organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl­sulfinyl-2-(3-fluoro­phen­yl)-5-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 3 June 2013; accepted 7 June 2013; online 12 June 2013)

In the title compound, C22H17FO2S, the dihedral angles between the mean plane [r.m.s. deviation = 0.005 (1) Å] of the benzo­furan ring system and the pendant 3-fluoro­phenyl and phenyl rings are 23.92 (5) and 32.44 (5)°, respectively. In the crystal, mol­ecules are linked by two weak C—H⋯O(sulfin­yl) hydrogen bonds and a C—H⋯π inter­action, forming a sheet, which lies in the ab plane. A ππ inter­action between the benzene and furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.976 (2) Å] links the mol­ecules into inversion dimers and connects adjacent sheets, resulting in a three-dimensional network.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2006[Choi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4480-o4481.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1167.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17FO2S

  • Mr = 364.42

  • Monoclinic, P 21 /n

  • a = 12.6447 (3) Å

  • b = 7.1680 (2) Å

  • c = 19.2382 (5) Å

  • β = 100.592 (2)°

  • V = 1713.99 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.38 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.684, Tmax = 0.746

  • 16390 measured reflections

  • 4269 independent reflections

  • 3406 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.128

  • S = 1.04

  • 4269 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.49 3.166 (3) 128
C21—H21A⋯O2ii 0.99 2.58 3.367 (3) 136
C14—H14⋯Cg1iii 0.95 2.66 3.466 (3) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-phenyl-1-benzofuran derivatives containing 2-methyl-3-methylsulfinyl (Choi et al., 2006) and [2-(4-fluorophenyl)-3-methylsulfinyl] (Choi et al., 2010) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran ring system and the pendant 3-fluorophenyl and phenyl rings are 23.92 (5) and 32.44 (5)°, respectively. In the crystal structure (Fig. 2), molecules are connected by the C12—H12···O2i [symmetry code: (i) -x+3/2,y+1/2,-z+3/2] weak hydrogen bond and the C14—H14···Cg1iii [symmetry code: (iii) -x+3/2,y-1/2,-z+3/2], C—H···π interactions (Table 1), (Cg1 is the centroid of the C9–C14 phenyl ring). This links the molecules into a chain of glide related molecules which runs parallel to the b-axis. The chains are linked to form a two dimensional sheet by the C21–H21A···O2ii [symmetry code: (ii) -x+1/2,y+1/2,-z+3/2] weak hydrogen bond (Table 1). This sheet lies in the ab-plane. In the crystal packing (Fig. 3), a ππ interaction between the benzene and furan rings of neighbouring molecules into inversion dimers, with a Cg2···Cg3v [Symmetry code: (v) -x+1,-y,-z+1]distance of 3.976 (2) Å and interplanar distance of 3.515 (2) Å resulting in a slippage of 1.858 (2) Å (Cg2 and Cg3 are the centroids of the C2-C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively), links adjacent sheets into a three-dimensional network.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2006, 2010).

Experimental top

3-Chloroperoxybenzoic acid (77%, 202 mg, 0.9 mmol) was added in small portions to a stirred solution of 3-ethylsulfanyl-2-(3-fluorophenyl)-5-phenyl-1-benzofuran (278 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 62%, m.p. 445–446 K; Rf = 0.51 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 0.99 Å for methylene, 0.98Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our ongoing study of 5-phenyl-1-benzofuran derivatives containing 2-methyl-3-methylsulfinyl (Choi et al., 2006) and [2-(4-fluorophenyl)-3-methylsulfinyl] (Choi et al., 2010) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran ring system and the pendant 3-fluorophenyl and phenyl rings are 23.92 (5) and 32.44 (5)°, respectively. In the crystal structure (Fig. 2), molecules are connected by the C12—H12···O2i [symmetry code: (i) -x+3/2,y+1/2,-z+3/2] weak hydrogen bond and the C14—H14···Cg1iii [symmetry code: (iii) -x+3/2,y-1/2,-z+3/2], C—H···π interactions (Table 1), (Cg1 is the centroid of the C9–C14 phenyl ring). This links the molecules into a chain of glide related molecules which runs parallel to the b-axis. The chains are linked to form a two dimensional sheet by the C21–H21A···O2ii [symmetry code: (ii) -x+1/2,y+1/2,-z+3/2] weak hydrogen bond (Table 1). This sheet lies in the ab-plane. In the crystal packing (Fig. 3), a ππ interaction between the benzene and furan rings of neighbouring molecules into inversion dimers, with a Cg2···Cg3v [Symmetry code: (v) -x+1,-y,-z+1]distance of 3.976 (2) Å and interplanar distance of 3.515 (2) Å resulting in a slippage of 1.858 (2) Å (Cg2 and Cg3 are the centroids of the C2-C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively), links adjacent sheets into a three-dimensional network.

