organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Naphthalene-1,8-di­amine–2-(pyrimidin-2-yl)-1H-perimidine (2/1)

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and bDipartimento di Agraria, Università degli Studi di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
*Correspondence e-mail: angela.tuzi@unina.it

(Received 12 June 2013; accepted 17 June 2013; online 22 June 2013)

In the title adduct, C15H10N4·2C10H10N2, the pyrimidine ring is nearly co-planar with the heteroatomic perimidine ring, as indicated dihedral angle between their mean planes of 3.21 (11)°. The di­aminona­phthalene mol­ecules are slightly twisted [dihedral angles = 4.2 (2) and 3.0 (2)°] because of the steric encumbrance of NH2 groups. The perimidine and di­aminona­phthalene mol­ecules are linked by N—H⋯N hydrogen bonds, forming an R44(12) graph-set motif across an inversion center. In the crystal, alternating layers of the perimidine and di­aminona­phthalene mol­ecules are formed along [100]. In the perimidine layer, mol­ecules are ππ stacked along the c-axis direction with an inter­plane separation of approximately 3.4 Å.

Related literature

For the coordination properties of perimidines, see: Morita et al. (2003[Morita, Y., Suzuki, S., Fukui, K., Nakazawa, S., Sato, K., Shiomi, D., Takui, T. & Nakasuji, K. (2003). Polyhedron, 39, 2215-2218.]); Cucciolito et al. (2013[Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013). Tetrahedron Lett. 54, 1503-1506.]). For structural data on perimidines, see: Foces-Foces et al. (1993[Foces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 305-312.]); Llamas-Saiz et al. (1995[Llamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalàn, J. & Carlos del Valle, J. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1389-1398.]); Filatova et al. (2000[Filatova, E. A., Borovlev, I. V., Pozharskii, A. F., Starikova, Z. A. & Vistorobskii, N. V. (2000). Mendeleev Commun. pp. 178-180.]); Murata et al. (2006[Murata, T., Morita, Y., Fukui, K., Tamaki, K., Yamochi, H., Saito, G. & Nakasuji, K. (2006). Bull. Chem. Soc. Jpn, 79, 894-913.]); Smellie et al. (2011[Smellie, I. A. S., Fromm, A. & Paton, R. M. (2011). Carbohydr. Res. 346, 43-49.]). For structural data on naphthalene-1,8-di­amine, see: Llamas-Saiz et al. (1991[Llamas-Saiz, A. L., Foces-Foces, C., Molina, P., Alajarin, M., Vidal, A., Claramunt, R. M. & Elguero, J. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1025-1031.]); Basaran et al. (1993[Basaran, R., Dou, S. & Weiss, A. (1993). Struct. Chem. 4, 219-233.]); Batsanov et al. (2001[Batsanov, A. S., Collings, J. C., Howard, J. A. K. & Marder, T. B. (2001). Acta Cryst. E57, o950-o952.]). For N-rich aromatic heterocycles in organic electronics and photonics, see: Goswami et al. (2010[Goswami, S., Sen, D. & Das, N. K. (2010). Org. Lett. 12, 856-859.]); Carella et al. (2012[Carella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, G. (2012). Dyes Pigments, 95, 116-125.]); Centore et al. (2012[Centore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 132083-2093.]). For a general survey of hydrogen bonding in crystals, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. New York: Oxford University Press Inc.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For hydrogen-bonding patterns in nitro­gen-containing heterocycles, see: Centore et al. (2013a[Centore, R., Piccialli, V. & Tuzi, A. (2013a). Acta Cryst. E69, o667-o668.],b[Centore, R., Piccialli, V. & Tuzi, A. (2013b). Acta Cryst. E69, o802-o803.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N4·2C10H10N2

  • Mr = 562.67

  • Monoclinic, P 21 /c

  • a = 17.083 (2) Å

  • b = 12.139 (3) Å

  • c = 13.597 (2) Å

  • β = 90.76 (1)°

  • V = 2819.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.50 × 0.45 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.992

  • 22722 measured reflections

  • 5184 independent reflections

  • 2799 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.142

  • S = 1.06

  • 5184 reflections

  • 415 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2Ai 0.86 (3) 2.30 (3) 3.077 (4) 151 (2)
N1A—H1C⋯N2ii 0.87 (3) 2.42 (3) 3.153 (4) 142 (3)
N2A—H2C⋯N2 0.92 (3) 2.27 (3) 3.092 (4) 149 (3)
N2A—H2D⋯N1A 0.87 (3) 2.27 (3) 2.753 (5) 115 (2)
N1B—H1F⋯N2B 0.98 (4) 2.12 (3) 2.710 (5) 117 (2)
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

During the studies on the coordination ability of perimidines containing four donor atoms (Cucciolito et al., 2013) we obtained the neutral 2-(pyrimidin-2-yl)-1H-perimidine-naphthalene-1,8-diamine (1/2) cocrystal. In view of its N-rich aromatic character, pyrimidinylperimidine can have interest also in organic electronics and photonics (Carella et al., 2012; Centore et al., 2012; Murata et al., 2006; Goswami et al., 2010).

Few structural data are found in the literature on neutral perimidines having one amino and one imino N atom at the heterocyclic mojety (Filatova et al., 2000; Foces-Foces et al., 1993; Llamas-Saiz et al., 1995; Murata et al., 2006; Smellie et al., 2011). Moreover, very few structural data on the naphthalene-1,8-diamine (DAN) ring system are found in the literature (Batsanov et al., 2001; Llamas-Saiz et al., 1991; Basaran et al., 1993). In particular, the title compound is the second example of a perimidine bearing a pyrimidine ring at C11 with the two N atoms in ortho position (Morita et al., 2003). In the title compound, one 2-(pyrimidin-2-yl)-1H-perimidine (PIM) molecule and two naphthalene-1,8-diamine (DAN-A and DAN-B) molecules are contained in the asymmetric unit (Fig.1). The aminic nature of N1 in PIM is clearly proven by location of the NH hydrogen atom in difference Fourier maps. The geometry at N1 is planar, as demonstrated by the free refinement of the attached hydrogen atom. The pyrimidine ring is nearly coplanar with the perimidine ring with a dihedral angle between their mean planes of 3.21 (11)°. In DAN-A and DAN-B molecules the geometric parameters are very similar to literature data of pure DAN (Llamas-Saiz et al., 1991; Basaran et al.,1993) and of octafluoronaphthalene-naphthalene-1,8-diamine co-crystal (Batsanov et al., 2001). As usually found, the molecule adopts a slightly twisted conformation due to the steric encumbrance of the two adjacent NH2 groups. The hydrogen atoms of NH2 groups, located in difference Fourier maps, confirm that two different orientations are adopted by the amine groups, with inward hydrogen atoms forced into intramolecular contacts. It is not clear if such kind of contacts, associated to a steric strain of the DAN molecule, can be considered as weak intermolecular hydrogen bonds or as constrain-due interactions. However, the refined positions of NH2 hydrogen atoms give a N–H···N geometry that falls in the range of weak hydrogen bonds [D(X···A) = 3.0–4.0 Å and θ(X–A···H) = 90–180° (Desiraju & Steiner, 1999)].

PIM and DAN-A molecules are involved in N–H···N hydrogen bonds (Fig.2) forming the R44(12) graph-set motif across an inversion center. The amine N1 atom acts as donor towards N2Ai (i = -x,-y,1 - z) and imine N2 atom acts as bifurcated acceptor from N1A and from N2Aii (ii = x, 1/2 - y, z - 1/2).

The DAN-B molecules are not involved in classic intermolecular hydrogen bonds, but only in weak CH···π and NH···π interactions (Fig.3) (N1B—H1E··· Cg1(C5A—C10A)[x, 1 + y, z] = 0.98 (4), 3.15 (4) Å, 151 (3)°; N2B—H2F···Cg2(C1B—C5B,C10B)[1 - x, -1/2 + y, 3/2 - z] = 0.91 (4), 3.35 (4) Å, 162 (3)°;C6B—H6B···Cg3(C1—C5,C10)[-x, 1/2 + y,3/2 - z] = 0.95, 3.632 Å, 141.8°).

In the crystal packing (Fig. 4) layers of PIM molecules are alternate to double layers of DAN-A and DAN-B molecules along [1 0 0] direction. In the perimidine layer molecules are π···π stacked along c with interplanar separation of approximately 3.4 Å.

Related literature top

For the coordination properties of perimidines, see: Morita et al. (2003); Cucciolito et al. (2013). For structural data on perimidines, see: Foces-Foces et al. (1993); Llamas-Saiz et al. (1995); Filatova et al. (2000); Murata et al. (2006); Smellie et al. (2011). For structural data on naphthalene-1,8-diamine, see: Llamas-Saiz et al. (1991); Basaran et al. (1993); Batsanov et al. (2001). For N-rich aromatic heterocycles in organic electronics and photonics, see: Goswami et al. (2010); Carella et al. (2012); Centore et al. (2012). For a general survey of hydrogen bonding in crystals, see: Desiraju & Steiner (1999); Steiner (2002). For hydrogen-bonding patterns in nitrogen-containing heterocycles, see: Centore et al. (2013a,b).

Experimental top

2-(pyrimidin-2-yl)-1H-perimidine was obtained from naphthalene-1,8-diamine and pyrimidine-2-carbonitrile, details on the synthesis will be reported in a forthcoming work. Block-shaped crystals of title compound were obtained by evaporation of an ethyl acetate/cyclohexane solution containing 2-(pyrimidin-2-yl)-1H-perimidine and naphthalene-1,8-diamine.

Refinement top

The NH hydrogen atoms were located in difference Fourier maps and refined with Uiso=1.2Ueq(N) of the carrier atom. All other H atoms were generated stereochemically and refined by the riding model with C–H=0.95 Å and Uiso(H)=1.2Ueq(C). Anti-bumping restraints were used in the last stage of the refinement.

Structure description top

During the studies on the coordination ability of perimidines containing four donor atoms (Cucciolito et al., 2013) we obtained the neutral 2-(pyrimidin-2-yl)-1H-perimidine-naphthalene-1,8-diamine (1/2) cocrystal. In view of its N-rich aromatic character, pyrimidinylperimidine can have interest also in organic electronics and photonics (Carella et al., 2012; Centore et al., 2012; Murata et al., 2006; Goswami et al., 2010).

Few structural data are found in the literature on neutral perimidines having one amino and one imino N atom at the heterocyclic mojety (Filatova et al., 2000; Foces-Foces et al., 1993; Llamas-Saiz et al., 1995; Murata et al., 2006; Smellie et al., 2011). Moreover, very few structural data on the naphthalene-1,8-diamine (DAN) ring system are found in the literature (Batsanov et al., 2001; Llamas-Saiz et al., 1991; Basaran et al., 1993). In particular, the title compound is the second example of a perimidine bearing a pyrimidine ring at C11 with the two N atoms in ortho position (Morita et al., 2003). In the title compound, one 2-(pyrimidin-2-yl)-1H-perimidine (PIM) molecule and two naphthalene-1,8-diamine (DAN-A and DAN-B) molecules are contained in the asymmetric unit (Fig.1). The aminic nature of N1 in PIM is clearly proven by location of the NH hydrogen atom in difference Fourier maps. The geometry at N1 is planar, as demonstrated by the free refinement of the attached hydrogen atom. The pyrimidine ring is nearly coplanar with the perimidine ring with a dihedral angle between their mean planes of 3.21 (11)°. In DAN-A and DAN-B molecules the geometric parameters are very similar to literature data of pure DAN (Llamas-Saiz et al., 1991; Basaran et al.,1993) and of octafluoronaphthalene-naphthalene-1,8-diamine co-crystal (Batsanov et al., 2001). As usually found, the molecule adopts a slightly twisted conformation due to the steric encumbrance of the two adjacent NH2 groups. The hydrogen atoms of NH2 groups, located in difference Fourier maps, confirm that two different orientations are adopted by the amine groups, with inward hydrogen atoms forced into intramolecular contacts. It is not clear if such kind of contacts, associated to a steric strain of the DAN molecule, can be considered as weak intermolecular hydrogen bonds or as constrain-due interactions. However, the refined positions of NH2 hydrogen atoms give a N–H···N geometry that falls in the range of weak hydrogen bonds [D(X···A) = 3.0–4.0 Å and θ(X–A···H) = 90–180° (Desiraju & Steiner, 1999)].

PIM and DAN-A molecules are involved in N–H···N hydrogen bonds (Fig.2) forming the R44(12) graph-set motif across an inversion center. The amine N1 atom acts as donor towards N2Ai (i = -x,-y,1 - z) and imine N2 atom acts as bifurcated acceptor from N1A and from N2Aii (ii = x, 1/2 - y, z - 1/2).

The DAN-B molecules are not involved in classic intermolecular hydrogen bonds, but only in weak CH···π and NH···π interactions (Fig.3) (N1B—H1E··· Cg1(C5A—C10A)[x, 1 + y, z] = 0.98 (4), 3.15 (4) Å, 151 (3)°; N2B—H2F···Cg2(C1B—C5B,C10B)[1 - x, -1/2 + y, 3/2 - z] = 0.91 (4), 3.35 (4) Å, 162 (3)°;C6B—H6B···Cg3(C1—C5,C10)[-x, 1/2 + y,3/2 - z] = 0.95, 3.632 Å, 141.8°).

In the crystal packing (Fig. 4) layers of PIM molecules are alternate to double layers of DAN-A and DAN-B molecules along [1 0 0] direction. In the perimidine layer molecules are π···π stacked along c with interplanar separation of approximately 3.4 Å.

For the coordination properties of perimidines, see: Morita et al. (2003); Cucciolito et al. (2013). For structural data on perimidines, see: Foces-Foces et al. (1993); Llamas-Saiz et al. (1995); Filatova et al. (2000); Murata et al. (2006); Smellie et al. (2011). For structural data on naphthalene-1,8-diamine, see: Llamas-Saiz et al. (1991); Basaran et al. (1993); Batsanov et al. (2001). For N-rich aromatic heterocycles in organic electronics and photonics, see: Goswami et al. (2010); Carella et al. (2012); Centore et al. (2012). For a general survey of hydrogen bonding in crystals, see: Desiraju & Steiner (1999); Steiner (2002). For hydrogen-bonding patterns in nitrogen-containing heterocycles, see: Centore et al. (2013a,b).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. Thermal ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. H-bonding pattern involving pyrimidinylperimidine (PIM) and naphthalene-1,8-diamine (DAN-A) molecules.
[Figure 3] Fig. 3. naphthalene-1,8-diamine (DAN-B) molecule involved in weak CH···π and NH···π interactions. Cg1: centroid(C5A—C10A)[x, 1 + y, z]; Cg2: centroid(C1B—C5B,C10B)[1 - x, -1/2 + y, 3/2 - z]; Cg3: centroid(C1—C5,C10)[-x, 1/2 + y, 3/2 - z].
[Figure 4] Fig. 4. Crystal packing viewed along b axis showing short distances in the π-π stacked PIM molecules. Hydrogen bonds involving PIM molecules are drawn as dashed lines.
Naphthalene-1,8-diamine–2-(pyrimidin-2-yl)-1H-perimidine (2/1) top
Crystal data top
C15H10N4·2C10H10N2F(000) = 1184
Mr = 562.67Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 126 reflections
a = 17.083 (2) Åθ = 3.4–21.8°
b = 12.139 (3) ŵ = 0.08 mm1
c = 13.597 (2) ÅT = 173 K
β = 90.76 (1)°Block, orange
V = 2819.4 (9) Å30.50 × 0.45 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5184 independent reflections
Radiation source: normal-focus sealed tube2799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 9 pixels mm-1θmax = 25.4°, θmin = 3.2°
CCD rotation images, thick slices scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1414
Tmin = 0.960, Tmax = 0.992l = 1616
22722 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.5806P]
where P = (Fo2 + 2Fc2)/3
5184 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H10N4·2C10H10N2V = 2819.4 (9) Å3
Mr = 562.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.083 (2) ŵ = 0.08 mm1
b = 12.139 (3) ÅT = 173 K
c = 13.597 (2) Å0.50 × 0.45 × 0.10 mm
β = 90.76 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2799 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.992Rint = 0.080
22722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0652 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
5184 reflectionsΔρmin = 0.18 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06299 (14)0.0273 (2)0.36212 (17)0.0276 (6)
H10.0848 (16)0.037 (2)0.365 (2)0.033*
N20.05732 (13)0.12080 (19)0.37659 (16)0.0269 (6)
N30.13410 (14)0.0767 (2)0.38241 (18)0.0352 (6)
N40.00939 (14)0.16518 (19)0.37372 (17)0.0309 (6)
N1A0.17020 (18)0.3184 (3)0.7032 (2)0.0500 (9)
H1C0.1574 (19)0.358 (3)0.753 (3)0.060*
H1D0.1615 (19)0.244 (3)0.7159 (19)0.060*
N2A0.16490 (15)0.1606 (2)0.5578 (2)0.0400 (7)
H2C0.1462 (18)0.126 (3)0.502 (2)0.048*
H2D0.1347 (18)0.216 (3)0.5700 (19)0.048*
N1B0.44606 (19)0.9546 (3)0.6366 (2)0.0624 (10)
H1E0.430 (2)1.011 (3)0.588 (3)0.075*
H1F0.4405 (19)0.878 (3)0.615 (2)0.075*
N2B0.48654 (19)0.7540 (3)0.7084 (3)0.0634 (10)
H2E0.5269 (19)0.805 (3)0.702 (3)0.076*
H2F0.509 (2)0.686 (3)0.709 (3)0.076*
C10.10821 (16)0.1228 (2)0.3582 (2)0.0270 (7)
C20.18822 (16)0.1208 (3)0.3468 (2)0.0334 (7)
H20.21580.05320.34030.040*
C30.22799 (18)0.2222 (3)0.3449 (2)0.0407 (8)
H30.28330.22240.33670.049*
C40.18985 (19)0.3200 (3)0.3547 (2)0.0391 (8)
H40.21900.38670.35430.047*
C50.10814 (17)0.3240 (2)0.3652 (2)0.0299 (7)
C60.0637 (2)0.4223 (2)0.3748 (2)0.0380 (8)
H60.08950.49160.37480.046*
C70.0159 (2)0.4181 (2)0.3840 (2)0.0392 (8)
H70.04440.48490.39060.047*
C80.05660 (18)0.3185 (2)0.3841 (2)0.0343 (8)
H80.11210.31810.38980.041*
C90.01606 (17)0.2209 (2)0.3757 (2)0.0266 (7)
C100.06663 (16)0.2226 (2)0.36614 (19)0.0256 (7)
C110.01603 (16)0.0311 (2)0.3711 (2)0.0244 (7)
C120.05592 (16)0.0776 (2)0.37559 (19)0.0253 (7)
C130.16700 (19)0.1763 (3)0.3871 (2)0.0416 (8)
H130.22250.18070.39150.050*
C140.12521 (19)0.2720 (3)0.3860 (2)0.0366 (8)
H140.15020.34180.38990.044*
C150.04540 (19)0.2627 (2)0.3789 (2)0.0347 (8)
H150.01460.32780.37760.042*
C1A0.24650 (19)0.3402 (3)0.6713 (2)0.0370 (8)
C2A0.2866 (2)0.4285 (3)0.7099 (2)0.0491 (10)
H2A0.26260.47240.75880.059*
C3A0.3619 (2)0.4554 (3)0.6791 (3)0.0533 (10)
H3A0.38740.51830.70580.064*
C4A0.39903 (19)0.3927 (3)0.6114 (3)0.0454 (9)
H4A0.45070.41100.59210.054*
C5A0.36083 (17)0.3002 (2)0.5698 (2)0.0320 (7)
C6A0.40047 (18)0.2335 (3)0.5023 (2)0.0395 (8)
H6A0.45320.24960.48640.047*
C7A0.36393 (19)0.1463 (3)0.4595 (2)0.0419 (9)
H7A0.39190.10020.41570.050*
C8A0.28593 (18)0.1239 (3)0.4792 (2)0.0374 (8)
H8A0.26100.06350.44720.045*
C9A0.24415 (16)0.1870 (2)0.5438 (2)0.0293 (7)
C10A0.28182 (16)0.2759 (2)0.5957 (2)0.0285 (7)
C1B0.40270 (18)0.9666 (3)0.7235 (3)0.0426 (9)
C2B0.3652 (2)1.0638 (3)0.7392 (3)0.0549 (10)
H2B0.36901.12030.69120.066*
C3B0.3216 (2)1.0833 (3)0.8226 (3)0.0632 (12)
H3B0.29721.15290.83150.076*
C4B0.3137 (2)1.0033 (3)0.8918 (3)0.0563 (11)
H4B0.28291.01620.94820.068*
C5B0.35172 (18)0.9003 (3)0.8793 (3)0.0409 (9)
C6B0.3421 (2)0.8162 (4)0.9495 (3)0.0567 (10)
H6B0.31220.82971.00670.068*
C7B0.3754 (2)0.7156 (3)0.9355 (3)0.0601 (11)
H7B0.36610.65810.98130.072*
C8B0.4223 (2)0.6962 (3)0.8556 (3)0.0514 (10)
H8B0.44540.62560.84780.062*
C9B0.43639 (18)0.7761 (3)0.7875 (3)0.0406 (8)
C10B0.39817 (17)0.8811 (3)0.7954 (2)0.0344 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0295 (15)0.0195 (14)0.0338 (15)0.0026 (11)0.0021 (12)0.0003 (12)
N20.0309 (14)0.0224 (14)0.0274 (14)0.0013 (11)0.0025 (11)0.0024 (11)
N30.0298 (15)0.0333 (16)0.0423 (17)0.0030 (12)0.0031 (12)0.0014 (12)
N40.0376 (15)0.0196 (14)0.0356 (15)0.0006 (12)0.0062 (12)0.0015 (11)
N1A0.058 (2)0.049 (2)0.044 (2)0.0175 (17)0.0180 (16)0.0009 (15)
N2A0.0279 (16)0.0462 (19)0.0457 (18)0.0023 (13)0.0014 (13)0.0048 (14)
N1B0.067 (2)0.070 (2)0.050 (2)0.0128 (19)0.0006 (18)0.0161 (18)
N2B0.054 (2)0.064 (3)0.072 (2)0.0110 (17)0.0032 (19)0.018 (2)
C10.0333 (18)0.0265 (17)0.0213 (16)0.0010 (14)0.0027 (13)0.0027 (13)
C20.0289 (18)0.0361 (19)0.0351 (19)0.0000 (15)0.0007 (14)0.0012 (15)
C30.0321 (19)0.052 (2)0.038 (2)0.0099 (17)0.0003 (15)0.0036 (17)
C40.045 (2)0.038 (2)0.0336 (19)0.0172 (17)0.0032 (16)0.0048 (16)
C50.042 (2)0.0270 (17)0.0202 (16)0.0066 (15)0.0034 (14)0.0010 (13)
C60.063 (2)0.0218 (17)0.0294 (19)0.0078 (16)0.0017 (17)0.0026 (14)
C70.055 (2)0.0240 (18)0.038 (2)0.0063 (16)0.0025 (17)0.0004 (15)
C80.0406 (19)0.0282 (18)0.0340 (19)0.0022 (15)0.0011 (15)0.0007 (14)
C90.0389 (18)0.0211 (16)0.0199 (16)0.0015 (14)0.0016 (14)0.0012 (13)
C100.0341 (18)0.0263 (17)0.0166 (15)0.0006 (14)0.0015 (13)0.0019 (12)
C110.0280 (17)0.0256 (17)0.0198 (16)0.0006 (14)0.0031 (13)0.0004 (13)
C120.0331 (18)0.0282 (17)0.0146 (16)0.0002 (14)0.0028 (13)0.0010 (13)
