organic compounds
4-Bromomethyl-6-tert-butyl-2H-chromen-2-one
aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: noorsb@rediffmail.com, noorsb05@gmail.com
In the 14H15BrO2, weak C—H⋯O interactions link the molecules into zigzag chains extending along the c-axis direction. These chains are further assembled into (100) layers via π–π stacking interactions between inversion-related chromenone fragments [interplanar distance = 3.376 (2) Å].
of the title compound, CRelated literature
For therapeutic properties of coumarin derivatives, see: Lacy & O'Kennedy (2004); Mustafa et al. (2011). For structural features of see: Moorthy et al. (2003). For related structures, see: Gowda et al. (2010); Fun et al. (2011).
Experimental
Crystal data
|
Data collection: SMART (Bruker,1998); cell SAINT-Plus (Bruker,1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813015511/gk2575sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813015511/gk2575Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813015511/gk2575Isup3.cml
To a mixture of equimolar quantity of 4-tert-butyl phenol (0.1 mol) and 4-bromoethyl acetoacetate (0.1 mol) was added dropwise Conc. sulfuric acid (30 ml) with constant stirring and maintaining the temperature between 273–278 K. The reaction mixture was allowed to stand in ice chest overnight and deep red coloured solution was poured into the stream of crushed ice. Solid separated was filtered and washed with water and then with cold ethanol so as to get a colourless compound. Finally, it was recrystallized from ethyl acetate. Yield 89%; colorless solid; m.p. 417–420 K; IR (KBr, cm-1): 1700 (lactone C═ O), 1H NMR (300 MHz, DMSO-d6): δ 1.32 (s, 9H, 6-tert-butyl), 4.93 (s, 2H, CH2–Br), 6.70 (s, 1H, C3–H), 7.34 (d, 1H, C7–H, J = 6.2 Hz), 7.68 (d, 1H, C8–H, J = 8.1 Hz), 7.80 (s, 1H, C5–H): LC—MS 297 [M + 2]: Anal. Cald. for C15H14Br1O2: C 56.97; H 5.12. Found: C 56.91; H 5.04.
The H atoms were placed at calculated positions in the riding model approximation with C–H = 0.95, 0.98, and 0.99 Å for aryl, methyl, and methylene H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H atom.
Coumarins are of great interest due to their biological properties (Lacy & O'Kennedy 2004). In particular, their physiological, bacteriostatic and anti-tumour activity (Mustafa et al., 2011) makes these compounds attractive for further backbone derivatization and screening for their therapeutic properties.
In the title compound, C15H14BrO2 (Fig. 1), the coumarin ring is substituted with bromomethyl group at C4 and tert-butyl group at C6. The coumarin ring is essentialy planar (r.m.s. deviation = 0.019 Å). Among the three methyl groups belonging to tert-butyl moiety two methyl groups, C12 & C13, deviate from the plane of the coumarin ring whereas the carbon atom C14 of the methyl group lies within the plane. The π–π interactions between two anti-parallel molecules in the with an interplanar distance of 3.376 (2) Å. For crystal structures related to the title compound, see: Gowda et al. (2010); Fun et al. (2011).
is stabilized by C—H···O interactions (Moorthy et al. 2003). The C3—H3···O2 interaction results in zigzag chains running along the c-axis (Fig. 2). There are intermolecularFor therapeutic properties of coumarin derivatives, see: Lacy & O'Kennedy (2004); Mustafa et al. (2011). For structural features of
see: Moorthy et al. (2003). For related structures, see: Gowda et al. (2010); Fun et al. (2011).Data collection: SMART (Bruker,1998); cell
SAINT-Plus (Bruker,1998); data reduction: SAINT-Plus (Bruker,1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).C14H15BrO2 | F(000) = 600 |
Mr = 295.17 | Dx = 1.550 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2074 reflections |
a = 10.3311 (19) Å | θ = 2.3–27.0° |
b = 16.830 (3) Å | µ = 3.24 mm−1 |
c = 7.3374 (14) Å | T = 100 K |
β = 97.518 (3)° | Block, colourless |
V = 1264.8 (4) Å3 | 0.18 × 0.16 × 0.16 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 2737 independent reflections |
Radiation source: fine-focus sealed tube | 2074 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 27.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −13→12 |
Tmin = 0.593, Tmax = 0.625 | k = −21→16 |
7522 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0531P)2] where P = (Fo2 + 2Fc2)/3 |
2737 reflections | (Δ/σ)max < 0.001 |
144 parameters | Δρmax = 0.78 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C14H15BrO2 | V = 1264.8 (4) Å3 |
Mr = 295.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.3311 (19) Å | µ = 3.24 mm−1 |
b = 16.830 (3) Å | T = 100 K |
c = 7.3374 (14) Å | 0.18 × 0.16 × 0.16 mm |
β = 97.518 (3)° |
Bruker SMART APEX CCD diffractometer | 2737 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2074 reflections with I > 2σ(I) |
Tmin = 0.593, Tmax = 0.625 | Rint = 0.040 |
7522 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.78 e Å−3 |
2737 reflections | Δρmin = −0.36 e Å−3 |
144 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4032 (3) | 0.13349 (18) | 0.2373 (4) | 0.0198 (7) | |
H1A | 0.4081 | 0.0849 | 0.1624 | 0.024* | |
H1B | 0.4768 | 0.1686 | 0.2164 | 0.024* | |
C2 | 0.5105 (3) | 0.13683 (17) | 0.7557 (4) | 0.0190 (6) | |
C3 | 0.4913 (3) | 0.15577 (18) | 0.5616 (4) | 0.0190 (6) | |
H3 | 0.5340 | 0.2011 | 0.5205 | 0.023* | |
C4 | 0.4148 (3) | 0.11146 (17) | 0.4361 (4) | 0.0173 (6) | |
C5 | 0.2620 (3) | −0.00601 (18) | 0.3828 (4) | 0.0171 (6) | |
H5 | 0.2467 | 0.0057 | 0.2551 | 0.021* | |
C6 | 0.1996 (3) | −0.07068 (17) | 0.4490 (4) | 0.0187 (6) | |
C7 | 0.2270 (3) | −0.08765 (18) | 0.6383 (4) | 0.0215 (7) | |
H7 | 0.1870 | −0.1324 | 0.6869 | 0.026* | |
C8 | 0.3104 (3) | −0.04076 (18) | 0.7543 (4) | 0.0215 (7) | |
H8 | 0.3276 | −0.0530 | 0.8816 | 0.026* | |
C9 | 0.3687 (3) | 0.02395 (17) | 0.6843 (4) | 0.0182 (6) | |
C10 | 0.3472 (3) | 0.04295 (17) | 0.4984 (4) | 0.0161 (6) | |
C11 | 0.1007 (3) | −0.12192 (18) | 0.3272 (4) | 0.0210 (7) | |
C12 | −0.0343 (3) | −0.11188 (14) | 0.3930 (5) | 0.0368 (9) | |
H12A | −0.0993 | −0.1429 | 0.3137 | 0.055* | |
H12B | −0.0590 | −0.0556 | 0.3871 | 0.055* | |
H12C | −0.0301 | −0.1307 | 0.5200 | 0.055* | |
C13 | 0.1402 (3) | −0.21004 (14) | 0.3427 (4) | 0.0265 (7) | |
H13A | 0.2251 | −0.2171 | 0.2987 | 0.040* | |
H13B | 0.0744 | −0.2421 | 0.2680 | 0.040* | |
H13C | 0.1465 | −0.2269 | 0.4716 | 0.040* | |
C14 | 0.0902 (2) | −0.09867 (5) | 0.12412 (5) | 0.0305 (8) | |
H14A | 0.1753 | −0.1056 | 0.0808 | 0.046* | |
H14B | 0.0632 | −0.0430 | 0.1096 | 0.046* | |
H14C | 0.0255 | −0.1326 | 0.0520 | 0.046* | |
O1 | 0.45022 (6) | 0.06915 (5) | 0.80902 (6) | 0.0197 (5) | |
O2 | 0.57521 (5) | 0.17418 (5) | 0.87563 (5) | 0.0241 (5) | |
Br1 | 0.23783 (3) | 0.18813 (2) | 0.16045 (4) | 0.03299 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0208 (16) | 0.0200 (16) | 0.0194 (15) | 0.0001 (12) | 0.0053 (12) | 0.0043 (12) |
C2 | 0.0205 (16) | 0.0150 (15) | 0.0227 (16) | 0.0037 (12) | 0.0073 (13) | −0.0024 (12) |
C3 | 0.0178 (16) | 0.0190 (16) | 0.0205 (15) | 0.0001 (12) | 0.0036 (12) | 0.0029 (12) |
C4 | 0.0161 (15) | 0.0153 (15) | 0.0208 (15) | 0.0031 (12) | 0.0035 (12) | 0.0013 (12) |
C5 | 0.0165 (15) | 0.0185 (16) | 0.0164 (14) | 0.0038 (12) | 0.0018 (12) | 0.0026 (11) |
C6 | 0.0170 (15) | 0.0157 (15) | 0.0246 (16) | 0.0017 (12) | 0.0066 (12) | −0.0007 (12) |
C7 | 0.0251 (17) | 0.0155 (15) | 0.0252 (16) | 0.0007 (13) | 0.0082 (13) | 0.0021 (12) |
C8 | 0.0257 (17) | 0.0232 (17) | 0.0164 (15) | 0.0013 (13) | 0.0063 (13) | 0.0009 (12) |
C9 | 0.0189 (16) | 0.0202 (16) | 0.0159 (14) | 0.0016 (12) | 0.0036 (12) | −0.0034 (12) |
C10 | 0.0163 (15) | 0.0146 (14) | 0.0177 (14) | 0.0035 (11) | 0.0038 (11) | −0.0021 (11) |
C11 | 0.0219 (16) | 0.0153 (15) | 0.0260 (17) | −0.0002 (12) | 0.0046 (13) | 0.0010 (13) |
C12 | 0.0241 (19) | 0.030 (2) | 0.057 (2) | −0.0062 (15) | 0.0107 (17) | −0.0144 (18) |
C13 | 0.034 (2) | 0.0228 (17) | 0.0230 (17) | −0.0016 (14) | 0.0032 (14) | −0.0003 (13) |
C14 | 0.033 (2) | 0.0261 (19) | 0.0288 (18) | −0.0086 (15) | −0.0094 (15) | 0.0047 (14) |
O1 | 0.0252 (12) | 0.0186 (11) | 0.0149 (10) | −0.0026 (9) | 0.0014 (9) | 0.0002 (8) |
O2 | 0.0283 (13) | 0.0232 (12) | 0.0202 (11) | −0.0030 (9) | 0.0010 (9) | −0.0037 (9) |
Br1 | 0.0305 (2) | 0.0332 (2) | 0.0326 (2) | 0.00355 (15) | −0.00600 (15) | 0.01003 (15) |
C1—C4 | 1.494 (4) | C8—C9 | 1.376 (4) |
C1—Br1 | 1.957 (3) | C8—H8 | 0.9500 |
C1—H1A | 0.9900 | C9—O1 | 1.387 (3) |
C1—H1B | 0.9900 | C9—C10 | 1.390 (4) |
C2—O2 | 1.209 (3) | C11—C14 | 1.531 (3) |
C2—O1 | 1.379 (3) | C11—C13 | 1.539 (4) |
C2—C3 | 1.448 (4) | C11—C12 | 1.544 (4) |
C3—C4 | 1.356 (4) | C12—H12A | 0.9800 |
C3—H3 | 0.9500 | C12—H12B | 0.9800 |
C4—C10 | 1.452 (4) | C12—H12C | 0.9800 |
C5—C6 | 1.385 (4) | C13—H13A | 0.9800 |
C5—C10 | 1.407 (4) | C13—H13B | 0.9782 |
C5—H5 | 0.9500 | C13—H13C | 0.9819 |
C6—C7 | 1.410 (4) | C14—H14A | 0.9800 |
C6—C11 | 1.532 (4) | C14—H14B | 0.9800 |
C7—C8 | 1.378 (4) | C14—H14C | 0.9800 |
C7—H7 | 0.9500 | ||
C4—C1—Br1 | 110.7 (2) | O1—C9—C10 | 121.8 (3) |
C4—C1—H1A | 109.5 | C9—C10—C5 | 117.6 (3) |
Br1—C1—H1A | 109.5 | C9—C10—C4 | 118.0 (3) |
C4—C1—H1B | 109.5 | C5—C10—C4 | 124.3 (3) |
Br1—C1—H1B | 109.5 | C14—C11—C6 | 112.4 (2) |
H1A—C1—H1B | 108.1 | C14—C11—C13 | 107.6 (2) |
O2—C2—O1 | 116.8 (2) | C6—C11—C13 | 110.4 (2) |
O2—C2—C3 | 126.4 (3) | C14—C11—C12 | 109.0 (2) |
O1—C2—C3 | 116.9 (2) | C6—C11—C12 | 108.4 (2) |
C4—C3—C2 | 122.7 (3) | C13—C11—C12 | 108.9 (2) |
C4—C3—H3 | 118.7 | C11—C12—H12A | 109.5 |
C2—C3—H3 | 118.7 | C11—C12—H12B | 109.5 |
C3—C4—C10 | 119.0 (3) | H12A—C12—H12B | 109.5 |
C3—C4—C1 | 119.4 (3) | C11—C12—H12C | 109.5 |
C10—C4—C1 | 121.6 (3) | H12A—C12—H12C | 109.5 |
C6—C5—C10 | 122.1 (3) | H12B—C12—H12C | 109.5 |
C6—C5—H5 | 118.9 | C11—C13—H13A | 109.5 |
C10—C5—H5 | 118.9 | C11—C13—H13B | 109.4 |
C5—C6—C7 | 117.6 (3) | H13A—C13—H13B | 109.5 |
C5—C6—C11 | 122.9 (3) | C11—C13—H13C | 109.5 |
C7—C6—C11 | 119.6 (3) | H13A—C13—H13C | 109.4 |
C8—C7—C6 | 121.4 (3) | H13B—C13—H13C | 109.5 |
C8—C7—H7 | 119.3 | C11—C14—H14A | 109.5 |
C6—C7—H7 | 119.3 | C11—C14—H14B | 109.5 |
C9—C8—C7 | 119.4 (3) | H14A—C14—H14B | 109.5 |
C9—C8—H8 | 120.3 | C11—C14—H14C | 109.5 |
C7—C8—H8 | 120.3 | H14A—C14—H14C | 109.5 |
C8—C9—O1 | 116.4 (2) | H14B—C14—H14C | 109.5 |
C8—C9—C10 | 121.8 (3) | C2—O1—C9 | 121.59 (17) |
O2—C2—C3—C4 | −178.6 (3) | C6—C5—C10—C9 | 0.6 (4) |
O1—C2—C3—C4 | 2.0 (4) | C6—C5—C10—C4 | −179.9 (3) |
C2—C3—C4—C10 | 1.1 (4) | C3—C4—C10—C9 | −2.7 (4) |
C2—C3—C4—C1 | −178.1 (3) | C1—C4—C10—C9 | 176.5 (3) |
Br1—C1—C4—C3 | −102.3 (3) | C3—C4—C10—C5 | 177.8 (3) |
Br1—C1—C4—C10 | 78.5 (3) | C1—C4—C10—C5 | −3.0 (4) |
C10—C5—C6—C7 | −1.6 (4) | C5—C6—C11—C14 | 5.8 (4) |
C10—C5—C6—C11 | 176.5 (3) | C7—C6—C11—C14 | −176.1 (3) |
C5—C6—C7—C8 | 1.4 (4) | C5—C6—C11—C13 | 126.0 (3) |
C11—C6—C7—C8 | −176.8 (3) | C7—C6—C11—C13 | −55.9 (3) |
C6—C7—C8—C9 | −0.2 (5) | C5—C6—C11—C12 | −114.7 (3) |
C7—C8—C9—O1 | 179.2 (2) | C7—C6—C11—C12 | 63.4 (3) |
C7—C8—C9—C10 | −0.9 (5) | O2—C2—O1—C9 | 176.86 (19) |
C8—C9—C10—C5 | 0.7 (4) | C3—C2—O1—C9 | −3.7 (3) |
O1—C9—C10—C5 | −179.4 (2) | C8—C9—O1—C2 | −177.8 (2) |
C8—C9—C10—C4 | −178.9 (3) | C10—C9—O1—C2 | 2.3 (4) |
O1—C9—C10—C4 | 1.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.95 | 2.42 | 3.334 (4) | 162 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H15BrO2 |
Mr | 295.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.3311 (19), 16.830 (3), 7.3374 (14) |
β (°) | 97.518 (3) |
V (Å3) | 1264.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.24 |
Crystal size (mm) | 0.18 × 0.16 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.593, 0.625 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7522, 2737, 2074 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.107, 1.05 |
No. of reflections | 2737 |
No. of parameters | 144 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.78, −0.36 |
Computer programs: SMART (Bruker,1998), SAINT-Plus (Bruker,1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.950 | 2.42 | 3.334 (4) | 162 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Acknowledgements
NSB and KSS are thankful to the University Grants Commission (UGC), India, for financial assistance. HN and PKB thank UGC for fellowships.
References
Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Goh, J. H., Wu, D. & Zhang, Y. (2011). Acta Cryst. E67, o136. Web of Science CrossRef IUCr Journals Google Scholar
Gowda, R., Basanagouda, M., Kulkarni, M. V. & Gowda, K. V. A. (2010). Acta Cryst. E66, o2906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. Web of Science CrossRef PubMed CAS Google Scholar
Moorthy, J. N., Venkatakrishnan, P. & Singh, A. S. (2003). CrystEngComm, 5, 507–513. Web of Science CSD CrossRef CAS Google Scholar
Mustafa, M. S., El-Abadelah, M. M., Zihlif, M. A., Naffa, R. G. & Mubarak, M. S. (2011). Molecules, 16, 4305–4317. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarins are of great interest due to their biological properties (Lacy & O'Kennedy 2004). In particular, their physiological, bacteriostatic and anti-tumour activity (Mustafa et al., 2011) makes these compounds attractive for further backbone derivatization and screening for their therapeutic properties.
In the title compound, C15H14BrO2 (Fig. 1), the coumarin ring is substituted with bromomethyl group at C4 and tert-butyl group at C6. The coumarin ring is essentialy planar (r.m.s. deviation = 0.019 Å). Among the three methyl groups belonging to tert-butyl moiety two methyl groups, C12 & C13, deviate from the plane of the coumarin ring whereas the carbon atom C14 of the methyl group lies within the plane. The crystal structure is stabilized by C—H···O interactions (Moorthy et al. 2003). The C3—H3···O2 interaction results in zigzag chains running along the c-axis (Fig. 2). There are intermolecular π–π interactions between two anti-parallel molecules in the unit cell with an interplanar distance of 3.376 (2) Å. For crystal structures related to the title compound, see: Gowda et al. (2010); Fun et al. (2011).