For background information and the crystal structures of related compounds, see: Choi et al. (2006, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 3/2, y + 1/2, - z + 3/2; (ii) - x + 1/2, y + 1/2, - z + 3/2; (iii) - x + 3/2, y -1/2, - z + 3/2; (iv) - x + 1/2, y - 1/2, - z + 3/2.]
[Figure 3] Fig. 3. A view of the ππ interactions (dotted lines) in the crystal structure of the title compound. All H atoms were omitted for clarity. [Symmetry codes: (v) - x + 1, - y, - z + 1.]
3-Ethylsulfinyl-2-(3-fluorophenyl)-5-phenyl-1-benzofuran top
Crystal data top
C22H17FO2SF(000) = 760
Mr = 364.42Dx = 1.412 Mg m3
Monoclinic, P21/nMelting point: 445 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.6447 (3) ÅCell parameters from 4233 reflections
b = 7.1680 (2) Åθ = 2.2–28.0°
c = 19.2382 (5) ŵ = 0.21 mm1
β = 100.592 (2)°T = 173 K
V = 1713.99 (8) Å3Block, colourless
Z = 40.38 × 0.25 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4269 independent reflections
Radiation source: rotating anode3406 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.037
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.8°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 99
Tmin = 0.684, Tmax = 0.746l = 2525
16390 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.128H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0567P)2 + 1.1638P]
where P = (Fo2 + 2Fc2)/3
4269 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C22H17FO2SV = 1713.99 (8) Å3
Mr = 364.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6447 (3) ŵ = 0.21 mm1
b = 7.1680 (2) ÅT = 173 K
c = 19.2382 (5) Å0.38 × 0.25 × 0.18 mm
β = 100.592 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4269 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3406 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.746Rint = 0.037
16390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.85 e Å3
4269 reflectionsΔρmin = 0.41 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28388 (4)0.20679 (7)0.65076 (2)0.02778 (14)
F10.08545 (10)0.2673 (2)0.49260 (7)0.0538 (4)
O10.37450 (10)0.22928 (19)0.46484 (6)0.0258 (3)
O20.34178 (13)0.0589 (2)0.69642 (8)0.0450 (4)
C10.34858 (14)0.2327 (2)0.57766 (9)0.0218 (3)
C20.46328 (14)0.2461 (2)0.57892 (9)0.0216 (3)
C30.55575 (14)0.2587 (2)0.63076 (9)0.0224 (3)
H30.55090.25850.67950.027*
C40.65569 (14)0.2718 (2)0.61010 (9)0.0221 (3)
C50.66128 (15)0.2675 (3)0.53742 (9)0.0267 (4)
H50.72970.27520.52390.032*
C60.57064 (15)0.2525 (3)0.48550 (9)0.0277 (4)
H60.57510.24840.43680.033*
C70.47340 (14)0.2437 (2)0.50788 (9)0.0231 (4)
C80.29968 (14)0.2219 (2)0.50834 (9)0.0234 (4)
C90.75598 (14)0.2881 (2)0.66393 (9)0.0221 (3)
C100.84465 (15)0.3880 (3)0.64995 (9)0.0265 (4)
H100.84110.44570.60510.032*
C110.93742 (15)0.4040 (3)0.70038 (10)0.0301 (4)
H110.99680.47280.68990.036*
C120.94449 (16)0.3206 (3)0.76596 (10)0.0304 (4)
H121.00820.33250.80060.037*
C130.85745 (16)0.2192 (3)0.78057 (10)0.0278 (4)
H130.86170.16050.82530.033*
C140.76453 (15)0.2037 (3)0.73008 (9)0.0249 (4)
H140.70550.13420.74070.030*
C150.18887 (15)0.1985 (2)0.47093 (9)0.0243 (4)
C160.10093 (16)0.2510 (3)0.50082 (10)0.0309 (4)
H160.11070.30890.54600.037*
C170.00028 (16)0.2166 (3)0.46299 (11)0.0339 (4)
C180.01985 (16)0.1354 (3)0.39756 (11)0.0353 (4)
H180.09130.11220.37360.042*
C190.06749 (16)0.0883 (3)0.36737 (10)0.0341 (4)
H190.05630.03330.32170.041*
C200.17108 (15)0.1205 (3)0.40320 (9)0.0284 (4)
H200.23060.08950.38160.034*
C210.32241 (17)0.4276 (3)0.69310 (10)0.0336 (4)
H21A0.30680.42610.74170.040*
H21B0.40080.44620.69650.040*
C220.26270 (18)0.5865 (3)0.65229 (12)0.0397 (5)
H22A0.27340.58200.60310.060*
H22B0.29000.70520.67370.060*
H22C0.18580.57580.65350.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0303 (3)0.0299 (2)0.0262 (2)0.00221 (19)0.01334 (18)0.00413 (18)
F10.0266 (7)0.0891 (12)0.0475 (8)0.0094 (7)0.0112 (6)0.0037 (7)
O10.0228 (6)0.0364 (7)0.0189 (6)0.0008 (5)0.0053 (5)0.0013 (5)
O20.0521 (10)0.0453 (9)0.0417 (8)0.0148 (8)0.0195 (7)0.0176 (7)
C10.0214 (8)0.0244 (8)0.0203 (7)0.0006 (7)0.0061 (6)0.0004 (6)
C20.0231 (9)0.0229 (8)0.0202 (7)0.0005 (7)0.0079 (6)0.0005 (6)
C30.0255 (9)0.0243 (8)0.0183 (7)0.0006 (7)0.0065 (6)0.0003 (6)
C40.0233 (9)0.0220 (8)0.0216 (8)0.0017 (7)0.0052 (7)0.0002 (6)
C50.0235 (9)0.0345 (10)0.0242 (8)0.0002 (7)0.0101 (7)0.0018 (7)
C60.0273 (9)0.0387 (10)0.0187 (8)0.0007 (8)0.0088 (7)0.0005 (7)
C70.0231 (9)0.0273 (9)0.0188 (8)0.0001 (7)0.0039 (6)0.0008 (6)
C80.0243 (9)0.0238 (8)0.0235 (8)0.0016 (7)0.0082 (7)0.0002 (6)
C90.0235 (8)0.0217 (8)0.0220 (8)0.0012 (7)0.0067 (6)0.0022 (6)
C100.0283 (9)0.0270 (9)0.0256 (8)0.0001 (7)0.0091 (7)0.0016 (7)
C110.0250 (9)0.0299 (9)0.0365 (10)0.0043 (8)0.0085 (8)0.0018 (8)
C120.0260 (9)0.0324 (10)0.0310 (9)0.0007 (8)0.0002 (7)0.0042 (8)
C130.0302 (10)0.0284 (9)0.0243 (8)0.0018 (8)0.0034 (7)0.0009 (7)
C140.0255 (9)0.0255 (9)0.0243 (8)0.0015 (7)0.0058 (7)0.0002 (7)
C150.0253 (9)0.0227 (8)0.0245 (8)0.0010 (7)0.0038 (7)0.0018 (7)
C160.0269 (10)0.0389 (11)0.0268 (9)0.0027 (8)0.0043 (7)0.0007 (8)
C170.0244 (9)0.0425 (11)0.0356 (10)0.0052 (8)0.0076 (8)0.0047 (9)
C180.0269 (10)0.0356 (11)0.0393 (10)0.0013 (8)0.0044 (8)0.0015 (9)
C190.0343 (11)0.0340 (10)0.0305 (9)0.0032 (8)0.0033 (8)0.0045 (8)
C200.0291 (10)0.0288 (9)0.0266 (8)0.0036 (8)0.0033 (7)0.0026 (7)
C210.0339 (11)0.0419 (11)0.0260 (9)0.0044 (9)0.0083 (8)0.0070 (8)
C220.0455 (13)0.0325 (11)0.0445 (12)0.0029 (9)0.0172 (10)0.0007 (9)
Geometric parameters (Å, º) top
S1—O21.4817 (15)C11—C121.384 (3)
S1—C11.7620 (17)C11—H110.9500
S1—C211.805 (2)C12—C131.390 (3)
F1—C171.357 (2)C12—H120.9500
O1—C71.371 (2)C13—C141.385 (3)
O1—C81.375 (2)C13—H130.9500
C1—C81.365 (2)C14—H140.9500
C1—C21.449 (2)C15—C161.394 (3)
C2—C31.393 (2)C15—C201.397 (2)
C2—C71.396 (2)C16—C171.373 (3)
C3—C41.396 (2)C16—H160.9500
C3—H30.9500C17—C181.368 (3)
C4—C51.413 (2)C18—C191.381 (3)
C4—C91.487 (2)C18—H180.9500
C5—C61.379 (3)C19—C201.383 (3)
C5—H50.9500C19—H190.9500
C6—C71.377 (2)C20—H200.9500
C6—H60.9500C21—C221.506 (3)
C8—C151.462 (2)C21—H21A0.9900
C9—C141.395 (2)C21—H21B0.9900
C9—C101.397 (2)C22—H22A0.9800
C10—C111.383 (3)C22—H22B0.9800
C10—H100.9500C22—H22C0.9800
O2—S1—C1107.30 (8)C11—C12—H12120.4
O2—S1—C21107.26 (10)C13—C12—H12120.4
C1—S1—C2198.12 (9)C14—C13—C12120.11 (17)
C7—O1—C8106.78 (13)C14—C13—H13119.9
C8—C1—C2107.00 (15)C12—C13—H13119.9
C8—C1—S1125.46 (14)C13—C14—C9121.22 (17)
C2—C1—S1127.14 (13)C13—C14—H14119.4
C3—C2—C7119.06 (16)C9—C14—H14119.4
C3—C2—C1136.21 (15)C16—C15—C20119.25 (17)
C7—C2—C1104.74 (15)C16—C15—C8122.05 (16)
C2—C3—C4119.01 (15)C20—C15—C8118.70 (16)
C2—C3—H3120.5C17—C16—C15117.98 (18)
C4—C3—H3120.5C17—C16—H16121.0
C3—C4—C5119.53 (16)C15—C16—H16121.0
C3—C4—C9120.51 (15)F1—C17—C18118.49 (18)
C5—C4—C9119.96 (16)F1—C17—C16117.62 (19)
C6—C5—C4122.15 (17)C18—C17—C16123.88 (19)
C6—C5—H5118.9C17—C18—C19117.90 (18)
C4—C5—H5118.9C17—C18—H18121.1
C7—C6—C5116.63 (16)C19—C18—H18121.1
C7—C6—H6121.7C18—C19—C20120.46 (18)
C5—C6—H6121.7C18—C19—H19119.8
O1—C7—C6125.62 (15)C20—C19—H19119.8
O1—C7—C2110.77 (15)C19—C20—C15120.47 (18)
C6—C7—C2123.60 (16)C19—C20—H20119.8
C1—C8—O1110.71 (15)C15—C20—H20119.8
C1—C8—C15135.10 (16)C22—C21—S1111.11 (14)
O1—C8—C15114.15 (14)C22—C21—H21A109.4
C14—C9—C10117.87 (16)S1—C21—H21A109.4
C14—C9—C4120.94 (16)C22—C21—H21B109.4
C10—C9—C4121.19 (15)S1—C21—H21B109.4
C11—C10—C9120.98 (16)H21A—C21—H21B108.0
C11—C10—H10119.5C21—C22—H22A109.5
C9—C10—H10119.5C21—C22—H22B109.5
C10—C11—C12120.53 (17)H22A—C22—H22B109.5
C10—C11—H11119.7C21—C22—H22C109.5
C12—C11—H11119.7H22A—C22—H22C109.5
C11—C12—C13119.29 (18)H22B—C22—H22C109.5
O2—S1—C1—C8125.48 (17)C3—C4—C9—C1431.9 (2)
C21—S1—C1—C8123.52 (17)C5—C4—C9—C14147.46 (18)
O2—S1—C1—C246.25 (18)C3—C4—C9—C10148.25 (17)
C21—S1—C1—C264.74 (17)C5—C4—C9—C1032.4 (2)
C8—C1—C2—C3179.2 (2)C14—C9—C10—C110.6 (3)
S1—C1—C2—C36.2 (3)C4—C9—C10—C11179.48 (16)
C8—C1—C2—C70.57 (19)C9—C10—C11—C120.2 (3)
S1—C1—C2—C7173.54 (14)C10—C11—C12—C130.4 (3)
C7—C2—C3—C41.0 (2)C11—C12—C13—C140.6 (3)
C1—C2—C3—C4179.22 (19)C12—C13—C14—C90.1 (3)
C2—C3—C4—C51.5 (3)C10—C9—C14—C130.5 (3)
C2—C3—C4—C9179.17 (15)C4—C9—C14—C13179.62 (16)
C3—C4—C5—C60.6 (3)C1—C8—C15—C1625.1 (3)
C9—C4—C5—C6179.99 (17)O1—C8—C15—C16157.38 (17)
C4—C5—C6—C70.6 (3)C1—C8—C15—C20154.7 (2)
C8—O1—C7—C6179.11 (18)O1—C8—C15—C2022.8 (2)
C8—O1—C7—C20.12 (19)C20—C15—C16—C172.5 (3)
C5—C6—C7—O1179.75 (17)C8—C15—C16—C17177.30 (18)
C5—C6—C7—C21.1 (3)C15—C16—C17—F1179.68 (18)
C3—C2—C7—O1179.53 (15)C15—C16—C17—C180.6 (3)
C1—C2—C7—O10.28 (19)F1—C17—C18—C19178.58 (19)
C3—C2—C7—C60.3 (3)C16—C17—C18—C191.1 (3)
C1—C2—C7—C6179.53 (18)C17—C18—C19—C200.9 (3)
C2—C1—C8—O10.7 (2)C18—C19—C20—C151.0 (3)
S1—C1—C8—O1173.79 (12)C16—C15—C20—C192.8 (3)
C2—C1—C8—C15176.92 (19)C8—C15—C20—C19177.05 (17)
S1—C1—C8—C153.8 (3)O2—S1—C21—C22176.95 (14)
C7—O1—C8—C10.5 (2)C1—S1—C21—C2272.02 (15)
C7—O1—C8—C15177.63 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.493.166 (3)128
C21—H21A···O2ii0.992.583.367 (3)136
C14—H14···Cg1iii0.952.663.466 (3)143
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H17FO2S
Mr364.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)12.6447 (3), 7.1680 (2), 19.2382 (5)
β (°) 100.592 (2)
V3)1713.99 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.38 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.684, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16390, 4269, 3406
Rint0.037
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.04
No. of reflections4269
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.493.166 (3)128
C21—H21A···O2ii0.992.583.367 (3)136
C14—H14···Cg1iii0.952.663.466 (3)143
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4480–o4481.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds