91.1 (3)
C3—C2—C7—C8177.85 (16)C14—C1—C2—C3177.70 (17)
C3—C4—C5—C63.6 (3)C14—C1—C2—C72.4 (3)
C4—C5—C6—C70.9 (3)C14—C9—C10—C111.1 (3)
C5—C6—C7—C23.5 (3)C15—C8—C9—C100.7 (3)
C5—C6—C7—C8179.56 (18)C15—C8—C9—C14177.88 (16)
C6—C7—C8—C9174.75 (17)C15—C16—C17—O1173.18 (18)
C6—C7—C8—C155.4 (3)C15—C16—C17—O26.3 (3)
C7—C2—C3—C42.6 (3)C16—C17—O1—C18179.04 (17)
C7—C8—C9—C10179.43 (17)O2—C17—O1—C180.5 (3)
C7—C8—C9—C142.0 (3)Br1—C1—C2—C33.1 (2)
C7—C8—C15—C1651.1 (3)Br1—C1—C2—C7176.78 (13)
C8—C9—C10—C11177.55 (18)Br1—C1—C14—C9176.89 (13)
C8—C9—C14—C12.0 (3)Br1—C1—C14—C134.7 (2)
C8—C9—C14—C13176.41 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.932.91 (2)3.5055 (19)123
C16—H16···O2ii0.932.403.315 (3)170
C5—H5···O2iii0.932.533.372 (2)150
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13BrO2
Mr341.19
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)40.5848 (4), 5.32093 (5), 13.0710 (1)
V3)2822.67 (5)
Z8
Radiation typeCu Kα
µ (mm1)3.98
Crystal size (mm)0.21 × 0.19 × 0.13
Data collection
DiffractometerOxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.891, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
25313, 2961, 2900
Rint0.022
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.12
No. of reflections2961
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.44

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.932.91 (2)3.5055 (19)123
C16—H16···O2ii0.932.403.315 (3)170
C5—H5···O2iii0.932.533.372 (2)150
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z+1/2.
 

Acknowledgements

The authors thank UAEU inter­disciplinary grant 31S036 for financial support.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarkhuizen, D. A., Howie, R. A., Maguire, G. E. M. & Rademeyer, M. (2004). Acta Cryst. E60, o571–o573.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBugenhagen, B., Al Jasem, Y., Hindawi, B. al, Al Rawashdeh, N. & Thiemann, T. (2013). Acta Cryst. E69, o130–o131.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIhmels, H., Leusser, D., Pfeiffer, M. & Stalke, D. (2000). Tetrahedron, 56, 6867–6875.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMascitti, V. & Corey, E. J. (2006). Tetrahedron Lett. 47, 5879–5882.  Web of Science CSD CrossRef CAS Google Scholar
First citationNguyen, K. & Weizman, H. (2007). J. Chem. Educ. 84, 119–121.  CrossRef CAS Google Scholar
First citationSchmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014–2021.  CSD CrossRef Web of Science Google Scholar
First citationSchmidt, G. M. J. (1971). J. Pure Appl. Chem. 27, 647–678.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonoda, Y. (2011). Molecules, 16, 119–148.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2002). Photochem. Photobiol. Sci. 1, 427–430.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds