organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[3-(Di­methyl­amino)­prop­yl]-N,N′,N′,N′′,N′′-penta­methyl­guanidinium tetra­phenyl­borate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de

(Received 28 May 2013; accepted 30 May 2013; online 8 June 2013)

In the title salt, C11H27N4+·C24H20B, the C—N bond lengths in the central CN3 unit of the guanidinium ion are 1.333 (4), 1.334 (4) and 1.351 (4) Å, indicating partial double-bond character. The C atom of this unit is bonded to the three N atoms in a nearly ideal trigonal-planar geometry [N—C—N angles = 118.8 (3), 120.0 (3) and 121.2 (3)°] and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety have values in the range 1.459 (4)–1.478 (4) Å, close to a typical single bond. In the crystal, there are C—H⋯π inter­actions between the guanidinium H atoms and the phenyl rings of the tetra­phenyl­borate ion. These inter­actions combine to form a ladder of linked chains of ions which runs parallel to the c axis.

Related literature

For the synthesis of N′′-[3-(di­methyl­amino)­prop­yl]-N,N,N′,N′-tetra­methyl­guanidine, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685-698.]). For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). For the crystal structure of N,N,N′,N′,N′′-tetra­methyl-N′′-[3-(tri­methyl­aza­nium­yl)prop­yl]guanid­in­ium bis­(tetra­phenyl­borate) acetone disolvate, see: Tiritiris (2013[Tiritiris, I. (2013). Acta Cryst. E69, o337-o338.]).

[Scheme 1]

Experimental

Crystal data
  • C11H27N4+·C24H20B

  • Mr = 534.58

  • Orthorhombic, P n a 21

  • a = 20.5074 (7) Å

  • b = 15.4134 (5) Å

  • c = 9.8568 (3) Å

  • V = 3115.62 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.20 × 0.18 × 0.13 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 7338 measured reflections

  • 4035 independent reflections

  • 3181 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.137

  • S = 1.05

  • 4035 reflections

  • 368 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C30–C35, C18–C23 and C24–C29 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2CCg1i 0.98 2.48 3.425 (1) 162
C7—H7ACg2ii 0.99 2.84 3.821 (1) 170
C3—H3ACg2i 0.98 2.89 3.680 (1) 138
C9—H9ACg3iii 0.99 2.82 3.610 (1) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

ω-Aminoalkylguanidines like N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine (I) (Tiritiris & Kantlehner, 2012), in which two nitrogen atoms with different basicity are present, are considered as ambident nucleophiles. Electrophiles can attack at both, on the imine nitrogen of the guanidine function, as well as on the nitrogen atom of the (dimethylamino)propyl group. By alkylation of (I) with only one equivalent dimethyl sulfate, methylation occurs preferentially at the guanidine nitrogen atom, because it is the most basic site. The exclusion of moisture and the use of absolutely acid free dimethyl sulfate, is in this reaction very essential. Otherwise in first step protonation of the guanidine nitrogen atom occurs, followed by methylation of the (dimethylamino)propyl group, resulting in the dicationic N,N,N',N'-tetramethyl-N''-[3- (trimethylazaniumyl)propyl]guanidinium ion (Tiritiris, 2013) as the main product. In fact, the reaction in wet solvents and the presence of acid traces, yields salt mixtures consisting of monocationic and dicationic species, which cannot be easily separated from each other. When performing the reaction under anhydrous conditions, the obtained waxy monomethylated methyl sulfate salt was converted after subsequent anion exchange with sodium tetraphenylborate to the crystalline title compound, whose X-ray structure is presented here.

According to the structure analysis, the C1–N1 bond of the the CN3 unit is 1.351 (4) Å, C1–N2 = 1.334 (4) Å and C1–N3 = 1.333 (4) Å, showing partial double-bond character. The N–C1–N angles are: 118.8 (3)° (N1–C1–N2), 120.0 (3)° (N1–C1–N3) and 121.2 (3)° (N2–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values in the range 1.459 (4)–1.478 (4) Å, close to a typical single bond. The C–N bond lengths in the (dimethylamino)propyl group range from 1.437 (6) to 1.489 (6)Å. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···π interactions between the guanidinium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms (centroids) of the tetraphenylborate ion are present (Fig. 2), ranging from 2.48 to 2.89 Å (Tab. 1). These interactions combine to form a ladder of linked chains of ions which runs parallel to the c axis.

Related literature top

For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the crystal structure of N,N,N',N',N''-tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate, see: Tiritiris (2013).

Experimental top

The title compound was obtained by reaction of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2012) with one equivalent of freshly distilled dimethyl sulfate in anhydrous acetonitrile at room temperature. After evaporation of the solvent the crude N,N,N',N',N''-pentamethyl-N''-[3-(dimethylamino)propyl]-guanidinium methyl sulfate (II) was washed with diethylether and dried in vacuo. 1.0 g (2.8 mmol) of (II) was dissolved in 20 ml acetonitrile and 0.96 g (2.8 mmol) of sodium tetraphenylborate in 20 ml acetonitrile were added. After stirring for one hour at room temperature, the precipitated sodium methyl sulfate was filtered off. The title compound crystallized from a saturated acetone solution after several weeks at 273 K, forming colorless single crystals. Yield: 1.15 g (76.8%).

Refinement top

The title compound crystallizes in the non-centrosymmetric space group Pna21; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless. Accordingly, Friedel pairs were merged. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).

Structure description top

ω-Aminoalkylguanidines like N''-[3-(dimethylamino)propyl]- N,N,N',N'-tetramethylguanidine (I) (Tiritiris & Kantlehner, 2012), in which two nitrogen atoms with different basicity are present, are considered as ambident nucleophiles. Electrophiles can attack at both, on the imine nitrogen of the guanidine function, as well as on the nitrogen atom of the (dimethylamino)propyl group. By alkylation of (I) with only one equivalent dimethyl sulfate, methylation occurs preferentially at the guanidine nitrogen atom, because it is the most basic site. The exclusion of moisture and the use of absolutely acid free dimethyl sulfate, is in this reaction very essential. Otherwise in first step protonation of the guanidine nitrogen atom occurs, followed by methylation of the (dimethylamino)propyl group, resulting in the dicationic N,N,N',N'-tetramethyl-N''-[3- (trimethylazaniumyl)propyl]guanidinium ion (Tiritiris, 2013) as the main product. In fact, the reaction in wet solvents and the presence of acid traces, yields salt mixtures consisting of monocationic and dicationic species, which cannot be easily separated from each other. When performing the reaction under anhydrous conditions, the obtained waxy monomethylated methyl sulfate salt was converted after subsequent anion exchange with sodium tetraphenylborate to the crystalline title compound, whose X-ray structure is presented here.

According to the structure analysis, the C1–N1 bond of the the CN3 unit is 1.351 (4) Å, C1–N2 = 1.334 (4) Å and C1–N3 = 1.333 (4) Å, showing partial double-bond character. The N–C1–N angles are: 118.8 (3)° (N1–C1–N2), 120.0 (3)° (N1–C1–N3) and 121.2 (3)° (N2–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane (Fig. 1). The bonds between the N atoms and the terminal C-methyl groups of the guanidinium moiety all have values in the range 1.459 (4)–1.478 (4) Å, close to a typical single bond. The C–N bond lengths in the (dimethylamino)propyl group range from 1.437 (6) to 1.489 (6)Å. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···π interactions between the guanidinium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms (centroids) of the tetraphenylborate ion are present (Fig. 2), ranging from 2.48 to 2.89 Å (Tab. 1). These interactions combine to form a ladder of linked chains of ions which runs parallel to the c axis.

For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the crystal structure of N,N,N',N',N''-tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate, see: Tiritiris (2013).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms were omitted for the sake of clarity.
[Figure 2] Fig. 2. C–H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl carbon atoms (centroids) of one tetraphenylborate ion.
N-[3-(Dimethylamino)propyl]-N,N',N',N'',N''-pentamethylguanidinium tetraphenylborate top
Crystal data top
C11H27N4+·C24H20BF(000) = 1160
Mr = 534.58Dx = 1.140 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4121 reflections
a = 20.5074 (7) Åθ = 0.4–28.3°
b = 15.4134 (5) ŵ = 0.07 mm1
c = 9.8568 (3) ÅT = 100 K
V = 3115.62 (17) Å3Block, colorless
Z = 40.20 × 0.18 × 0.13 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3181 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.049
Graphite monochromatorθmax = 28.3°, θmin = 2.7°
φ scans, and ω scansh = 2727
7338 measured reflectionsk = 2020
4035 independent reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: difference Fourier map
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0694P)2 + 1.0225P]
where P = (Fo2 + 2Fc2)/3
4035 reflections(Δ/σ)max < 0.001
368 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C11H27N4+·C24H20BV = 3115.62 (17) Å3
Mr = 534.58Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.5074 (7) ŵ = 0.07 mm1
b = 15.4134 (5) ÅT = 100 K
c = 9.8568 (3) Å0.20 × 0.18 × 0.13 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3181 reflections with I > 2σ(I)
7338 measured reflectionsRint = 0.049
4035 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
4035 reflectionsΔρmin = 0.20 e Å3
368 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39908 (13)0.30671 (18)0.1123 (3)0.0180 (6)
N10.45724 (13)0.34774 (16)0.1064 (3)0.0244 (6)
N20.35484 (13)0.32310 (18)0.0164 (3)0.0268 (6)
N30.38671 (13)0.25113 (19)0.2126 (3)0.0286 (6)
C20.48919 (16)0.3777 (2)0.2309 (3)0.0264 (7)
H2A0.45900.37210.30740.040*
H2B0.50190.43870.22050.040*
H2C0.52810.34250.24800.040*
C30.48916 (15)0.3656 (2)0.0229 (3)0.0239 (7)
H3A0.46580.33570.09600.036*
H3B0.53430.34490.01960.036*
H3C0.48880.42820.04000.036*
C40.34857 (17)0.4102 (2)0.0391 (4)0.0289 (7)
H4A0.37560.45040.01360.043*
H4B0.30290.42860.03440.043*
H4C0.36300.41040.13390.043*
C50.30700 (16)0.2586 (2)0.0301 (4)0.0322 (8)
H5A0.31960.20100.00290.048*
H5B0.30570.25830.12950.048*
H5C0.26380.27360.00540.048*
C60.32119 (17)0.2457 (3)0.2736 (4)0.0354 (8)
H6A0.29320.29080.23450.053*
H6B0.32440.25420.37190.053*
H6C0.30230.18850.25480.053*
C70.43937 (16)0.2002 (2)0.2769 (4)0.0306 (7)
H7A0.44670.22190.37020.037*
H7B0.48030.20840.22500.037*
C80.42283 (19)0.1043 (2)0.2822 (4)0.0373 (9)
H8A0.38450.09640.34210.045*
H8B0.45990.07300.32390.045*
C90.40794 (19)0.0629 (2)0.1454 (4)0.0391 (9)
H9A0.40750.00100.15630.047*
H9B0.36380.08100.11630.047*
N40.45421 (17)0.08554 (19)0.0396 (3)0.0390 (8)
C100.5176 (2)0.0427 (3)0.0700 (5)0.0482 (11)
H10A0.51130.02030.07500.072*
H10B0.53440.06390.15690.072*
H10C0.54900.05610.00210.072*
C110.4322 (2)0.0575 (3)0.0917 (4)0.0491 (11)
H11A0.42650.00570.09130.074*
H11B0.46450.07350.16040.074*
H11C0.39050.08540.11280.074*
B10.12881 (15)0.2061 (2)0.5818 (3)0.0159 (6)
C120.16933 (14)0.12719 (18)0.6527 (3)0.0173 (6)
C130.14514 (15)0.07030 (18)0.7512 (3)0.0209 (6)
H130.10100.07620.77870.025*
C140.18295 (16)0.0051 (2)0.8113 (3)0.0270 (7)
H140.16420.03230.87730.032*
C150.24774 (17)0.0048 (2)0.7742 (4)0.0324 (8)
H150.27360.04920.81360.039*
C160.27425 (17)0.0512 (2)0.6787 (4)0.0328 (8)
H160.31870.04530.65290.039*
C170.23622 (14)0.1154 (2)0.6208 (3)0.0246 (7)
H170.25580.15340.55680.029*
C180.04911 (14)0.19818 (17)0.6052 (3)0.0177 (6)
C190.00849 (14)0.26899 (19)0.6360 (3)0.0220 (6)
H190.02780.32420.65090.026*
C200.05945 (15)0.2613 (2)0.6456 (4)0.0271 (7)
H200.08510.31080.66680.033*
C210.08949 (15)0.1820 (2)0.6244 (4)0.0272 (7)
H210.13550.17660.63120.033*
C220.05143 (15)0.1109 (2)0.5932 (3)0.0254 (7)
H220.07130.05600.57830.031*
C230.01633 (14)0.11928 (19)0.5835 (3)0.0212 (6)
H230.04130.06940.56120.025*
C240.15858 (13)0.29536 (17)0.6477 (3)0.0158 (6)
C250.20552 (14)0.34705 (18)0.5837 (3)0.0213 (6)
H250.21960.33120.49530.026*
C260.23223 (14)0.4200 (2)0.6432 (3)0.0242 (7)
H260.26330.45350.59460.029*
C270.21415 (14)0.44452 (19)0.7727 (3)0.0233 (6)
H270.23200.49510.81320.028*
C280.16949 (14)0.39393 (19)0.8422 (3)0.0211 (6)
H280.15730.40900.93220.025*
C290.14233 (14)0.32109 (18)0.7808 (3)0.0192 (6)
H290.11170.28740.83040.023*
C300.13792 (14)0.20459 (18)0.4149 (3)0.0167 (6)
C310.15854 (14)0.13116 (19)0.3429 (3)0.0186 (6)
H310.16960.08040.39250.022*
C320.16356 (15)0.1292 (2)0.2026 (3)0.0237 (7)
H320.17670.07720.15860.028*
C330.14963 (14)0.2019 (2)0.1260 (3)0.0241 (7)
H330.15410.20130.03010.029*
C340.12899 (16)0.2758 (2)0.1937 (3)0.0274 (7)
H340.11880.32650.14310.033*
C350.12292 (15)0.27719 (19)0.3343 (3)0.0234 (7)
H350.10820.32880.37720.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0173 (13)0.0200 (13)0.0165 (14)0.0010 (11)0.0008 (11)0.0009 (12)
N10.0237 (13)0.0283 (13)0.0213 (13)0.0020 (11)0.0011 (11)0.0011 (12)
N20.0239 (14)0.0282 (13)0.0283 (15)0.0020 (11)0.0049 (12)0.0045 (12)
N30.0209 (13)0.0362 (15)0.0288 (14)0.0002 (12)0.0016 (12)0.0066 (13)
C20.0236 (16)0.0304 (17)0.0252 (17)0.0002 (14)0.0095 (13)0.0042 (14)
C30.0219 (15)0.0306 (16)0.0194 (15)0.0012 (13)0.0012 (12)0.0044 (13)
C40.0316 (17)0.0265 (16)0.0286 (17)0.0045 (14)0.0103 (14)0.0040 (14)
C50.0233 (16)0.0365 (18)0.0370 (19)0.0069 (15)0.0103 (15)0.0019 (16)
C60.0273 (17)0.051 (2)0.0280 (17)0.0036 (16)0.0070 (15)0.0051 (18)
C70.0288 (17)0.0380 (18)0.0250 (16)0.0079 (14)0.0015 (14)0.0122 (16)
C80.0383 (19)0.0395 (19)0.034 (2)0.0062 (16)0.0064 (17)0.0152 (17)
C90.042 (2)0.0292 (17)0.046 (2)0.0023 (16)0.0041 (19)0.0113 (18)
N40.054 (2)0.0276 (15)0.0353 (17)0.0149 (15)0.0125 (15)0.0025 (13)
C100.042 (2)0.054 (2)0.049 (3)0.015 (2)0.0106 (19)0.006 (2)
C110.062 (3)0.039 (2)0.045 (3)0.001 (2)0.002 (2)0.003 (2)
B10.0161 (14)0.0141 (14)0.0176 (16)0.0001 (12)0.0008 (12)0.0019 (13)
C120.0186 (14)0.0176 (13)0.0158 (14)0.0030 (11)0.0029 (11)0.0021 (11)
C130.0238 (15)0.0208 (14)0.0182 (16)0.0007 (12)0.0009 (12)0.0040 (12)
C140.0327 (17)0.0276 (15)0.0206 (16)0.0004 (14)0.0018 (13)0.0096 (13)
C150.0340 (18)0.0330 (17)0.0302 (17)0.0073 (15)0.0065 (15)0.0133 (16)
C160.0231 (16)0.0389 (19)0.036 (2)0.0029 (15)0.0030 (14)0.0091 (16)
C170.0180 (14)0.0280 (15)0.0277 (17)0.0012 (12)0.0050 (13)0.0097 (14)
C180.0195 (13)0.0180 (13)0.0156 (14)0.0008 (11)0.0025 (12)0.0024 (11)
C190.0184 (14)0.0198 (13)0.0278 (16)0.0014 (11)0.0039 (13)0.0023 (13)
C200.0187 (15)0.0292 (16)0.0335 (18)0.0067 (13)0.0038 (14)0.0030 (15)
C210.0155 (13)0.0408 (17)0.0254 (17)0.0022 (13)0.0013 (13)0.0053 (15)
C220.0241 (15)0.0283 (15)0.0239 (16)0.0128 (13)0.0002 (13)0.0014 (14)
C230.0196 (14)0.0205 (14)0.0236 (16)0.0039 (12)0.0026 (12)0.0019 (12)
C240.0116 (12)0.0169 (12)0.0188 (14)0.0024 (10)0.0028 (11)0.0037 (11)
C250.0185 (14)0.0218 (14)0.0235 (16)0.0036 (12)0.0024 (12)0.0070 (13)
C260.0182 (14)0.0263 (15)0.0282 (17)0.0060 (12)0.0015 (13)0.0022 (14)
C270.0192 (14)0.0234 (14)0.0273 (16)0.0023 (12)0.0078 (14)0.0056 (14)
C280.0226 (14)0.0260 (15)0.0148 (14)0.0019 (12)0.0040 (12)0.0027 (12)
C290.0162 (13)0.0213 (13)0.0202 (15)0.0004 (11)0.0023 (12)0.0031 (13)
C300.0140 (13)0.0167 (13)0.0193 (14)0.0050 (11)0.0014 (11)0.0029 (12)
C310.0187 (14)0.0148 (13)0.0223 (15)0.0010 (11)0.0001 (12)0.0021 (12)
C320.0193 (15)0.0291 (16)0.0228 (16)0.0027 (13)0.0013 (12)0.0035 (14)
C330.0171 (13)0.0365 (17)0.0188 (15)0.0040 (12)0.0024 (12)0.0027 (14)
C340.0269 (17)0.0299 (17)0.0254 (17)0.0030 (14)0.0051 (13)0.0138 (14)
C350.0286 (16)0.0162 (14)0.0253 (17)0.0045 (13)0.0024 (13)0.0040 (13)
Geometric parameters (Å, º) top
C1—N31.333 (4)C12—C131.400 (4)
C1—N21.334 (4)C12—C171.419 (4)
C1—N11.351 (4)C13—C141.401 (4)
N1—C31.459 (4)C13—H130.9500
N1—C21.466 (4)C14—C151.386 (5)
N2—C41.456 (4)C14—H140.9500
N2—C51.470 (4)C15—C161.387 (5)
N3—C61.474 (4)C15—H150.9500
N3—C71.478 (4)C16—C171.384 (4)
C2—H2A0.9800C16—H160.9500
C2—H2B0.9800C17—H170.9500
C2—H2C0.9800C18—C231.406 (4)
C3—H3A0.9800C18—C191.406 (4)
C3—H3B0.9800C19—C201.402 (4)
C3—H3C0.9800C19—H190.9500
C4—H4A0.9800C20—C211.385 (5)
C4—H4B0.9800C20—H200.9500
C4—H4C0.9800C21—C221.380 (5)
C5—H5A0.9800C21—H210.9500
C5—H5B0.9800C22—C231.399 (4)
C5—H5C0.9800C22—H220.9500
C6—H6A0.9800C23—H230.9500
C6—H6B0.9800C24—C251.400 (4)
C6—H6C0.9800C24—C291.410 (4)
C7—C81.518 (5)C25—C261.381 (4)
C7—H7A0.9900C25—H250.9500
C7—H7B0.9900C26—C271.382 (5)
C8—C91.523 (6)C26—H260.9500
C8—H8A0.9900C27—C281.384 (4)
C8—H8B0.9900C27—H270.9500
C9—N41.453 (5)C28—C291.392 (4)
C9—H9A0.9900C28—H280.9500
C9—H9B0.9900C29—H290.9500
N4—C111.437 (6)C30—C311.401 (4)
N4—C101.489 (6)C30—C351.407 (4)
C10—H10A0.9800C31—C321.387 (4)
C10—H10B0.9800C31—H310.9500
C10—H10C0.9800C32—C331.382 (5)
C11—H11A0.9800C32—H320.9500
C11—H11B0.9800C33—C341.386 (5)
C11—H11C0.9800C33—H330.9500
B1—C121.630 (4)C34—C351.392 (5)
B1—C241.640 (4)C34—H340.9500
B1—C181.655 (4)C35—H350.9500
B1—C301.656 (4)
N3—C1—N2121.2 (3)C24—B1—C18112.0 (2)
N3—C1—N1120.0 (3)C12—B1—C30111.0 (2)
N2—C1—N1118.8 (3)C24—B1—C30111.3 (2)
C1—N1—C3121.5 (3)C18—B1—C30104.4 (2)
C1—N1—C2120.4 (3)C13—C12—C17114.6 (3)
C3—N1—C2118.1 (2)C13—C12—B1125.7 (3)
C1—N2—C4120.1 (3)C17—C12—B1119.6 (2)
C1—N2—C5123.1 (3)C12—C13—C14123.2 (3)
C4—N2—C5116.6 (3)C12—C13—H13118.4
C1—N3—C6120.8 (3)C14—C13—H13118.4
C1—N3—C7121.4 (3)C15—C14—C13119.8 (3)
C6—N3—C7117.5 (3)C15—C14—H14120.1
N1—C2—H2A109.5C13—C14—H14120.1
N1—C2—H2B109.5C14—C15—C16119.1 (3)
H2A—C2—H2B109.5C14—C15—H15120.5
N1—C2—H2C109.5C16—C15—H15120.5
H2A—C2—H2C109.5C17—C16—C15120.3 (3)
H2B—C2—H2C109.5C17—C16—H16119.9
N1—C3—H3A109.5C15—C16—H16119.9
N1—C3—H3B109.5C16—C17—C12123.0 (3)
H3A—C3—H3B109.5C16—C17—H17118.5
N1—C3—H3C109.5C12—C17—H17118.5
H3A—C3—H3C109.5C23—C18—C19114.9 (3)
H3B—C3—H3C109.5C23—C18—B1121.0 (2)
N2—C4—H4A109.5C19—C18—B1123.9 (2)
N2—C4—H4B109.5C20—C19—C18122.5 (3)
H4A—C4—H4B109.5C20—C19—H19118.7
N2—C4—H4C109.5C18—C19—H19118.7
H4A—C4—H4C109.5C21—C20—C19120.5 (3)
H4B—C4—H4C109.5C21—C20—H20119.8
N2—C5—H5A109.5C19—C20—H20119.8
N2—C5—H5B109.5C22—C21—C20118.9 (3)
H5A—C5—H5B109.5C22—C21—H21120.6
N2—C5—H5C109.5C20—C21—H21120.6
H5A—C5—H5C109.5C21—C22—C23120.2 (3)
H5B—C5—H5C109.5C21—C22—H22119.9
N3—C6—H6A109.5C23—C22—H22119.9
N3—C6—H6B109.5C22—C23—C18123.0 (3)
H6A—C6—H6B109.5C22—C23—H23118.5
N3—C6—H6C109.5C18—C23—H23118.5
H6A—C6—H6C109.5C25—C24—C29115.0 (3)
H6B—C6—H6C109.5C25—C24—B1123.7 (3)
N3—C7—C8111.6 (3)C29—C24—B1121.1 (2)
N3—C7—H7A109.3C26—C25—C24123.0 (3)
C8—C7—H7A109.3C26—C25—H25118.5
N3—C7—H7B109.3C24—C25—H25118.5
C8—C7—H7B109.3C25—C26—C27120.6 (3)
H7A—C7—H7B108.0C25—C26—H26119.7
C7—C8—C9115.0 (3)C27—C26—H26119.7
C7—C8—H8A108.5C26—C27—C28118.7 (3)
C9—C8—H8A108.5C26—C27—H27120.6
C7—C8—H8B108.5C28—C27—H27120.6
C9—C8—H8B108.5C27—C28—C29120.3 (3)
H8A—C8—H8B107.5C27—C28—H28119.9
N4—C9—C8113.8 (3)C29—C28—H28119.9
N4—C9—H9A108.8C28—C29—C24122.5 (3)
C8—C9—H9A108.8C28—C29—H29118.8
N4—C9—H9B108.8C24—C29—H29118.8
C8—C9—H9B108.8C31—C30—C35115.0 (3)
H9A—C9—H9B107.7C31—C30—B1123.3 (3)
C11—N4—C9111.6 (3)C35—C30—B1121.7 (3)
C11—N4—C10108.8 (3)C32—C31—C30123.0 (3)
C9—N4—C10108.6 (3)C32—C31—H31118.5
N4—C10—H10A109.5C30—C31—H31118.5
N4—C10—H10B109.5C33—C32—C31120.7 (3)
H10A—C10—H10B109.5C33—C32—H32119.6
N4—C10—H10C109.5C31—C32—H32119.6
H10A—C10—H10C109.5C32—C33—C34117.9 (3)
H10B—C10—H10C109.5C32—C33—H33121.1
N4—C11—H11A109.5C34—C33—H33121.1
N4—C11—H11B109.5C33—C34—C35121.2 (3)
H11A—C11—H11B109.5C33—C34—H34119.4
N4—C11—H11C109.5C35—C34—H34119.4
H11A—C11—H11C109.5C34—C35—C30122.1 (3)
H11B—C11—H11C109.5C34—C35—H35119.0
C12—B1—C24105.4 (2)C30—C35—H35119.0
C12—B1—C18112.9 (2)
N3—C1—N1—C3143.5 (3)C30—B1—C18—C19101.0 (3)
N2—C1—N1—C336.6 (4)C23—C18—C19—C200.6 (5)
N3—C1—N1—C238.2 (4)B1—C18—C19—C20175.3 (3)
N2—C1—N1—C2141.7 (3)C18—C19—C20—C210.1 (5)
N3—C1—N2—C4143.5 (3)C19—C20—C21—C220.2 (5)
N1—C1—N2—C436.4 (4)C20—C21—C22—C230.0 (5)
N3—C1—N2—C531.1 (5)C21—C22—C23—C180.5 (5)
N1—C1—N2—C5149.0 (3)C19—C18—C23—C220.8 (5)
N2—C1—N3—C637.1 (5)B1—C18—C23—C22175.6 (3)
N1—C1—N3—C6142.8 (3)C12—B1—C24—C2598.6 (3)
N2—C1—N3—C7149.9 (3)C18—B1—C24—C25138.3 (3)
N1—C1—N3—C730.2 (4)C30—B1—C24—C2521.8 (4)
C1—N3—C7—C8129.3 (3)C12—B1—C24—C2975.6 (3)
C6—N3—C7—C857.5 (4)C18—B1—C24—C2947.5 (3)
N3—C7—C8—C956.9 (4)C30—B1—C24—C29164.0 (2)
C7—C8—C9—N446.0 (4)C29—C24—C25—C262.6 (4)
C8—C9—N4—C11170.0 (3)B1—C24—C25—C26177.0 (3)
C8—C9—N4—C1070.0 (4)C24—C25—C26—C271.3 (5)
C24—B1—C12—C13106.9 (3)C25—C26—C27—C280.9 (5)
C18—B1—C12—C1315.7 (4)C26—C27—C28—C291.6 (4)
C30—B1—C12—C13132.5 (3)C27—C28—C29—C240.2 (4)
C24—B1—C12—C1769.3 (3)C25—C24—C29—C281.8 (4)
C18—B1—C12—C17168.2 (3)B1—C24—C29—C28176.5 (3)
C30—B1—C12—C1751.4 (4)C12—B1—C30—C3119.6 (4)
C17—C12—C13—C141.8 (4)C24—B1—C30—C31136.7 (3)
B1—C12—C13—C14178.2 (3)C18—B1—C30—C31102.3 (3)
C12—C13—C14—C150.5 (5)C12—B1—C30—C35162.8 (3)
C13—C14—C15—C160.7 (5)C24—B1—C30—C3545.7 (4)
C14—C15—C16—C170.5 (5)C18—B1—C30—C3575.3 (3)
C15—C16—C17—C121.0 (5)C35—C30—C31—C320.4 (4)
C13—C12—C17—C162.1 (5)B1—C30—C31—C32177.3 (3)
B1—C12—C17—C16178.7 (3)C30—C31—C32—C331.6 (5)
C12—B1—C18—C2347.2 (4)C31—C32—C33—C341.6 (5)
C24—B1—C18—C23166.0 (3)C32—C33—C34—C350.5 (5)
C30—B1—C18—C2373.4 (3)C33—C34—C35—C300.7 (5)
C12—B1—C18—C19138.4 (3)C31—C30—C35—C340.7 (4)
C24—B1—C18—C1919.6 (4)B1—C30—C35—C34178.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C30–C35, C18–C23 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2C···Cg1i0.982.483.425 (1)162
C7—H7A···Cg2ii0.992.843.821 (1)170
C3—H3A···Cg2i0.982.893.680 (1)138
C9—H9A···Cg3iii0.992.823.610 (1)136
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z1; (iii) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H27N4+·C24H20B
Mr534.58
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)20.5074 (7), 15.4134 (5), 9.8568 (3)
V3)3115.62 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.18 × 0.13
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7338, 4035, 3181
Rint0.049
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.137, 1.05
No. of reflections4035
No. of parameters368
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.20

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C30–C35, C18–C23 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2C···Cg1i0.982.483.425 (1)162
C7—H7A···Cg2ii0.992.843.821 (1)170
C3—H3A···Cg2i0.982.893.680 (1)138
C9—H9A···Cg3iii0.992.823.610 (1)136
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z1; (iii) x+1/2, y1/2, z1/2.
 

Acknowledgements

The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for collecting the crystal data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. (2013). Acta Cryst. E69, o337–o338.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685–698.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds