organic compounds
N-[3-(Dimethylamino)propyl]-N,N′,N′,N′′,N′′-pentamethylguanidinium tetraphenylborate
aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de
In the title salt, C11H27N4+·C24H20B−, the C—N bond lengths in the central CN3 unit of the guanidinium ion are 1.333 (4), 1.334 (4) and 1.351 (4) Å, indicating partial double-bond character. The C atom of this unit is bonded to the three N atoms in a nearly ideal trigonal-planar geometry [N—C—N angles = 118.8 (3), 120.0 (3) and 121.2 (3)°] and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety have values in the range 1.459 (4)–1.478 (4) Å, close to a typical single bond. In the crystal, there are C—H⋯π interactions between the guanidinium H atoms and the phenyl rings of the tetraphenylborate ion. These interactions combine to form a ladder of linked chains of ions which runs parallel to the c axis.
Related literature
For the synthesis of N′′-[3-(dimethylamino)propyl]-N,N,N′,N′-tetramethylguanidine, see: Tiritiris & Kantlehner (2012). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the of N,N,N′,N′,N′′-tetramethyl-N′′-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate, see: Tiritiris (2013).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 2004); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813014906/go2091sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813014906/go2091Isup2.hkl
The title compound was obtained by reaction of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2012) with one equivalent of freshly distilled dimethyl sulfate in anhydrous acetonitrile at room temperature. After evaporation of the solvent the crude N,N,N',N',N''-pentamethyl-N''-[3-(dimethylamino)propyl]-guanidinium methyl sulfate (II) was washed with diethylether and dried in vacuo. 1.0 g (2.8 mmol) of (II) was dissolved in 20 ml acetonitrile and 0.96 g (2.8 mmol) of sodium tetraphenylborate in 20 ml acetonitrile were added. After stirring for one hour at room temperature, the precipitated sodium methyl sulfate was filtered off. The title compound crystallized from a saturated acetone solution after several weeks at 273 K, forming colorless single crystals. Yield: 1.15 g (76.8%).
The title compound crystallizes in the non-centrosymmetric
Pna21; however, in the absence of significant effects, the is essentially meaningless. Accordingly, Friedel pairs were merged. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).ω-Aminoalkylguanidines like N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine (I) (Tiritiris & Kantlehner, 2012), in which two nitrogen atoms with different basicity are present, are considered as ambident nucleophiles. Electrophiles can attack at both, on the imine nitrogen of the guanidine function, as well as on the nitrogen atom of the (dimethylamino)propyl group. By alkylation of (I) with only one equivalent dimethyl sulfate, methylation occurs preferentially at the guanidine nitrogen atom, because it is the most basic site. The exclusion of moisture and the use of absolutely acid free dimethyl sulfate, is in this reaction very essential. Otherwise in first step protonation of the guanidine nitrogen atom occurs, followed by methylation of the (dimethylamino)propyl group, resulting in the dicationic N,N,N',N'-tetramethyl-N''-[3- (trimethylazaniumyl)propyl]guanidinium ion (Tiritiris, 2013) as the main product. In fact, the reaction in wet solvents and the presence of acid traces, yields salt mixtures consisting of monocationic and dicationic species, which cannot be easily separated from each other. When performing the reaction under anhydrous conditions, the obtained waxy monomethylated methyl sulfate salt was converted after subsequent with sodium tetraphenylborate to the crystalline title compound, whose X-ray structure is presented here.
According to the structure analysis, the C1–N1 bond of the the CN3 unit is 1.351 (4) Å, C1–N2 = 1.334 (4) Å and C1–N3 = 1.333 (4) Å, showing partial double-bond character. The N–C1–N angles are: 118.8 (3)° (N1–C1–N2), 120.0 (3)° (N1–C1–N3) and 121.2 (3)° (N2–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values in the range 1.459 (4)–1.478 (4) Å, close to a typical single bond. The C–N bond lengths in the (dimethylamino)propyl group range from 1.437 (6) to 1.489 (6)Å. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the π interactions between the guanidinium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms (centroids) of the tetraphenylborate ion are present (Fig. 2), ranging from 2.48 to 2.89 Å (Tab. 1). These interactions combine to form a ladder of linked chains of ions which runs parallel to the c axis.
analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the
of N,N,N',N',N''-tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate, see: Tiritiris (2013).Data collection: COLLECT (Hooft, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms were omitted for the sake of clarity. | |
Fig. 2. C–H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl carbon atoms (centroids) of one tetraphenylborate ion. |
C11H27N4+·C24H20B− | F(000) = 1160 |
Mr = 534.58 | Dx = 1.140 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 4121 reflections |
a = 20.5074 (7) Å | θ = 0.4–28.3° |
b = 15.4134 (5) Å | µ = 0.07 mm−1 |
c = 9.8568 (3) Å | T = 100 K |
V = 3115.62 (17) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.18 × 0.13 mm |
Bruker–Nonius KappaCCD diffractometer | 3181 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.049 |
Graphite monochromator | θmax = 28.3°, θmin = 2.7° |
φ scans, and ω scans | h = −27→27 |
7338 measured reflections | k = −20→20 |
4035 independent reflections | l = −13→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0694P)2 + 1.0225P] where P = (Fo2 + 2Fc2)/3 |
4035 reflections | (Δ/σ)max < 0.001 |
368 parameters | Δρmax = 0.48 e Å−3 |
1 restraint | Δρmin = −0.20 e Å−3 |
C11H27N4+·C24H20B− | V = 3115.62 (17) Å3 |
Mr = 534.58 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 20.5074 (7) Å | µ = 0.07 mm−1 |
b = 15.4134 (5) Å | T = 100 K |
c = 9.8568 (3) Å | 0.20 × 0.18 × 0.13 mm |
Bruker–Nonius KappaCCD diffractometer | 3181 reflections with I > 2σ(I) |
7338 measured reflections | Rint = 0.049 |
4035 independent reflections |
R[F2 > 2σ(F2)] = 0.057 | 1 restraint |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.48 e Å−3 |
4035 reflections | Δρmin = −0.20 e Å−3 |
368 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.39908 (13) | 0.30671 (18) | 0.1123 (3) | 0.0180 (6) | |
N1 | 0.45724 (13) | 0.34774 (16) | 0.1064 (3) | 0.0244 (6) | |
N2 | 0.35484 (13) | 0.32310 (18) | 0.0164 (3) | 0.0268 (6) | |
N3 | 0.38671 (13) | 0.25113 (19) | 0.2126 (3) | 0.0286 (6) | |
C2 | 0.48919 (16) | 0.3777 (2) | 0.2309 (3) | 0.0264 (7) | |
H2A | 0.4590 | 0.3721 | 0.3074 | 0.040* | |
H2B | 0.5019 | 0.4387 | 0.2205 | 0.040* | |
H2C | 0.5281 | 0.3425 | 0.2480 | 0.040* | |
C3 | 0.48916 (15) | 0.3656 (2) | −0.0229 (3) | 0.0239 (7) | |
H3A | 0.4658 | 0.3357 | −0.0960 | 0.036* | |
H3B | 0.5343 | 0.3449 | −0.0196 | 0.036* | |
H3C | 0.4888 | 0.4282 | −0.0400 | 0.036* | |
C4 | 0.34857 (17) | 0.4102 (2) | −0.0391 (4) | 0.0289 (7) | |
H4A | 0.3756 | 0.4504 | 0.0136 | 0.043* | |
H4B | 0.3029 | 0.4286 | −0.0344 | 0.043* | |
H4C | 0.3630 | 0.4104 | −0.1339 | 0.043* | |
C5 | 0.30700 (16) | 0.2586 (2) | −0.0301 (4) | 0.0322 (8) | |
H5A | 0.3196 | 0.2010 | 0.0029 | 0.048* | |
H5B | 0.3057 | 0.2583 | −0.1295 | 0.048* | |
H5C | 0.2638 | 0.2736 | 0.0054 | 0.048* | |
C6 | 0.32119 (17) | 0.2457 (3) | 0.2736 (4) | 0.0354 (8) | |
H6A | 0.2932 | 0.2908 | 0.2345 | 0.053* | |
H6B | 0.3244 | 0.2542 | 0.3719 | 0.053* | |
H6C | 0.3023 | 0.1885 | 0.2548 | 0.053* | |
C7 | 0.43937 (16) | 0.2002 (2) | 0.2769 (4) | 0.0306 (7) | |
H7A | 0.4467 | 0.2219 | 0.3702 | 0.037* | |
H7B | 0.4803 | 0.2084 | 0.2250 | 0.037* | |
C8 | 0.42283 (19) | 0.1043 (2) | 0.2822 (4) | 0.0373 (9) | |
H8A | 0.3845 | 0.0964 | 0.3421 | 0.045* | |
H8B | 0.4599 | 0.0730 | 0.3239 | 0.045* | |
C9 | 0.40794 (19) | 0.0629 (2) | 0.1454 (4) | 0.0391 (9) | |
H9A | 0.4075 | −0.0010 | 0.1563 | 0.047* | |
H9B | 0.3638 | 0.0810 | 0.1163 | 0.047* | |
N4 | 0.45421 (17) | 0.08554 (19) | 0.0396 (3) | 0.0390 (8) | |
C10 | 0.5176 (2) | 0.0427 (3) | 0.0700 (5) | 0.0482 (11) | |
H10A | 0.5113 | −0.0203 | 0.0750 | 0.072* | |
H10B | 0.5344 | 0.0639 | 0.1569 | 0.072* | |
H10C | 0.5490 | 0.0561 | −0.0021 | 0.072* | |
C11 | 0.4322 (2) | 0.0575 (3) | −0.0917 (4) | 0.0491 (11) | |
H11A | 0.4265 | −0.0057 | −0.0913 | 0.074* | |
H11B | 0.4645 | 0.0735 | −0.1604 | 0.074* | |
H11C | 0.3905 | 0.0854 | −0.1128 | 0.074* | |
B1 | 0.12881 (15) | 0.2061 (2) | 0.5818 (3) | 0.0159 (6) | |
C12 | 0.16933 (14) | 0.12719 (18) | 0.6527 (3) | 0.0173 (6) | |
C13 | 0.14514 (15) | 0.07030 (18) | 0.7512 (3) | 0.0209 (6) | |
H13 | 0.1010 | 0.0762 | 0.7787 | 0.025* | |
C14 | 0.18295 (16) | 0.0051 (2) | 0.8113 (3) | 0.0270 (7) | |
H14 | 0.1642 | −0.0323 | 0.8773 | 0.032* | |
C15 | 0.24774 (17) | −0.0048 (2) | 0.7742 (4) | 0.0324 (8) | |
H15 | 0.2736 | −0.0492 | 0.8136 | 0.039* | |
C16 | 0.27425 (17) | 0.0512 (2) | 0.6787 (4) | 0.0328 (8) | |
H16 | 0.3187 | 0.0453 | 0.6529 | 0.039* | |
C17 | 0.23622 (14) | 0.1154 (2) | 0.6208 (3) | 0.0246 (7) | |
H17 | 0.2558 | 0.1534 | 0.5568 | 0.029* | |
C18 | 0.04911 (14) | 0.19818 (17) | 0.6052 (3) | 0.0177 (6) | |
C19 | 0.00849 (14) | 0.26899 (19) | 0.6360 (3) | 0.0220 (6) | |
H19 | 0.0278 | 0.3242 | 0.6509 | 0.026* | |
C20 | −0.05945 (15) | 0.2613 (2) | 0.6456 (4) | 0.0271 (7) | |
H20 | −0.0851 | 0.3108 | 0.6668 | 0.033* | |
C21 | −0.08949 (15) | 0.1820 (2) | 0.6244 (4) | 0.0272 (7) | |
H21 | −0.1355 | 0.1766 | 0.6312 | 0.033* | |
C22 | −0.05143 (15) | 0.1109 (2) | 0.5932 (3) | 0.0254 (7) | |
H22 | −0.0713 | 0.0560 | 0.5783 | 0.031* | |
C23 | 0.01633 (14) | 0.11928 (19) | 0.5835 (3) | 0.0212 (6) | |
H23 | 0.0413 | 0.0694 | 0.5612 | 0.025* | |
C24 | 0.15858 (13) | 0.29536 (17) | 0.6477 (3) | 0.0158 (6) | |
C25 | 0.20552 (14) | 0.34705 (18) | 0.5837 (3) | 0.0213 (6) | |
H25 | 0.2196 | 0.3312 | 0.4953 | 0.026* | |
C26 | 0.23223 (14) | 0.4200 (2) | 0.6432 (3) | 0.0242 (7) | |
H26 | 0.2633 | 0.4535 | 0.5946 | 0.029* | |
C27 | 0.21415 (14) | 0.44452 (19) | 0.7727 (3) | 0.0233 (6) | |
H27 | 0.2320 | 0.4951 | 0.8132 | 0.028* | |
C28 | 0.16949 (14) | 0.39393 (19) | 0.8422 (3) | 0.0211 (6) | |
H28 | 0.1573 | 0.4090 | 0.9322 | 0.025* | |
C29 | 0.14233 (14) | 0.32109 (18) | 0.7808 (3) | 0.0192 (6) | |
H29 | 0.1117 | 0.2874 | 0.8304 | 0.023* | |
C30 | 0.13792 (14) | 0.20459 (18) | 0.4149 (3) | 0.0167 (6) | |
C31 | 0.15854 (14) | 0.13116 (19) | 0.3429 (3) | 0.0186 (6) | |
H31 | 0.1696 | 0.0804 | 0.3925 | 0.022* | |
C32 | 0.16356 (15) | 0.1292 (2) | 0.2026 (3) | 0.0237 (7) | |
H32 | 0.1767 | 0.0772 | 0.1586 | 0.028* | |
C33 | 0.14963 (14) | 0.2019 (2) | 0.1260 (3) | 0.0241 (7) | |
H33 | 0.1541 | 0.2013 | 0.0301 | 0.029* | |
C34 | 0.12899 (16) | 0.2758 (2) | 0.1937 (3) | 0.0274 (7) | |
H34 | 0.1188 | 0.3265 | 0.1431 | 0.033* | |
C35 | 0.12292 (15) | 0.27719 (19) | 0.3343 (3) | 0.0234 (7) | |
H35 | 0.1082 | 0.3288 | 0.3772 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0173 (13) | 0.0200 (13) | 0.0165 (14) | 0.0010 (11) | 0.0008 (11) | 0.0009 (12) |
N1 | 0.0237 (13) | 0.0283 (13) | 0.0213 (13) | 0.0020 (11) | −0.0011 (11) | 0.0011 (12) |
N2 | 0.0239 (14) | 0.0282 (13) | 0.0283 (15) | −0.0020 (11) | −0.0049 (12) | 0.0045 (12) |
N3 | 0.0209 (13) | 0.0362 (15) | 0.0288 (14) | 0.0002 (12) | −0.0016 (12) | 0.0066 (13) |
C2 | 0.0236 (16) | 0.0304 (17) | 0.0252 (17) | 0.0002 (14) | −0.0095 (13) | −0.0042 (14) |
C3 | 0.0219 (15) | 0.0306 (16) | 0.0194 (15) | 0.0012 (13) | 0.0012 (12) | 0.0044 (13) |
C4 | 0.0316 (17) | 0.0265 (16) | 0.0286 (17) | 0.0045 (14) | −0.0103 (14) | 0.0040 (14) |
C5 | 0.0233 (16) | 0.0365 (18) | 0.0370 (19) | −0.0069 (15) | −0.0103 (15) | −0.0019 (16) |
C6 | 0.0273 (17) | 0.051 (2) | 0.0280 (17) | −0.0036 (16) | 0.0070 (15) | 0.0051 (18) |
C7 | 0.0288 (17) | 0.0380 (18) | 0.0250 (16) | 0.0079 (14) | −0.0015 (14) | 0.0122 (16) |
C8 | 0.0383 (19) | 0.0395 (19) | 0.034 (2) | 0.0062 (16) | 0.0064 (17) | 0.0152 (17) |
C9 | 0.042 (2) | 0.0292 (17) | 0.046 (2) | −0.0023 (16) | 0.0041 (19) | 0.0113 (18) |
N4 | 0.054 (2) | 0.0276 (15) | 0.0353 (17) | −0.0149 (15) | 0.0125 (15) | 0.0025 (13) |
C10 | 0.042 (2) | 0.054 (2) | 0.049 (3) | −0.015 (2) | 0.0106 (19) | −0.006 (2) |
C11 | 0.062 (3) | 0.039 (2) | 0.045 (3) | 0.001 (2) | 0.002 (2) | 0.003 (2) |
B1 | 0.0161 (14) | 0.0141 (14) | 0.0176 (16) | −0.0001 (12) | −0.0008 (12) | 0.0019 (13) |
C12 | 0.0186 (14) | 0.0176 (13) | 0.0158 (14) | −0.0030 (11) | −0.0029 (11) | 0.0021 (11) |
C13 | 0.0238 (15) | 0.0208 (14) | 0.0182 (16) | 0.0007 (12) | 0.0009 (12) | 0.0040 (12) |
C14 | 0.0327 (17) | 0.0276 (15) | 0.0206 (16) | −0.0004 (14) | −0.0018 (13) | 0.0096 (13) |
C15 | 0.0340 (18) | 0.0330 (17) | 0.0302 (17) | 0.0073 (15) | −0.0065 (15) | 0.0133 (16) |
C16 | 0.0231 (16) | 0.0389 (19) | 0.036 (2) | 0.0029 (15) | −0.0030 (14) | 0.0091 (16) |
C17 | 0.0180 (14) | 0.0280 (15) | 0.0277 (17) | 0.0012 (12) | −0.0050 (13) | 0.0097 (14) |
C18 | 0.0195 (13) | 0.0180 (13) | 0.0156 (14) | 0.0008 (11) | −0.0025 (12) | 0.0024 (11) |
C19 | 0.0184 (14) | 0.0198 (13) | 0.0278 (16) | −0.0014 (11) | −0.0039 (13) | 0.0023 (13) |
C20 | 0.0187 (15) | 0.0292 (16) | 0.0335 (18) | 0.0067 (13) | −0.0038 (14) | 0.0030 (15) |
C21 | 0.0155 (13) | 0.0408 (17) | 0.0254 (17) | −0.0022 (13) | −0.0013 (13) | 0.0053 (15) |
C22 | 0.0241 (15) | 0.0283 (15) | 0.0239 (16) | −0.0128 (13) | −0.0002 (13) | 0.0014 (14) |
C23 | 0.0196 (14) | 0.0205 (14) | 0.0236 (16) | −0.0039 (12) | 0.0026 (12) | −0.0019 (12) |
C24 | 0.0116 (12) | 0.0169 (12) | 0.0188 (14) | 0.0024 (10) | −0.0028 (11) | 0.0037 (11) |
C25 | 0.0185 (14) | 0.0218 (14) | 0.0235 (16) | −0.0036 (12) | 0.0024 (12) | −0.0070 (13) |
C26 | 0.0182 (14) | 0.0263 (15) | 0.0282 (17) | −0.0060 (12) | 0.0015 (13) | −0.0022 (14) |
C27 | 0.0192 (14) | 0.0234 (14) | 0.0273 (16) | −0.0023 (12) | −0.0078 (14) | −0.0056 (14) |
C28 | 0.0226 (14) | 0.0260 (15) | 0.0148 (14) | 0.0019 (12) | −0.0040 (12) | −0.0027 (12) |
C29 | 0.0162 (13) | 0.0213 (13) | 0.0202 (15) | 0.0004 (11) | −0.0023 (12) | 0.0031 (13) |
C30 | 0.0140 (13) | 0.0167 (13) | 0.0193 (14) | −0.0050 (11) | −0.0014 (11) | 0.0029 (12) |
C31 | 0.0187 (14) | 0.0148 (13) | 0.0223 (15) | 0.0010 (11) | −0.0001 (12) | 0.0021 (12) |
C32 | 0.0193 (15) | 0.0291 (16) | 0.0228 (16) | 0.0027 (13) | 0.0013 (12) | −0.0035 (14) |
C33 | 0.0171 (13) | 0.0365 (17) | 0.0188 (15) | −0.0040 (12) | −0.0024 (12) | 0.0027 (14) |
C34 | 0.0269 (17) | 0.0299 (17) | 0.0254 (17) | −0.0030 (14) | −0.0051 (13) | 0.0138 (14) |
C35 | 0.0286 (16) | 0.0162 (14) | 0.0253 (17) | 0.0045 (13) | −0.0024 (13) | 0.0040 (13) |
C1—N3 | 1.333 (4) | C12—C13 | 1.400 (4) |
C1—N2 | 1.334 (4) | C12—C17 | 1.419 (4) |
C1—N1 | 1.351 (4) | C13—C14 | 1.401 (4) |
N1—C3 | 1.459 (4) | C13—H13 | 0.9500 |
N1—C2 | 1.466 (4) | C14—C15 | 1.386 (5) |
N2—C4 | 1.456 (4) | C14—H14 | 0.9500 |
N2—C5 | 1.470 (4) | C15—C16 | 1.387 (5) |
N3—C6 | 1.474 (4) | C15—H15 | 0.9500 |
N3—C7 | 1.478 (4) | C16—C17 | 1.384 (4) |
C2—H2A | 0.9800 | C16—H16 | 0.9500 |
C2—H2B | 0.9800 | C17—H17 | 0.9500 |
C2—H2C | 0.9800 | C18—C23 | 1.406 (4) |
C3—H3A | 0.9800 | C18—C19 | 1.406 (4) |
C3—H3B | 0.9800 | C19—C20 | 1.402 (4) |
C3—H3C | 0.9800 | C19—H19 | 0.9500 |
C4—H4A | 0.9800 | C20—C21 | 1.385 (5) |
C4—H4B | 0.9800 | C20—H20 | 0.9500 |
C4—H4C | 0.9800 | C21—C22 | 1.380 (5) |
C5—H5A | 0.9800 | C21—H21 | 0.9500 |
C5—H5B | 0.9800 | C22—C23 | 1.399 (4) |
C5—H5C | 0.9800 | C22—H22 | 0.9500 |
C6—H6A | 0.9800 | C23—H23 | 0.9500 |
C6—H6B | 0.9800 | C24—C25 | 1.400 (4) |
C6—H6C | 0.9800 | C24—C29 | 1.410 (4) |
C7—C8 | 1.518 (5) | C25—C26 | 1.381 (4) |
C7—H7A | 0.9900 | C25—H25 | 0.9500 |
C7—H7B | 0.9900 | C26—C27 | 1.382 (5) |
C8—C9 | 1.523 (6) | C26—H26 | 0.9500 |
C8—H8A | 0.9900 | C27—C28 | 1.384 (4) |
C8—H8B | 0.9900 | C27—H27 | 0.9500 |
C9—N4 | 1.453 (5) | C28—C29 | 1.392 (4) |
C9—H9A | 0.9900 | C28—H28 | 0.9500 |
C9—H9B | 0.9900 | C29—H29 | 0.9500 |
N4—C11 | 1.437 (6) | C30—C31 | 1.401 (4) |
N4—C10 | 1.489 (6) | C30—C35 | 1.407 (4) |
C10—H10A | 0.9800 | C31—C32 | 1.387 (4) |
C10—H10B | 0.9800 | C31—H31 | 0.9500 |
C10—H10C | 0.9800 | C32—C33 | 1.382 (5) |
C11—H11A | 0.9800 | C32—H32 | 0.9500 |
C11—H11B | 0.9800 | C33—C34 | 1.386 (5) |
C11—H11C | 0.9800 | C33—H33 | 0.9500 |
B1—C12 | 1.630 (4) | C34—C35 | 1.392 (5) |
B1—C24 | 1.640 (4) | C34—H34 | 0.9500 |
B1—C18 | 1.655 (4) | C35—H35 | 0.9500 |
B1—C30 | 1.656 (4) | ||
N3—C1—N2 | 121.2 (3) | C24—B1—C18 | 112.0 (2) |
N3—C1—N1 | 120.0 (3) | C12—B1—C30 | 111.0 (2) |
N2—C1—N1 | 118.8 (3) | C24—B1—C30 | 111.3 (2) |
C1—N1—C3 | 121.5 (3) | C18—B1—C30 | 104.4 (2) |
C1—N1—C2 | 120.4 (3) | C13—C12—C17 | 114.6 (3) |
C3—N1—C2 | 118.1 (2) | C13—C12—B1 | 125.7 (3) |
C1—N2—C4 | 120.1 (3) | C17—C12—B1 | 119.6 (2) |
C1—N2—C5 | 123.1 (3) | C12—C13—C14 | 123.2 (3) |
C4—N2—C5 | 116.6 (3) | C12—C13—H13 | 118.4 |
C1—N3—C6 | 120.8 (3) | C14—C13—H13 | 118.4 |
C1—N3—C7 | 121.4 (3) | C15—C14—C13 | 119.8 (3) |
C6—N3—C7 | 117.5 (3) | C15—C14—H14 | 120.1 |
N1—C2—H2A | 109.5 | C13—C14—H14 | 120.1 |
N1—C2—H2B | 109.5 | C14—C15—C16 | 119.1 (3) |
H2A—C2—H2B | 109.5 | C14—C15—H15 | 120.5 |
N1—C2—H2C | 109.5 | C16—C15—H15 | 120.5 |
H2A—C2—H2C | 109.5 | C17—C16—C15 | 120.3 (3) |
H2B—C2—H2C | 109.5 | C17—C16—H16 | 119.9 |
N1—C3—H3A | 109.5 | C15—C16—H16 | 119.9 |
N1—C3—H3B | 109.5 | C16—C17—C12 | 123.0 (3) |
H3A—C3—H3B | 109.5 | C16—C17—H17 | 118.5 |
N1—C3—H3C | 109.5 | C12—C17—H17 | 118.5 |
H3A—C3—H3C | 109.5 | C23—C18—C19 | 114.9 (3) |
H3B—C3—H3C | 109.5 | C23—C18—B1 | 121.0 (2) |
N2—C4—H4A | 109.5 | C19—C18—B1 | 123.9 (2) |
N2—C4—H4B | 109.5 | C20—C19—C18 | 122.5 (3) |
H4A—C4—H4B | 109.5 | C20—C19—H19 | 118.7 |
N2—C4—H4C | 109.5 | C18—C19—H19 | 118.7 |
H4A—C4—H4C | 109.5 | C21—C20—C19 | 120.5 (3) |
H4B—C4—H4C | 109.5 | C21—C20—H20 | 119.8 |
N2—C5—H5A | 109.5 | C19—C20—H20 | 119.8 |
N2—C5—H5B | 109.5 | C22—C21—C20 | 118.9 (3) |
H5A—C5—H5B | 109.5 | C22—C21—H21 | 120.6 |
N2—C5—H5C | 109.5 | C20—C21—H21 | 120.6 |
H5A—C5—H5C | 109.5 | C21—C22—C23 | 120.2 (3) |
H5B—C5—H5C | 109.5 | C21—C22—H22 | 119.9 |
N3—C6—H6A | 109.5 | C23—C22—H22 | 119.9 |
N3—C6—H6B | 109.5 | C22—C23—C18 | 123.0 (3) |
H6A—C6—H6B | 109.5 | C22—C23—H23 | 118.5 |
N3—C6—H6C | 109.5 | C18—C23—H23 | 118.5 |
H6A—C6—H6C | 109.5 | C25—C24—C29 | 115.0 (3) |
H6B—C6—H6C | 109.5 | C25—C24—B1 | 123.7 (3) |
N3—C7—C8 | 111.6 (3) | C29—C24—B1 | 121.1 (2) |
N3—C7—H7A | 109.3 | C26—C25—C24 | 123.0 (3) |
C8—C7—H7A | 109.3 | C26—C25—H25 | 118.5 |
N3—C7—H7B | 109.3 | C24—C25—H25 | 118.5 |
C8—C7—H7B | 109.3 | C25—C26—C27 | 120.6 (3) |
H7A—C7—H7B | 108.0 | C25—C26—H26 | 119.7 |
C7—C8—C9 | 115.0 (3) | C27—C26—H26 | 119.7 |
C7—C8—H8A | 108.5 | C26—C27—C28 | 118.7 (3) |
C9—C8—H8A | 108.5 | C26—C27—H27 | 120.6 |
C7—C8—H8B | 108.5 | C28—C27—H27 | 120.6 |
C9—C8—H8B | 108.5 | C27—C28—C29 | 120.3 (3) |
H8A—C8—H8B | 107.5 | C27—C28—H28 | 119.9 |
N4—C9—C8 | 113.8 (3) | C29—C28—H28 | 119.9 |
N4—C9—H9A | 108.8 | C28—C29—C24 | 122.5 (3) |
C8—C9—H9A | 108.8 | C28—C29—H29 | 118.8 |
N4—C9—H9B | 108.8 | C24—C29—H29 | 118.8 |
C8—C9—H9B | 108.8 | C31—C30—C35 | 115.0 (3) |
H9A—C9—H9B | 107.7 | C31—C30—B1 | 123.3 (3) |
C11—N4—C9 | 111.6 (3) | C35—C30—B1 | 121.7 (3) |
C11—N4—C10 | 108.8 (3) | C32—C31—C30 | 123.0 (3) |
C9—N4—C10 | 108.6 (3) | C32—C31—H31 | 118.5 |
N4—C10—H10A | 109.5 | C30—C31—H31 | 118.5 |
N4—C10—H10B | 109.5 | C33—C32—C31 | 120.7 (3) |
H10A—C10—H10B | 109.5 | C33—C32—H32 | 119.6 |
N4—C10—H10C | 109.5 | C31—C32—H32 | 119.6 |
H10A—C10—H10C | 109.5 | C32—C33—C34 | 117.9 (3) |
H10B—C10—H10C | 109.5 | C32—C33—H33 | 121.1 |
N4—C11—H11A | 109.5 | C34—C33—H33 | 121.1 |
N4—C11—H11B | 109.5 | C33—C34—C35 | 121.2 (3) |
H11A—C11—H11B | 109.5 | C33—C34—H34 | 119.4 |
N4—C11—H11C | 109.5 | C35—C34—H34 | 119.4 |
H11A—C11—H11C | 109.5 | C34—C35—C30 | 122.1 (3) |
H11B—C11—H11C | 109.5 | C34—C35—H35 | 119.0 |
C12—B1—C24 | 105.4 (2) | C30—C35—H35 | 119.0 |
C12—B1—C18 | 112.9 (2) | ||
N3—C1—N1—C3 | 143.5 (3) | C30—B1—C18—C19 | −101.0 (3) |
N2—C1—N1—C3 | −36.6 (4) | C23—C18—C19—C20 | 0.6 (5) |
N3—C1—N1—C2 | −38.2 (4) | B1—C18—C19—C20 | 175.3 (3) |
N2—C1—N1—C2 | 141.7 (3) | C18—C19—C20—C21 | −0.1 (5) |
N3—C1—N2—C4 | 143.5 (3) | C19—C20—C21—C22 | −0.2 (5) |
N1—C1—N2—C4 | −36.4 (4) | C20—C21—C22—C23 | 0.0 (5) |
N3—C1—N2—C5 | −31.1 (5) | C21—C22—C23—C18 | 0.5 (5) |
N1—C1—N2—C5 | 149.0 (3) | C19—C18—C23—C22 | −0.8 (5) |
N2—C1—N3—C6 | −37.1 (5) | B1—C18—C23—C22 | −175.6 (3) |
N1—C1—N3—C6 | 142.8 (3) | C12—B1—C24—C25 | 98.6 (3) |
N2—C1—N3—C7 | 149.9 (3) | C18—B1—C24—C25 | −138.3 (3) |
N1—C1—N3—C7 | −30.2 (4) | C30—B1—C24—C25 | −21.8 (4) |
C1—N3—C7—C8 | −129.3 (3) | C12—B1—C24—C29 | −75.6 (3) |
C6—N3—C7—C8 | 57.5 (4) | C18—B1—C24—C29 | 47.5 (3) |
N3—C7—C8—C9 | 56.9 (4) | C30—B1—C24—C29 | 164.0 (2) |
C7—C8—C9—N4 | 46.0 (4) | C29—C24—C25—C26 | −2.6 (4) |
C8—C9—N4—C11 | −170.0 (3) | B1—C24—C25—C26 | −177.0 (3) |
C8—C9—N4—C10 | 70.0 (4) | C24—C25—C26—C27 | 1.3 (5) |
C24—B1—C12—C13 | 106.9 (3) | C25—C26—C27—C28 | 0.9 (5) |
C18—B1—C12—C13 | −15.7 (4) | C26—C27—C28—C29 | −1.6 (4) |
C30—B1—C12—C13 | −132.5 (3) | C27—C28—C29—C24 | 0.2 (4) |
C24—B1—C12—C17 | −69.3 (3) | C25—C24—C29—C28 | 1.8 (4) |
C18—B1—C12—C17 | 168.2 (3) | B1—C24—C29—C28 | 176.5 (3) |
C30—B1—C12—C17 | 51.4 (4) | C12—B1—C30—C31 | 19.6 (4) |
C17—C12—C13—C14 | −1.8 (4) | C24—B1—C30—C31 | 136.7 (3) |
B1—C12—C13—C14 | −178.2 (3) | C18—B1—C30—C31 | −102.3 (3) |
C12—C13—C14—C15 | 0.5 (5) | C12—B1—C30—C35 | −162.8 (3) |
C13—C14—C15—C16 | 0.7 (5) | C24—B1—C30—C35 | −45.7 (4) |
C14—C15—C16—C17 | −0.5 (5) | C18—B1—C30—C35 | 75.3 (3) |
C15—C16—C17—C12 | −1.0 (5) | C35—C30—C31—C32 | −0.4 (4) |
C13—C12—C17—C16 | 2.1 (5) | B1—C30—C31—C32 | 177.3 (3) |
B1—C12—C17—C16 | 178.7 (3) | C30—C31—C32—C33 | 1.6 (5) |
C12—B1—C18—C23 | −47.2 (4) | C31—C32—C33—C34 | −1.6 (5) |
C24—B1—C18—C23 | −166.0 (3) | C32—C33—C34—C35 | 0.5 (5) |
C30—B1—C18—C23 | 73.4 (3) | C33—C34—C35—C30 | 0.7 (5) |
C12—B1—C18—C19 | 138.4 (3) | C31—C30—C35—C34 | −0.7 (4) |
C24—B1—C18—C19 | 19.6 (4) | B1—C30—C35—C34 | −178.5 (3) |
Cg1, Cg2 and Cg3 are the centroids of the C30–C35, C18–C23 and C24–C29 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···Cg1i | 0.98 | 2.48 | 3.425 (1) | 162 |
C7—H7A···Cg2ii | 0.99 | 2.84 | 3.821 (1) | 170 |
C3—H3A···Cg2i | 0.98 | 2.89 | 3.680 (1) | 138 |
C9—H9A···Cg3iii | 0.99 | 2.82 | 3.610 (1) | 136 |
Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z−1; (iii) −x+1/2, y−1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H27N4+·C24H20B− |
Mr | 534.58 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 20.5074 (7), 15.4134 (5), 9.8568 (3) |
V (Å3) | 3115.62 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.20 × 0.18 × 0.13 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7338, 4035, 3181 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.137, 1.05 |
No. of reflections | 4035 |
No. of parameters | 368 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.20 |
Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
Cg1, Cg2 and Cg3 are the centroids of the C30–C35, C18–C23 and C24–C29 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···Cg1i | 0.98 | 2.48 | 3.425 (1) | 162 |
C7—H7A···Cg2ii | 0.99 | 2.84 | 3.821 (1) | 170 |
C3—H3A···Cg2i | 0.98 | 2.89 | 3.680 (1) | 138 |
C9—H9A···Cg3iii | 0.99 | 2.82 | 3.610 (1) | 136 |
Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z−1; (iii) −x+1/2, y−1/2, z−1/2. |
Acknowledgements
The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for collecting the crystal data.
References
Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany. Google Scholar
Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiritiris, I. (2013). Acta Cryst. E69, o337–o338. CSD CrossRef CAS IUCr Journals Google Scholar
Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685–698. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
ω-Aminoalkylguanidines like N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine (I) (Tiritiris & Kantlehner, 2012), in which two nitrogen atoms with different basicity are present, are considered as ambident nucleophiles. Electrophiles can attack at both, on the imine nitrogen of the guanidine function, as well as on the nitrogen atom of the (dimethylamino)propyl group. By alkylation of (I) with only one equivalent dimethyl sulfate, methylation occurs preferentially at the guanidine nitrogen atom, because it is the most basic site. The exclusion of moisture and the use of absolutely acid free dimethyl sulfate, is in this reaction very essential. Otherwise in first step protonation of the guanidine nitrogen atom occurs, followed by methylation of the (dimethylamino)propyl group, resulting in the dicationic N,N,N',N'-tetramethyl-N''-[3- (trimethylazaniumyl)propyl]guanidinium ion (Tiritiris, 2013) as the main product. In fact, the reaction in wet solvents and the presence of acid traces, yields salt mixtures consisting of monocationic and dicationic species, which cannot be easily separated from each other. When performing the reaction under anhydrous conditions, the obtained waxy monomethylated methyl sulfate salt was converted after subsequent anion exchange with sodium tetraphenylborate to the crystalline title compound, whose X-ray structure is presented here.
According to the structure analysis, the C1–N1 bond of the the CN3 unit is 1.351 (4) Å, C1–N2 = 1.334 (4) Å and C1–N3 = 1.333 (4) Å, showing partial double-bond character. The N–C1–N angles are: 118.8 (3)° (N1–C1–N2), 120.0 (3)° (N1–C1–N3) and 121.2 (3)° (N2–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values in the range 1.459 (4)–1.478 (4) Å, close to a typical single bond. The C–N bond lengths in the (dimethylamino)propyl group range from 1.437 (6) to 1.489 (6)Å. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···π interactions between the guanidinium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms (centroids) of the tetraphenylborate ion are present (Fig. 2), ranging from 2.48 to 2.89 Å (Tab. 1). These interactions combine to form a ladder of linked chains of ions which runs parallel to the c axis.