C130.0386 (19)0.044 (2)0.042 (2)0.0117 (18)0.0039 (16)0.0006 (16)
C140.050 (2)0.0298 (19)0.0299 (19)0.0106 (16)0.0010 (16)0.0010 (14)
C150.048 (2)0.0226 (18)0.0336 (19)0.0010 (15)0.0067 (16)0.0005 (14)
C1A0.045 (2)0.036 (2)0.0293 (19)0.0145 (16)0.0003 (16)0.0048 (15)
C2A0.079 (3)0.036 (2)0.032 (2)0.017 (2)0.0075 (19)0.0048 (17)
C3A0.071 (3)0.037 (2)0.051 (2)0.008 (2)0.029 (2)0.0005 (19)
C4A0.040 (2)0.047 (2)0.048 (2)0.0062 (17)0.0169 (17)0.0059 (18)
C5A0.0319 (18)0.0334 (19)0.0305 (18)0.0006 (14)0.0079 (14)0.0039 (14)
C6A0.0281 (18)0.051 (2)0.040 (2)0.0026 (16)0.0022 (16)0.0068 (17)
C7A0.040 (2)0.050 (2)0.036 (2)0.0082 (17)0.0068 (16)0.0053 (16)
C8A0.046 (2)0.0325 (19)0.0333 (19)0.0042 (16)0.0010 (16)0.0041 (15)
C9A0.0284 (17)0.0299 (17)0.0295 (18)0.0015 (14)0.0035 (14)0.0068 (14)
C10A0.0296 (17)0.0302 (17)0.0256 (17)0.0039 (13)0.0046 (14)0.0078 (14)
C1B0.0345 (19)0.044 (2)0.049 (2)0.0091 (17)0.0123 (17)0.0052 (18)
C2B0.059 (2)0.041 (2)0.065 (3)0.0044 (19)0.022 (2)0.004 (2)
C3B0.065 (3)0.036 (2)0.088 (3)0.009 (2)0.028 (2)0.015 (2)
C4B0.047 (2)0.063 (3)0.059 (3)0.002 (2)0.0093 (19)0.027 (2)
C5B0.0336 (19)0.044 (2)0.045 (2)0.0066 (16)0.0081 (17)0.0036 (17)
C6B0.044 (2)0.079 (3)0.047 (2)0.011 (2)0.0019 (18)0.007 (2)
C7B0.050 (2)0.062 (3)0.067 (3)0.022 (2)0.017 (2)0.031 (2)
C8B0.045 (2)0.038 (2)0.071 (3)0.0052 (17)0.023 (2)0.005 (2)
C9B0.0308 (18)0.044 (2)0.047 (2)0.0023 (16)0.0101 (16)0.0069 (18)
C10B0.0308 (17)0.0348 (19)0.038 (2)0.0050 (15)0.0076 (15)0.0021 (15)
Geometric parameters (Å, º) top
N1—C111.355 (3)C13—C141.364 (4)
N1—C11.393 (3)C13—H130.9500
N1—H10.86 (3)C14—C151.370 (4)
N2—C111.299 (3)C14—H140.9500
N2—C91.404 (3)C15—H150.9500
N3—C131.334 (4)C1A—C2A1.373 (4)
N3—C121.338 (3)C1A—C10A1.431 (4)
N4—C121.328 (3)C2A—C3A1.396 (5)
N4—C151.335 (3)C2A—H2A0.9500
N1A—C1A1.404 (4)C3A—C4A1.358 (5)
N1A—H1C0.87 (3)C3A—H3A0.9500
N1A—H1D0.93 (3)C4A—C5A1.413 (4)
N2A—C9A1.407 (4)C4A—H4A0.9500
N2A—H2C0.92 (3)C5A—C6A1.405 (4)
N2A—H2D0.87 (3)C5A—C10A1.430 (4)
N1B—C1B1.411 (4)C6A—C7A1.356 (4)
N1B—H1E0.98 (4)C6A—H6A0.9500
N1B—H1F0.98 (4)C7A—C8A1.390 (4)
N2B—C9B1.410 (4)C7A—H7A0.9500
N2B—H2E0.93 (4)C8A—C9A1.374 (4)
N2B—H2F0.91 (4)C8A—H8A0.9500
C1—C21.374 (4)C9A—C10A1.436 (4)
C1—C101.408 (4)C1B—C2B1.361 (5)
C2—C31.406 (4)C1B—C10B1.428 (4)
C2—H20.9500C2B—C3B1.385 (5)
C3—C41.360 (4)C2B—H2B0.9500
C3—H30.9500C3B—C4B1.360 (5)
C4—C51.402 (4)C3B—H3B0.9500
C4—H40.9500C4B—C5B1.420 (5)
C5—C61.420 (4)C4B—H4B0.9500
C5—C101.421 (4)C5B—C6B1.408 (5)
C6—C71.364 (4)C5B—C10B1.417 (4)
C6—H60.9500C6B—C7B1.361 (5)
C7—C81.395 (4)C6B—H6B0.9500
C7—H70.9500C7B—C8B1.380 (5)
C8—C91.377 (4)C7B—H7B0.9500
C8—H80.9500C8B—C9B1.363 (5)
C9—C101.417 (4)C8B—H8B0.9500
C11—C121.486 (4)C9B—C10B1.437 (4)
C11—N1—C1121.8 (2)C14—C15—H15118.8
C11—N1—H1117.2 (19)C2A—C1A—N1A119.3 (3)
C1—N1—H1120.7 (19)C2A—C1A—C10A119.2 (3)
C11—N2—C9116.9 (2)N1A—C1A—C10A121.4 (3)
C13—N3—C12114.6 (3)C1A—C2A—C3A121.6 (3)
C12—N4—C15115.7 (3)C1A—C2A—H2A119.2
C1A—N1A—H1C113 (2)C3A—C2A—H2A119.2
C1A—N1A—H1D113 (2)C4A—C3A—C2A120.9 (3)
H1C—N1A—H1D111 (3)C4A—C3A—H3A119.6
C9A—N2A—H2C108.4 (19)C2A—C3A—H3A119.6
C9A—N2A—H2D115 (2)C3A—C4A—C5A119.9 (3)
H2C—N2A—H2D108 (3)C3A—C4A—H4A120.0
C1B—N1B—H1E110 (2)C5A—C4A—H4A120.0
C1B—N1B—H1F108 (2)C6A—C5A—C4A119.7 (3)
H1E—N1B—H1F115 (3)C6A—C5A—C10A120.4 (3)
C9B—N2B—H2E113 (2)C4A—C5A—C10A119.9 (3)
C9B—N2B—H2F115 (2)C7A—C6A—C5A120.5 (3)
H2E—N2B—H2F108 (3)C7A—C6A—H6A119.8
C2—C1—N1122.7 (3)C5A—C6A—H6A119.8
C2—C1—C10121.6 (3)C6A—C7A—C8A120.5 (3)
N1—C1—C10115.7 (3)C6A—C7A—H7A119.7
C1—C2—C3117.8 (3)C8A—C7A—H7A119.7
C1—C2—H2121.1C9A—C8A—C7A121.4 (3)
C3—C2—H2121.1C9A—C8A—H8A119.3
C4—C3—C2122.1 (3)C7A—C8A—H8A119.3
C4—C3—H3118.9C8A—C9A—N2A117.9 (3)
C2—C3—H3118.9C8A—C9A—C10A120.0 (3)
C3—C4—C5121.0 (3)N2A—C9A—C10A122.1 (3)
C3—C4—H4119.5C5A—C10A—C1A118.2 (3)
C5—C4—H4119.5C5A—C10A—C9A116.9 (3)
C4—C5—C6124.7 (3)C1A—C10A—C9A124.9 (3)
C4—C5—C10117.8 (3)C2B—C1B—N1B118.3 (3)
C6—C5—C10117.5 (3)C2B—C1B—C10B119.5 (3)
C7—C6—C5120.5 (3)N1B—C1B—C10B122.2 (3)
C7—C6—H6119.7C1B—C2B—C3B122.4 (4)
C5—C6—H6119.7C1B—C2B—H2B118.8
C6—C7—C8121.9 (3)C3B—C2B—H2B118.8
C6—C7—H7119.0C4B—C3B—C2B120.2 (4)
C8—C7—H7119.0C4B—C3B—H3B119.9
C9—C8—C7119.7 (3)C2B—C3B—H3B119.9
C9—C8—H8120.1C3B—C4B—C5B119.8 (4)
C7—C8—H8120.1C3B—C4B—H4B120.1
C8—C9—N2119.5 (3)C5B—C4B—H4B120.1
C8—C9—C10119.6 (3)C6B—C5B—C10B119.9 (3)
N2—C9—C10120.9 (3)C6B—C5B—C4B120.0 (4)
C1—C10—C9119.7 (3)C10B—C5B—C4B120.1 (3)
C1—C10—C5119.6 (3)C7B—C6B—C5B120.2 (4)
C9—C10—C5120.7 (3)C7B—C6B—H6B119.9
N2—C11—N1125.0 (3)C5B—C6B—H6B119.9
N2—C11—C12119.6 (3)C6B—C7B—C8B120.8 (3)
N1—C11—C12115.4 (2)C6B—C7B—H7B119.6
N4—C12—N3127.2 (3)C8B—C7B—H7B119.6
N4—C12—C11115.9 (3)C9B—C8B—C7B121.5 (3)
N3—C12—C11116.9 (3)C9B—C8B—H8B119.2
N3—C13—C14123.5 (3)C7B—C8B—H8B119.2
N3—C13—H13118.3C8B—C9B—N2B119.8 (3)
C14—C13—H13118.3C8B—C9B—C10B119.7 (3)
C13—C14—C15116.7 (3)N2B—C9B—C10B120.4 (3)
C13—C14—H14121.6C5B—C10B—C1B117.9 (3)
C15—C14—H14121.6C5B—C10B—C9B117.7 (3)
N4—C15—C14122.3 (3)C1B—C10B—C9B124.4 (3)
N4—C15—H15118.8
C11—N1—C1—C2178.4 (3)C1A—C2A—C3A—C4A1.9 (5)
C11—N1—C1—C101.3 (4)C2A—C3A—C4A—C5A1.3 (5)
N1—C1—C2—C3179.3 (3)C3A—C4A—C5A—C6A177.9 (3)
C10—C1—C2—C31.1 (4)C3A—C4A—C5A—C10A2.9 (5)
C1—C2—C3—C40.4 (5)C4A—C5A—C6A—C7A178.1 (3)
C2—C3—C4—C51.2 (5)C10A—C5A—C6A—C7A1.1 (5)
C3—C4—C5—C6179.3 (3)C5A—C6A—C7A—C8A2.3 (5)
C3—C4—C5—C100.4 (4)C6A—C7A—C8A—C9A1.6 (5)
C4—C5—C6—C7179.5 (3)C7A—C8A—C9A—N2A178.4 (3)
C10—C5—C6—C70.3 (4)C7A—C8A—C9A—C10A2.4 (4)
C5—C6—C7—C80.3 (5)C6A—C5A—C10A—C1A174.4 (3)
C6—C7—C8—C90.7 (5)C4A—C5A—C10A—C1A6.4 (4)
C7—C8—C9—N2179.5 (3)C6A—C5A—C10A—C9A4.9 (4)
C7—C8—C9—C100.7 (4)C4A—C5A—C10A—C9A174.3 (3)
C11—N2—C9—C8178.3 (3)C2A—C1A—C10A—C5A5.8 (4)
C11—N2—C9—C101.9 (4)N1A—C1A—C10A—C5A177.6 (3)
C2—C1—C10—C9178.7 (3)C2A—C1A—C10A—C9A175.0 (3)
N1—C1—C10—C91.0 (4)N1A—C1A—C10A—C9A1.6 (4)
C2—C1—C10—C51.8 (4)C8A—C9A—C10A—C5A5.5 (4)
N1—C1—C10—C5178.5 (2)N2A—C9A—C10A—C5A175.3 (3)
C8—C9—C10—C1179.6 (3)C8A—C9A—C10A—C1A173.7 (3)
N2—C9—C10—C10.5 (4)N2A—C9A—C10A—C1A5.4 (4)
C8—C9—C10—C50.1 (4)N1B—C1B—C2B—C3B179.6 (3)
N2—C9—C10—C5180.0 (2)C10B—C1B—C2B—C3B0.6 (5)
C4—C5—C10—C11.1 (4)C1B—C2B—C3B—C4B1.3 (6)
C6—C5—C10—C1179.2 (3)C2B—C3B—C4B—C5B1.4 (5)
C4—C5—C10—C9179.4 (3)C3B—C4B—C5B—C6B178.4 (3)
C6—C5—C10—C90.3 (4)C3B—C4B—C5B—C10B0.4 (5)
C9—N2—C11—N11.8 (4)C10B—C5B—C6B—C7B1.9 (5)
C9—N2—C11—C12177.6 (2)C4B—C5B—C6B—C7B176.9 (3)
C1—N1—C11—N20.2 (4)C5B—C6B—C7B—C8B3.5 (5)
C1—N1—C11—C12179.2 (2)C6B—C7B—C8B—C9B0.7 (5)
C15—N4—C12—N30.3 (4)C7B—C8B—C9B—N2B178.2 (3)
C15—N4—C12—C11179.3 (2)C7B—C8B—C9B—C10B3.6 (5)
C13—N3—C12—N40.4 (4)C6B—C5B—C10B—C1B176.6 (3)
C13—N3—C12—C11179.4 (2)C4B—C5B—C10B—C1B2.2 (4)
N2—C11—C12—N4177.2 (2)C6B—C5B—C10B—C9B2.3 (4)
N1—C11—C12—N42.2 (3)C4B—C5B—C10B—C9B178.9 (3)
N2—C11—C12—N31.9 (4)C2B—C1B—C10B—C5B2.3 (4)
N1—C11—C12—N3178.7 (2)N1B—C1B—C10B—C5B178.7 (3)
C12—N3—C13—C140.5 (4)C2B—C1B—C10B—C9B178.9 (3)
N3—C13—C14—C150.5 (5)N1B—C1B—C10B—C9B0.1 (5)
C12—N4—C15—C140.2 (4)C8B—C9B—C10B—C5B5.0 (4)
C13—C14—C15—N40.3 (4)N2B—C9B—C10B—C5B176.8 (3)
N1A—C1A—C2A—C3A178.4 (3)C8B—C9B—C10B—C1B173.8 (3)
C10A—C1A—C2A—C3A1.8 (5)N2B—C9B—C10B—C1B4.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2Ai0.86 (3)2.30 (3)3.077 (4)151 (2)
N1A—H1C···N2ii0.87 (3)2.42 (3)3.153 (4)142 (3)
N2A—H2C···N20.92 (3)2.27 (3)3.092 (4)149 (3)
N2A—H2D···N1A0.87 (3)2.27 (3)2.753 (5)115 (2)
N1B—H1F···N2B0.98 (4)2.12 (3)2.710 (5)117 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10N4·2C10H10N2
Mr562.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)17.083 (2), 12.139 (3), 13.597 (2)
β (°) 90.76 (1)
V3)2819.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.45 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.960, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
22722, 5184, 2799
Rint0.080
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.142, 1.06
No. of reflections5184
No. of parameters415
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2Ai0.86 (3)2.30 (3)3.077 (4)151 (2)
N1A—H1C···N2ii0.87 (3)2.42 (3)3.153 (4)142 (3)
N2A—H2C···N20.92 (3)2.27 (3)3.092 (4)149 (3)
N2A—H2D···N1A0.87 (3)2.27 (3)2.753 (5)115 (2)
N1B—H1F···N2B0.98 (4)2.12 (3)2.710 (5)117 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Centro Inter­dipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II" for the X-ray facilities.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBasaran, R., Dou, S. & Weiss, A. (1993). Struct. Chem. 4, 219–233.  CSD CrossRef CAS Web of Science Google Scholar
First citationBatsanov, A. S., Collings, J. C., Howard, J. A. K. & Marder, T. B. (2001). Acta Cryst. E57, o950–o952.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, G. (2012). Dyes Pigments, 95, 116–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationCentore, R., Piccialli, V. & Tuzi, A. (2013a). Acta Cryst. E69, o667–o668.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCentore, R., Piccialli, V. & Tuzi, A. (2013b). Acta Cryst. E69, o802–o803.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCentore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 132083–2093.  Google Scholar
First citationCucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013). Tetrahedron Lett. 54, 1503–1506.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. New York: Oxford University Press Inc.  Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilatova, E. A., Borovlev, I. V., Pozharskii, A. F., Starikova, Z. A. & Vistorobskii, N. V. (2000). Mendeleev Commun. pp. 178–180.  CSD CrossRef Google Scholar
First citationFoces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 305–312.  CAS Google Scholar
First citationGoswami, S., Sen, D. & Das, N. K. (2010). Org. Lett. 12, 856–859.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLlamas-Saiz, A. L., Foces-Foces, C., Molina, P., Alajarin, M., Vidal, A., Claramunt, R. M. & Elguero, J. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1025–1031.  Google Scholar
First citationLlamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalàn, J. & Carlos del Valle, J. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1389–1398.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorita, Y., Suzuki, S., Fukui, K., Nakazawa, S., Sato, K., Shiomi, D., Takui, T. & Nakasuji, K. (2003). Polyhedron, 39, 2215–2218.  Web of Science CrossRef Google Scholar
First citationMurata, T., Morita, Y., Fukui, K., Tamaki, K., Yamochi, H., Saito, G. & Nakasuji, K. (2006). Bull. Chem. Soc. Jpn, 79, 894–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmellie, I. A. S., Fromm, A. & Paton, R. M. (2011). Carbohydr. Res. 346, 43–49.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds