organic compounds
Naphthalene-1,8-diamine–2-(pyrimidin-2-yl)-1H-perimidine (2/1)
aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and bDipartimento di Agraria, Università degli Studi di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
*Correspondence e-mail: angela.tuzi@unina.it
In the title adduct, C15H10N4·2C10H10N2, the pyrimidine ring is nearly co-planar with the heteroatomic perimidine ring, as indicated dihedral angle between their mean planes of 3.21 (11)°. The diaminonaphthalene molecules are slightly twisted [dihedral angles = 4.2 (2) and 3.0 (2)°] because of the steric encumbrance of NH2 groups. The perimidine and diaminonaphthalene molecules are linked by N—H⋯N hydrogen bonds, forming an R44(12) graph-set motif across an inversion center. In the crystal, alternating layers of the perimidine and diaminonaphthalene molecules are formed along [100]. In the perimidine layer, molecules are π–π stacked along the c-axis direction with an interplane separation of approximately 3.4 Å.
Related literature
For the coordination properties of perimidines, see: Morita et al. (2003); Cucciolito et al. (2013). For structural data on perimidines, see: Foces-Foces et al. (1993); Llamas-Saiz et al. (1995); Filatova et al. (2000); Murata et al. (2006); Smellie et al. (2011). For structural data on naphthalene-1,8-diamine, see: Llamas-Saiz et al. (1991); Basaran et al. (1993); Batsanov et al. (2001). For N-rich aromatic heterocycles in organic electronics and photonics, see: Goswami et al. (2010); Carella et al. (2012); Centore et al. (2012). For a general survey of hydrogen bonding in crystals, see: Desiraju & Steiner (1999); Steiner (2002). For hydrogen-bonding patterns in nitrogen-containing heterocycles, see: Centore et al. (2013a,b).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1999); cell DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813016796/go2093sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813016796/go2093Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813016796/go2093Isup3.cml
2-(pyrimidin-2-yl)-1H-perimidine was obtained from naphthalene-1,8-diamine and pyrimidine-2-carbonitrile, details on the synthesis will be reported in a forthcoming work. Block-shaped crystals of title compound were obtained by evaporation of an ethyl acetate/cyclohexane solution containing 2-(pyrimidin-2-yl)-1H-perimidine and naphthalene-1,8-diamine.
The NH hydrogen atoms were located in difference Fourier maps and refined with Uiso=1.2Ueq(N) of the
All other H atoms were generated stereochemically and refined by the riding model with C–H=0.95 Å and Uiso(H)=1.2Ueq(C). Anti-bumping restraints were used in the last stage of the refinement.During the studies on the coordination ability of perimidines containing four donor atoms (Cucciolito et al., 2013) we obtained the neutral 2-(pyrimidin-2-yl)-1H-perimidine-naphthalene-1,8-diamine (1/2) cocrystal. In view of its N-rich aromatic character, pyrimidinylperimidine can have interest also in organic electronics and photonics (Carella et al., 2012; Centore et al., 2012; Murata et al., 2006; Goswami et al., 2010).
Few structural data are found in the literature on neutral perimidines having one amino and one imino N atom at the heterocyclic mojety (Filatova et al., 2000; Foces-Foces et al., 1993; Llamas-Saiz et al., 1995; Murata et al., 2006; Smellie et al., 2011). Moreover, very few structural data on the naphthalene-1,8-diamine (DAN) ring system are found in the literature (Batsanov et al., 2001; Llamas-Saiz et al., 1991; Basaran et al., 1993). In particular, the title compound is the second example of a perimidine bearing a pyrimidine ring at C11 with the two N atoms in ortho position (Morita et al., 2003). In the title compound, one 2-(pyrimidin-2-yl)-1H-perimidine (PIM) molecule and two naphthalene-1,8-diamine (DAN-A and DAN-B) molecules are contained in the θ(X–A···H) = 90–180° (Desiraju & Steiner, 1999)].
(Fig.1). The aminic nature of N1 in PIM is clearly proven by location of the NH hydrogen atom in difference Fourier maps. The geometry at N1 is planar, as demonstrated by the free of the attached hydrogen atom. The pyrimidine ring is nearly coplanar with the perimidine ring with a dihedral angle between their mean planes of 3.21 (11)°. In DAN-A and DAN-B molecules the geometric parameters are very similar to literature data of pure DAN (Llamas-Saiz et al., 1991; Basaran et al.,1993) and of octafluoronaphthalene-naphthalene-1,8-diamine (Batsanov et al., 2001). As usually found, the molecule adopts a slightly twisted conformation due to the steric encumbrance of the two adjacent NH2 groups. The hydrogen atoms of NH2 groups, located in difference Fourier maps, confirm that two different orientations are adopted by the amine groups, with inward hydrogen atoms forced into intramolecular contacts. It is not clear if such kind of contacts, associated to a of the DAN molecule, can be considered as weak intermolecular hydrogen bonds or as constrain-due interactions. However, the refined positions of NH2 hydrogen atoms give a N–H···N geometry that falls in the range of weak hydrogen bonds [D(X···A) = 3.0–4.0 Å andPIM and DAN-A molecules are involved in N–H···N hydrogen bonds (Fig.2) forming the R44(12) graph-set motif across an inversion center. The amine N1 atom acts as donor towards N2Ai (i = -x,-y,1 - z) and imine N2 atom acts as bifurcated acceptor from N1A and from N2Aii (ii = x, 1/2 - y, z - 1/2).
The DAN-B molecules are not involved in classic intermolecular hydrogen bonds, but only in weak CH···π and NH···π interactions (Fig.3) (N1B—H1E··· Cg1(C5A—C10A)[x, 1 + y, z] = 0.98 (4), 3.15 (4) Å, 151 (3)°; N2B—H2F···Cg2(C1B—C5B,C10B)[1 - x, -1/2 + y, 3/2 - z] = 0.91 (4), 3.35 (4) Å, 162 (3)°;C6B—H6B···Cg3(C1—C5,C10)[-x, 1/2 + y,3/2 - z] = 0.95, 3.632 Å, 141.8°).
In the crystal packing (Fig. 4) layers of PIM molecules are alternate to double layers of DAN-A and DAN-B molecules along [1 0 0] direction. In the perimidine layer molecules are π···π stacked along c with interplanar separation of approximately 3.4 Å.
For the coordination properties of perimidines, see: Morita et al. (2003); Cucciolito et al. (2013). For structural data on perimidines, see: Foces-Foces et al. (1993); Llamas-Saiz et al. (1995); Filatova et al. (2000); Murata et al. (2006); Smellie et al. (2011). For structural data on naphthalene-1,8-diamine, see: Llamas-Saiz et al. (1991); Basaran et al. (1993); Batsanov et al. (2001). For N-rich aromatic heterocycles in organic electronics and photonics, see: Goswami et al. (2010); Carella et al. (2012); Centore et al. (2012). For a general survey of hydrogen bonding in crystals, see: Desiraju & Steiner (1999); Steiner (2002). For hydrogen-bonding patterns in nitrogen-containing heterocycles, see: Centore et al. (2013a,b).
Data collection: COLLECT (Nonius, 1999); cell
DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. ORTEP view of the title compound. Thermal ellipsoids are drawn at 30% probability level. | |
Fig. 2. H-bonding pattern involving pyrimidinylperimidine (PIM) and naphthalene-1,8-diamine (DAN-A) molecules. | |
Fig. 3. naphthalene-1,8-diamine (DAN-B) molecule involved in weak CH···π and NH···π interactions. Cg1: centroid(C5A—C10A)[x, 1 + y, z]; Cg2: centroid(C1B—C5B,C10B)[1 - x, -1/2 + y, 3/2 - z]; Cg3: centroid(C1—C5,C10)[-x, 1/2 + y, 3/2 - z]. | |
Fig. 4. Crystal packing viewed along b axis showing short distances in the π-π stacked PIM molecules. Hydrogen bonds involving PIM molecules are drawn as dashed lines. |
C15H10N4·2C10H10N2 | F(000) = 1184 |
Mr = 562.67 | Dx = 1.326 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 126 reflections |
a = 17.083 (2) Å | θ = 3.4–21.8° |
b = 12.139 (3) Å | µ = 0.08 mm−1 |
c = 13.597 (2) Å | T = 173 K |
β = 90.76 (1)° | Block, orange |
V = 2819.4 (9) Å3 | 0.50 × 0.45 × 0.10 mm |
Z = 4 |
Bruker–Nonius KappaCCD diffractometer | 5184 independent reflections |
Radiation source: normal-focus sealed tube | 2799 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.080 |
Detector resolution: 9 pixels mm-1 | θmax = 25.4°, θmin = 3.2° |
CCD rotation images, thick slices scans | h = −20→20 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −14→14 |
Tmin = 0.960, Tmax = 0.992 | l = −16→16 |
22722 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0402P)2 + 1.5806P] where P = (Fo2 + 2Fc2)/3 |
5184 reflections | (Δ/σ)max < 0.001 |
415 parameters | Δρmax = 0.19 e Å−3 |
2 restraints | Δρmin = −0.18 e Å−3 |
C15H10N4·2C10H10N2 | V = 2819.4 (9) Å3 |
Mr = 562.67 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.083 (2) Å | µ = 0.08 mm−1 |
b = 12.139 (3) Å | T = 173 K |
c = 13.597 (2) Å | 0.50 × 0.45 × 0.10 mm |
β = 90.76 (1)° |
Bruker–Nonius KappaCCD diffractometer | 5184 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2799 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.992 | Rint = 0.080 |
22722 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 2 restraints |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.19 e Å−3 |
5184 reflections | Δρmin = −0.18 e Å−3 |
415 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | −0.06299 (14) | 0.0273 (2) | 0.36212 (17) | 0.0276 (6) | |
H1 | −0.0848 (16) | −0.037 (2) | 0.365 (2) | 0.033* | |
N2 | 0.05732 (13) | 0.12080 (19) | 0.37659 (16) | 0.0269 (6) | |
N3 | 0.13410 (14) | −0.0767 (2) | 0.38241 (18) | 0.0352 (6) | |
N4 | 0.00939 (14) | −0.16518 (19) | 0.37372 (17) | 0.0309 (6) | |
N1A | 0.17020 (18) | 0.3184 (3) | 0.7032 (2) | 0.0500 (9) | |
H1C | 0.1574 (19) | 0.358 (3) | 0.753 (3) | 0.060* | |
H1D | 0.1615 (19) | 0.244 (3) | 0.7159 (19) | 0.060* | |
N2A | 0.16490 (15) | 0.1606 (2) | 0.5578 (2) | 0.0400 (7) | |
H2C | 0.1462 (18) | 0.126 (3) | 0.502 (2) | 0.048* | |
H2D | 0.1347 (18) | 0.216 (3) | 0.5700 (19) | 0.048* | |
N1B | 0.44606 (19) | 0.9546 (3) | 0.6366 (2) | 0.0624 (10) | |
H1E | 0.430 (2) | 1.011 (3) | 0.588 (3) | 0.075* | |
H1F | 0.4405 (19) | 0.878 (3) | 0.615 (2) | 0.075* | |
N2B | 0.48654 (19) | 0.7540 (3) | 0.7084 (3) | 0.0634 (10) | |
H2E | 0.5269 (19) | 0.805 (3) | 0.702 (3) | 0.076* | |
H2F | 0.509 (2) | 0.686 (3) | 0.709 (3) | 0.076* | |
C1 | −0.10821 (16) | 0.1228 (2) | 0.3582 (2) | 0.0270 (7) | |
C2 | −0.18822 (16) | 0.1208 (3) | 0.3468 (2) | 0.0334 (7) | |
H2 | −0.2158 | 0.0532 | 0.3403 | 0.040* | |
C3 | −0.22799 (18) | 0.2222 (3) | 0.3449 (2) | 0.0407 (8) | |
H3 | −0.2833 | 0.2224 | 0.3367 | 0.049* | |
C4 | −0.18985 (19) | 0.3200 (3) | 0.3547 (2) | 0.0391 (8) | |
H4 | −0.2190 | 0.3867 | 0.3543 | 0.047* | |
C5 | −0.10814 (17) | 0.3240 (2) | 0.3652 (2) | 0.0299 (7) | |
C6 | −0.0637 (2) | 0.4223 (2) | 0.3748 (2) | 0.0380 (8) | |
H6 | −0.0895 | 0.4916 | 0.3748 | 0.046* | |
C7 | 0.0159 (2) | 0.4181 (2) | 0.3840 (2) | 0.0392 (8) | |
H7 | 0.0444 | 0.4849 | 0.3906 | 0.047* | |
C8 | 0.05660 (18) | 0.3185 (2) | 0.3841 (2) | 0.0343 (8) | |
H8 | 0.1121 | 0.3181 | 0.3898 | 0.041* | |
C9 | 0.01606 (17) | 0.2209 (2) | 0.3757 (2) | 0.0266 (7) | |
C10 | −0.06663 (16) | 0.2226 (2) | 0.36614 (19) | 0.0256 (7) | |
C11 | 0.01603 (16) | 0.0311 (2) | 0.3711 (2) | 0.0244 (7) | |
C12 | 0.05592 (16) | −0.0776 (2) | 0.37559 (19) | 0.0253 (7) | |
C13 | 0.16700 (19) | −0.1763 (3) | 0.3871 (2) | 0.0416 (8) | |
H13 | 0.2225 | −0.1807 | 0.3915 | 0.050* | |
C14 | 0.12521 (19) | −0.2720 (3) | 0.3860 (2) | 0.0366 (8) | |
H14 | 0.1502 | −0.3418 | 0.3899 | 0.044* | |
C15 | 0.04540 (19) | −0.2627 (2) | 0.3789 (2) | 0.0347 (8) | |
H15 | 0.0146 | −0.3278 | 0.3776 | 0.042* | |
C1A | 0.24650 (19) | 0.3402 (3) | 0.6713 (2) | 0.0370 (8) | |
C2A | 0.2866 (2) | 0.4285 (3) | 0.7099 (2) | 0.0491 (10) | |
H2A | 0.2626 | 0.4724 | 0.7588 | 0.059* | |
C3A | 0.3619 (2) | 0.4554 (3) | 0.6791 (3) | 0.0533 (10) | |
H3A | 0.3874 | 0.5183 | 0.7058 | 0.064* | |
C4A | 0.39903 (19) | 0.3927 (3) | 0.6114 (3) | 0.0454 (9) | |
H4A | 0.4507 | 0.4110 | 0.5921 | 0.054* | |
C5A | 0.36083 (17) | 0.3002 (2) | 0.5698 (2) | 0.0320 (7) | |
C6A | 0.40047 (18) | 0.2335 (3) | 0.5023 (2) | 0.0395 (8) | |
H6A | 0.4532 | 0.2496 | 0.4864 | 0.047* | |
C7A | 0.36393 (19) | 0.1463 (3) | 0.4595 (2) | 0.0419 (9) | |
H7A | 0.3919 | 0.1002 | 0.4157 | 0.050* | |
C8A | 0.28593 (18) | 0.1239 (3) | 0.4792 (2) | 0.0374 (8) | |
H8A | 0.2610 | 0.0635 | 0.4472 | 0.045* | |
C9A | 0.24415 (16) | 0.1870 (2) | 0.5438 (2) | 0.0293 (7) | |
C10A | 0.28182 (16) | 0.2759 (2) | 0.5957 (2) | 0.0285 (7) | |
C1B | 0.40270 (18) | 0.9666 (3) | 0.7235 (3) | 0.0426 (9) | |
C2B | 0.3652 (2) | 1.0638 (3) | 0.7392 (3) | 0.0549 (10) | |
H2B | 0.3690 | 1.1203 | 0.6912 | 0.066* | |
C3B | 0.3216 (2) | 1.0833 (3) | 0.8226 (3) | 0.0632 (12) | |
H3B | 0.2972 | 1.1529 | 0.8315 | 0.076* | |
C4B | 0.3137 (2) | 1.0033 (3) | 0.8918 (3) | 0.0563 (11) | |
H4B | 0.2829 | 1.0162 | 0.9482 | 0.068* | |
C5B | 0.35172 (18) | 0.9003 (3) | 0.8793 (3) | 0.0409 (9) | |
C6B | 0.3421 (2) | 0.8162 (4) | 0.9495 (3) | 0.0567 (10) | |
H6B | 0.3122 | 0.8297 | 1.0067 | 0.068* | |
C7B | 0.3754 (2) | 0.7156 (3) | 0.9355 (3) | 0.0601 (11) | |
H7B | 0.3661 | 0.6581 | 0.9813 | 0.072* | |
C8B | 0.4223 (2) | 0.6962 (3) | 0.8556 (3) | 0.0514 (10) | |
H8B | 0.4454 | 0.6256 | 0.8478 | 0.062* | |
C9B | 0.43639 (18) | 0.7761 (3) | 0.7875 (3) | 0.0406 (8) | |
C10B | 0.39817 (17) | 0.8811 (3) | 0.7954 (2) | 0.0344 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0295 (15) | 0.0195 (14) | 0.0338 (15) | −0.0026 (11) | 0.0021 (12) | −0.0003 (12) |
N2 | 0.0309 (14) | 0.0224 (14) | 0.0274 (14) | −0.0013 (11) | 0.0025 (11) | 0.0024 (11) |
N3 | 0.0298 (15) | 0.0333 (16) | 0.0423 (17) | 0.0030 (12) | −0.0031 (12) | −0.0014 (12) |
N4 | 0.0376 (15) | 0.0196 (14) | 0.0356 (15) | 0.0006 (12) | 0.0062 (12) | 0.0015 (11) |
N1A | 0.058 (2) | 0.049 (2) | 0.044 (2) | 0.0175 (17) | 0.0180 (16) | 0.0009 (15) |
N2A | 0.0279 (16) | 0.0462 (19) | 0.0457 (18) | −0.0023 (13) | −0.0014 (13) | 0.0048 (14) |
N1B | 0.067 (2) | 0.070 (2) | 0.050 (2) | −0.0128 (19) | −0.0006 (18) | 0.0161 (18) |
N2B | 0.054 (2) | 0.064 (3) | 0.072 (2) | 0.0110 (17) | 0.0032 (19) | −0.018 (2) |
C1 | 0.0333 (18) | 0.0265 (17) | 0.0213 (16) | 0.0010 (14) | 0.0027 (13) | 0.0027 (13) |
C2 | 0.0289 (18) | 0.0361 (19) | 0.0351 (19) | 0.0000 (15) | −0.0007 (14) | 0.0012 (15) |
C3 | 0.0321 (19) | 0.052 (2) | 0.038 (2) | 0.0099 (17) | 0.0003 (15) | 0.0036 (17) |
C4 | 0.045 (2) | 0.038 (2) | 0.0336 (19) | 0.0172 (17) | 0.0032 (16) | 0.0048 (16) |
C5 | 0.042 (2) | 0.0270 (17) | 0.0202 (16) | 0.0066 (15) | 0.0034 (14) | −0.0010 (13) |
C6 | 0.063 (2) | 0.0218 (17) | 0.0294 (19) | 0.0078 (16) | 0.0017 (17) | 0.0026 (14) |
C7 | 0.055 (2) | 0.0240 (18) | 0.038 (2) | −0.0063 (16) | −0.0025 (17) | −0.0004 (15) |
C8 | 0.0406 (19) | 0.0282 (18) | 0.0340 (19) | −0.0022 (15) | −0.0011 (15) | 0.0007 (14) |
C9 | 0.0389 (18) | 0.0211 (16) | 0.0199 (16) | −0.0015 (14) | 0.0016 (14) | −0.0012 (13) |
C10 | 0.0341 (18) | 0.0263 (17) | 0.0166 (15) | −0.0006 (14) | 0.0015 (13) | −0.0019 (12) |
C11 | 0.0280 (17) | 0.0256 (17) | 0.0198 (16) | −0.0006 (14) | 0.0031 (13) | −0.0004 (13) |
C12 | 0.0331 (18) | 0.0282 (17) | 0.0146 (16) | −0.0002 (14) | 0.0028 (13) | −0.0010 (13) |
C13 | 0.0386 (19) | 0.044 (2) | 0.042 (2) | 0.0117 (18) | −0.0039 (16) | −0.0006 (16) |
C14 | 0.050 (2) | 0.0298 (19) | 0.0299 (19) | 0.0106 (16) | 0.0010 (16) | 0.0010 (14) |
C15 | 0.048 (2) | 0.0226 (18) | 0.0336 (19) | −0.0010 (15) | 0.0067 (16) | 0.0005 (14) |
C1A | 0.045 (2) | 0.036 (2) | 0.0293 (19) | 0.0145 (16) | −0.0003 (16) | 0.0048 (15) |
C2A | 0.079 (3) | 0.036 (2) | 0.032 (2) | 0.017 (2) | −0.0075 (19) | −0.0048 (17) |
C3A | 0.071 (3) | 0.037 (2) | 0.051 (2) | −0.008 (2) | −0.029 (2) | −0.0005 (19) |
C4A | 0.040 (2) | 0.047 (2) | 0.048 (2) | −0.0062 (17) | −0.0169 (17) | 0.0059 (18) |
C5A | 0.0319 (18) | 0.0334 (19) | 0.0305 (18) | −0.0006 (14) | −0.0079 (14) | 0.0039 (14) |
C6A | 0.0281 (18) | 0.051 (2) | 0.040 (2) | −0.0026 (16) | 0.0022 (16) | 0.0068 (17) |
C7A | 0.040 (2) | 0.050 (2) | 0.036 (2) | 0.0082 (17) | 0.0068 (16) | −0.0053 (16) |
C8A | 0.046 (2) | 0.0325 (19) | 0.0333 (19) | −0.0042 (16) | −0.0010 (16) | −0.0041 (15) |
C9A | 0.0284 (17) | 0.0299 (17) | 0.0295 (18) | −0.0015 (14) | −0.0035 (14) | 0.0068 (14) |
C10A | 0.0296 (17) | 0.0302 (17) | 0.0256 (17) | 0.0039 (13) | −0.0046 (14) | 0.0078 (14) |
C1B | 0.0345 (19) | 0.044 (2) | 0.049 (2) | −0.0091 (17) | −0.0123 (17) | 0.0052 (18) |
C2B | 0.059 (2) | 0.041 (2) | 0.065 (3) | −0.0044 (19) | −0.022 (2) | 0.004 (2) |
C3B | 0.065 (3) | 0.036 (2) | 0.088 (3) | 0.009 (2) | −0.028 (2) | −0.015 (2) |
C4B | 0.047 (2) | 0.063 (3) | 0.059 (3) | 0.002 (2) | −0.0093 (19) | −0.027 (2) |
C5B | 0.0336 (19) | 0.044 (2) | 0.045 (2) | −0.0066 (16) | −0.0081 (17) | −0.0036 (17) |
C6B | 0.044 (2) | 0.079 (3) | 0.047 (2) | −0.011 (2) | −0.0019 (18) | 0.007 (2) |
C7B | 0.050 (2) | 0.062 (3) | 0.067 (3) | −0.022 (2) | −0.017 (2) | 0.031 (2) |
C8B | 0.045 (2) | 0.038 (2) | 0.071 (3) | −0.0052 (17) | −0.023 (2) | 0.005 (2) |
C9B | 0.0308 (18) | 0.044 (2) | 0.047 (2) | −0.0023 (16) | −0.0101 (16) | −0.0069 (18) |
C10B | 0.0308 (17) | 0.0348 (19) | 0.038 (2) | −0.0050 (15) | −0.0076 (15) | −0.0021 (15) |
N1—C11 | 1.355 (3) | C13—C14 | 1.364 (4) |
N1—C1 | 1.393 (3) | C13—H13 | 0.9500 |
N1—H1 | 0.86 (3) | C14—C15 | 1.370 (4) |
N2—C11 | 1.299 (3) | C14—H14 | 0.9500 |
N2—C9 | 1.404 (3) | C15—H15 | 0.9500 |
N3—C13 | 1.334 (4) | C1A—C2A | 1.373 (4) |
N3—C12 | 1.338 (3) | C1A—C10A | 1.431 (4) |
N4—C12 | 1.328 (3) | C2A—C3A | 1.396 (5) |
N4—C15 | 1.335 (3) | C2A—H2A | 0.9500 |
N1A—C1A | 1.404 (4) | C3A—C4A | 1.358 (5) |
N1A—H1C | 0.87 (3) | C3A—H3A | 0.9500 |
N1A—H1D | 0.93 (3) | C4A—C5A | 1.413 (4) |
N2A—C9A | 1.407 (4) | C4A—H4A | 0.9500 |
N2A—H2C | 0.92 (3) | C5A—C6A | 1.405 (4) |
N2A—H2D | 0.87 (3) | C5A—C10A | 1.430 (4) |
N1B—C1B | 1.411 (4) | C6A—C7A | 1.356 (4) |
N1B—H1E | 0.98 (4) | C6A—H6A | 0.9500 |
N1B—H1F | 0.98 (4) | C7A—C8A | 1.390 (4) |
N2B—C9B | 1.410 (4) | C7A—H7A | 0.9500 |
N2B—H2E | 0.93 (4) | C8A—C9A | 1.374 (4) |
N2B—H2F | 0.91 (4) | C8A—H8A | 0.9500 |
C1—C2 | 1.374 (4) | C9A—C10A | 1.436 (4) |
C1—C10 | 1.408 (4) | C1B—C2B | 1.361 (5) |
C2—C3 | 1.406 (4) | C1B—C10B | 1.428 (4) |
C2—H2 | 0.9500 | C2B—C3B | 1.385 (5) |
C3—C4 | 1.360 (4) | C2B—H2B | 0.9500 |
C3—H3 | 0.9500 | C3B—C4B | 1.360 (5) |
C4—C5 | 1.402 (4) | C3B—H3B | 0.9500 |
C4—H4 | 0.9500 | C4B—C5B | 1.420 (5) |
C5—C6 | 1.420 (4) | C4B—H4B | 0.9500 |
C5—C10 | 1.421 (4) | C5B—C6B | 1.408 (5) |
C6—C7 | 1.364 (4) | C5B—C10B | 1.417 (4) |
C6—H6 | 0.9500 | C6B—C7B | 1.361 (5) |
C7—C8 | 1.395 (4) | C6B—H6B | 0.9500 |
C7—H7 | 0.9500 | C7B—C8B | 1.380 (5) |
C8—C9 | 1.377 (4) | C7B—H7B | 0.9500 |
C8—H8 | 0.9500 | C8B—C9B | 1.363 (5) |
C9—C10 | 1.417 (4) | C8B—H8B | 0.9500 |
C11—C12 | 1.486 (4) | C9B—C10B | 1.437 (4) |
C11—N1—C1 | 121.8 (2) | C14—C15—H15 | 118.8 |
C11—N1—H1 | 117.2 (19) | C2A—C1A—N1A | 119.3 (3) |
C1—N1—H1 | 120.7 (19) | C2A—C1A—C10A | 119.2 (3) |
C11—N2—C9 | 116.9 (2) | N1A—C1A—C10A | 121.4 (3) |
C13—N3—C12 | 114.6 (3) | C1A—C2A—C3A | 121.6 (3) |
C12—N4—C15 | 115.7 (3) | C1A—C2A—H2A | 119.2 |
C1A—N1A—H1C | 113 (2) | C3A—C2A—H2A | 119.2 |
C1A—N1A—H1D | 113 (2) | C4A—C3A—C2A | 120.9 (3) |
H1C—N1A—H1D | 111 (3) | C4A—C3A—H3A | 119.6 |
C9A—N2A—H2C | 108.4 (19) | C2A—C3A—H3A | 119.6 |
C9A—N2A—H2D | 115 (2) | C3A—C4A—C5A | 119.9 (3) |
H2C—N2A—H2D | 108 (3) | C3A—C4A—H4A | 120.0 |
C1B—N1B—H1E | 110 (2) | C5A—C4A—H4A | 120.0 |
C1B—N1B—H1F | 108 (2) | C6A—C5A—C4A | 119.7 (3) |
H1E—N1B—H1F | 115 (3) | C6A—C5A—C10A | 120.4 (3) |
C9B—N2B—H2E | 113 (2) | C4A—C5A—C10A | 119.9 (3) |
C9B—N2B—H2F | 115 (2) | C7A—C6A—C5A | 120.5 (3) |
H2E—N2B—H2F | 108 (3) | C7A—C6A—H6A | 119.8 |
C2—C1—N1 | 122.7 (3) | C5A—C6A—H6A | 119.8 |
C2—C1—C10 | 121.6 (3) | C6A—C7A—C8A | 120.5 (3) |
N1—C1—C10 | 115.7 (3) | C6A—C7A—H7A | 119.7 |
C1—C2—C3 | 117.8 (3) | C8A—C7A—H7A | 119.7 |
C1—C2—H2 | 121.1 | C9A—C8A—C7A | 121.4 (3) |
C3—C2—H2 | 121.1 | C9A—C8A—H8A | 119.3 |
C4—C3—C2 | 122.1 (3) | C7A—C8A—H8A | 119.3 |
C4—C3—H3 | 118.9 | C8A—C9A—N2A | 117.9 (3) |
C2—C3—H3 | 118.9 | C8A—C9A—C10A | 120.0 (3) |
C3—C4—C5 | 121.0 (3) | N2A—C9A—C10A | 122.1 (3) |
C3—C4—H4 | 119.5 | C5A—C10A—C1A | 118.2 (3) |
C5—C4—H4 | 119.5 | C5A—C10A—C9A | 116.9 (3) |
C4—C5—C6 | 124.7 (3) | C1A—C10A—C9A | 124.9 (3) |
C4—C5—C10 | 117.8 (3) | C2B—C1B—N1B | 118.3 (3) |
C6—C5—C10 | 117.5 (3) | C2B—C1B—C10B | 119.5 (3) |
C7—C6—C5 | 120.5 (3) | N1B—C1B—C10B | 122.2 (3) |
C7—C6—H6 | 119.7 | C1B—C2B—C3B | 122.4 (4) |
C5—C6—H6 | 119.7 | C1B—C2B—H2B | 118.8 |
C6—C7—C8 | 121.9 (3) | C3B—C2B—H2B | 118.8 |
C6—C7—H7 | 119.0 | C4B—C3B—C2B | 120.2 (4) |
C8—C7—H7 | 119.0 | C4B—C3B—H3B | 119.9 |
C9—C8—C7 | 119.7 (3) | C2B—C3B—H3B | 119.9 |
C9—C8—H8 | 120.1 | C3B—C4B—C5B | 119.8 (4) |
C7—C8—H8 | 120.1 | C3B—C4B—H4B | 120.1 |
C8—C9—N2 | 119.5 (3) | C5B—C4B—H4B | 120.1 |
C8—C9—C10 | 119.6 (3) | C6B—C5B—C10B | 119.9 (3) |
N2—C9—C10 | 120.9 (3) | C6B—C5B—C4B | 120.0 (4) |
C1—C10—C9 | 119.7 (3) | C10B—C5B—C4B | 120.1 (3) |
C1—C10—C5 | 119.6 (3) | C7B—C6B—C5B | 120.2 (4) |
C9—C10—C5 | 120.7 (3) | C7B—C6B—H6B | 119.9 |
N2—C11—N1 | 125.0 (3) | C5B—C6B—H6B | 119.9 |
N2—C11—C12 | 119.6 (3) | C6B—C7B—C8B | 120.8 (3) |
N1—C11—C12 | 115.4 (2) | C6B—C7B—H7B | 119.6 |
N4—C12—N3 | 127.2 (3) | C8B—C7B—H7B | 119.6 |
N4—C12—C11 | 115.9 (3) | C9B—C8B—C7B | 121.5 (3) |
N3—C12—C11 | 116.9 (3) | C9B—C8B—H8B | 119.2 |
N3—C13—C14 | 123.5 (3) | C7B—C8B—H8B | 119.2 |
N3—C13—H13 | 118.3 | C8B—C9B—N2B | 119.8 (3) |
C14—C13—H13 | 118.3 | C8B—C9B—C10B | 119.7 (3) |
C13—C14—C15 | 116.7 (3) | N2B—C9B—C10B | 120.4 (3) |
C13—C14—H14 | 121.6 | C5B—C10B—C1B | 117.9 (3) |
C15—C14—H14 | 121.6 | C5B—C10B—C9B | 117.7 (3) |
N4—C15—C14 | 122.3 (3) | C1B—C10B—C9B | 124.4 (3) |
N4—C15—H15 | 118.8 | ||
C11—N1—C1—C2 | 178.4 (3) | C1A—C2A—C3A—C4A | −1.9 (5) |
C11—N1—C1—C10 | −1.3 (4) | C2A—C3A—C4A—C5A | 1.3 (5) |
N1—C1—C2—C3 | 179.3 (3) | C3A—C4A—C5A—C6A | −177.9 (3) |
C10—C1—C2—C3 | −1.1 (4) | C3A—C4A—C5A—C10A | 2.9 (5) |
C1—C2—C3—C4 | −0.4 (5) | C4A—C5A—C6A—C7A | −178.1 (3) |
C2—C3—C4—C5 | 1.2 (5) | C10A—C5A—C6A—C7A | 1.1 (5) |
C3—C4—C5—C6 | 179.3 (3) | C5A—C6A—C7A—C8A | 2.3 (5) |
C3—C4—C5—C10 | −0.4 (4) | C6A—C7A—C8A—C9A | −1.6 (5) |
C4—C5—C6—C7 | −179.5 (3) | C7A—C8A—C9A—N2A | 178.4 (3) |
C10—C5—C6—C7 | 0.3 (4) | C7A—C8A—C9A—C10A | −2.4 (4) |
C5—C6—C7—C8 | 0.3 (5) | C6A—C5A—C10A—C1A | 174.4 (3) |
C6—C7—C8—C9 | −0.7 (5) | C4A—C5A—C10A—C1A | −6.4 (4) |
C7—C8—C9—N2 | −179.5 (3) | C6A—C5A—C10A—C9A | −4.9 (4) |
C7—C8—C9—C10 | 0.7 (4) | C4A—C5A—C10A—C9A | 174.3 (3) |
C11—N2—C9—C8 | 178.3 (3) | C2A—C1A—C10A—C5A | 5.8 (4) |
C11—N2—C9—C10 | −1.9 (4) | N1A—C1A—C10A—C5A | −177.6 (3) |
C2—C1—C10—C9 | −178.7 (3) | C2A—C1A—C10A—C9A | −175.0 (3) |
N1—C1—C10—C9 | 1.0 (4) | N1A—C1A—C10A—C9A | 1.6 (4) |
C2—C1—C10—C5 | 1.8 (4) | C8A—C9A—C10A—C5A | 5.5 (4) |
N1—C1—C10—C5 | −178.5 (2) | N2A—C9A—C10A—C5A | −175.3 (3) |
C8—C9—C10—C1 | −179.6 (3) | C8A—C9A—C10A—C1A | −173.7 (3) |
N2—C9—C10—C1 | 0.5 (4) | N2A—C9A—C10A—C1A | 5.4 (4) |
C8—C9—C10—C5 | −0.1 (4) | N1B—C1B—C2B—C3B | −179.6 (3) |
N2—C9—C10—C5 | −180.0 (2) | C10B—C1B—C2B—C3B | −0.6 (5) |
C4—C5—C10—C1 | −1.1 (4) | C1B—C2B—C3B—C4B | −1.3 (6) |
C6—C5—C10—C1 | 179.2 (3) | C2B—C3B—C4B—C5B | 1.4 (5) |
C4—C5—C10—C9 | 179.4 (3) | C3B—C4B—C5B—C6B | −178.4 (3) |
C6—C5—C10—C9 | −0.3 (4) | C3B—C4B—C5B—C10B | 0.4 (5) |
C9—N2—C11—N1 | 1.8 (4) | C10B—C5B—C6B—C7B | −1.9 (5) |
C9—N2—C11—C12 | −177.6 (2) | C4B—C5B—C6B—C7B | 176.9 (3) |
C1—N1—C11—N2 | −0.2 (4) | C5B—C6B—C7B—C8B | 3.5 (5) |
C1—N1—C11—C12 | 179.2 (2) | C6B—C7B—C8B—C9B | −0.7 (5) |
C15—N4—C12—N3 | −0.3 (4) | C7B—C8B—C9B—N2B | 178.2 (3) |
C15—N4—C12—C11 | −179.3 (2) | C7B—C8B—C9B—C10B | −3.6 (5) |
C13—N3—C12—N4 | 0.4 (4) | C6B—C5B—C10B—C1B | 176.6 (3) |
C13—N3—C12—C11 | 179.4 (2) | C4B—C5B—C10B—C1B | −2.2 (4) |
N2—C11—C12—N4 | 177.2 (2) | C6B—C5B—C10B—C9B | −2.3 (4) |
N1—C11—C12—N4 | −2.2 (3) | C4B—C5B—C10B—C9B | 178.9 (3) |
N2—C11—C12—N3 | −1.9 (4) | C2B—C1B—C10B—C5B | 2.3 (4) |
N1—C11—C12—N3 | 178.7 (2) | N1B—C1B—C10B—C5B | −178.7 (3) |
C12—N3—C13—C14 | −0.5 (4) | C2B—C1B—C10B—C9B | −178.9 (3) |
N3—C13—C14—C15 | 0.5 (5) | N1B—C1B—C10B—C9B | 0.1 (5) |
C12—N4—C15—C14 | 0.2 (4) | C8B—C9B—C10B—C5B | 5.0 (4) |
C13—C14—C15—N4 | −0.3 (4) | N2B—C9B—C10B—C5B | −176.8 (3) |
N1A—C1A—C2A—C3A | −178.4 (3) | C8B—C9B—C10B—C1B | −173.8 (3) |
C10A—C1A—C2A—C3A | −1.8 (5) | N2B—C9B—C10B—C1B | 4.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2Ai | 0.86 (3) | 2.30 (3) | 3.077 (4) | 151 (2) |
N1A—H1C···N2ii | 0.87 (3) | 2.42 (3) | 3.153 (4) | 142 (3) |
N2A—H2C···N2 | 0.92 (3) | 2.27 (3) | 3.092 (4) | 149 (3) |
N2A—H2D···N1A | 0.87 (3) | 2.27 (3) | 2.753 (5) | 115 (2) |
N1B—H1F···N2B | 0.98 (4) | 2.12 (3) | 2.710 (5) | 117 (2) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H10N4·2C10H10N2 |
Mr | 562.67 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 17.083 (2), 12.139 (3), 13.597 (2) |
β (°) | 90.76 (1) |
V (Å3) | 2819.4 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.45 × 0.10 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.960, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22722, 5184, 2799 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.142, 1.06 |
No. of reflections | 5184 |
No. of parameters | 415 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.18 |
Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2Ai | 0.86 (3) | 2.30 (3) | 3.077 (4) | 151 (2) |
N1A—H1C···N2ii | 0.87 (3) | 2.42 (3) | 3.153 (4) | 142 (3) |
N2A—H2C···N2 | 0.92 (3) | 2.27 (3) | 3.092 (4) | 149 (3) |
N2A—H2D···N1A | 0.87 (3) | 2.27 (3) | 2.753 (5) | 115 (2) |
N1B—H1F···N2B | 0.98 (4) | 2.12 (3) | 2.710 (5) | 117 (2) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
The authors thank the Centro Interdipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II" for the X-ray facilities.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Basaran, R., Dou, S. & Weiss, A. (1993). Struct. Chem. 4, 219–233. CSD CrossRef CAS Web of Science Google Scholar
Batsanov, A. S., Collings, J. C., Howard, J. A. K. & Marder, T. B. (2001). Acta Cryst. E57, o950–o952. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, G. (2012). Dyes Pigments, 95, 116–125. Web of Science CSD CrossRef CAS Google Scholar
Centore, R., Piccialli, V. & Tuzi, A. (2013a). Acta Cryst. E69, o667–o668. CSD CrossRef CAS IUCr Journals Google Scholar
Centore, R., Piccialli, V. & Tuzi, A. (2013b). Acta Cryst. E69, o802–o803. CSD CrossRef CAS IUCr Journals Google Scholar
Centore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 132083–2093. Google Scholar
Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013). Tetrahedron Lett. 54, 1503–1506. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. New York: Oxford University Press Inc. Google Scholar
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filatova, E. A., Borovlev, I. V., Pozharskii, A. F., Starikova, Z. A. & Vistorobskii, N. V. (2000). Mendeleev Commun. pp. 178–180. CSD CrossRef Google Scholar
Foces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 305–312. CAS Google Scholar
Goswami, S., Sen, D. & Das, N. K. (2010). Org. Lett. 12, 856–859. Web of Science CrossRef CAS PubMed Google Scholar
Llamas-Saiz, A. L., Foces-Foces, C., Molina, P., Alajarin, M., Vidal, A., Claramunt, R. M. & Elguero, J. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1025–1031. Google Scholar
Llamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalàn, J. & Carlos del Valle, J. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1389–1398. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Morita, Y., Suzuki, S., Fukui, K., Nakazawa, S., Sato, K., Shiomi, D., Takui, T. & Nakasuji, K. (2003). Polyhedron, 39, 2215–2218. Web of Science CrossRef Google Scholar
Murata, T., Morita, Y., Fukui, K., Tamaki, K., Yamochi, H., Saito, G. & Nakasuji, K. (2006). Bull. Chem. Soc. Jpn, 79, 894–913. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smellie, I. A. S., Fromm, A. & Paton, R. M. (2011). Carbohydr. Res. 346, 43–49. Web of Science CSD CrossRef CAS PubMed Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the studies on the coordination ability of perimidines containing four donor atoms (Cucciolito et al., 2013) we obtained the neutral 2-(pyrimidin-2-yl)-1H-perimidine-naphthalene-1,8-diamine (1/2) cocrystal. In view of its N-rich aromatic character, pyrimidinylperimidine can have interest also in organic electronics and photonics (Carella et al., 2012; Centore et al., 2012; Murata et al., 2006; Goswami et al., 2010).
Few structural data are found in the literature on neutral perimidines having one amino and one imino N atom at the heterocyclic mojety (Filatova et al., 2000; Foces-Foces et al., 1993; Llamas-Saiz et al., 1995; Murata et al., 2006; Smellie et al., 2011). Moreover, very few structural data on the naphthalene-1,8-diamine (DAN) ring system are found in the literature (Batsanov et al., 2001; Llamas-Saiz et al., 1991; Basaran et al., 1993). In particular, the title compound is the second example of a perimidine bearing a pyrimidine ring at C11 with the two N atoms in ortho position (Morita et al., 2003). In the title compound, one 2-(pyrimidin-2-yl)-1H-perimidine (PIM) molecule and two naphthalene-1,8-diamine (DAN-A and DAN-B) molecules are contained in the asymmetric unit (Fig.1). The aminic nature of N1 in PIM is clearly proven by location of the NH hydrogen atom in difference Fourier maps. The geometry at N1 is planar, as demonstrated by the free refinement of the attached hydrogen atom. The pyrimidine ring is nearly coplanar with the perimidine ring with a dihedral angle between their mean planes of 3.21 (11)°. In DAN-A and DAN-B molecules the geometric parameters are very similar to literature data of pure DAN (Llamas-Saiz et al., 1991; Basaran et al.,1993) and of octafluoronaphthalene-naphthalene-1,8-diamine co-crystal (Batsanov et al., 2001). As usually found, the molecule adopts a slightly twisted conformation due to the steric encumbrance of the two adjacent NH2 groups. The hydrogen atoms of NH2 groups, located in difference Fourier maps, confirm that two different orientations are adopted by the amine groups, with inward hydrogen atoms forced into intramolecular contacts. It is not clear if such kind of contacts, associated to a steric strain of the DAN molecule, can be considered as weak intermolecular hydrogen bonds or as constrain-due interactions. However, the refined positions of NH2 hydrogen atoms give a N–H···N geometry that falls in the range of weak hydrogen bonds [D(X···A) = 3.0–4.0 Å and θ(X–A···H) = 90–180° (Desiraju & Steiner, 1999)].
PIM and DAN-A molecules are involved in N–H···N hydrogen bonds (Fig.2) forming the R44(12) graph-set motif across an inversion center. The amine N1 atom acts as donor towards N2Ai (i = -x,-y,1 - z) and imine N2 atom acts as bifurcated acceptor from N1A and from N2Aii (ii = x, 1/2 - y, z - 1/2).
The DAN-B molecules are not involved in classic intermolecular hydrogen bonds, but only in weak CH···π and NH···π interactions (Fig.3) (N1B—H1E··· Cg1(C5A—C10A)[x, 1 + y, z] = 0.98 (4), 3.15 (4) Å, 151 (3)°; N2B—H2F···Cg2(C1B—C5B,C10B)[1 - x, -1/2 + y, 3/2 - z] = 0.91 (4), 3.35 (4) Å, 162 (3)°;C6B—H6B···Cg3(C1—C5,C10)[-x, 1/2 + y,3/2 - z] = 0.95, 3.632 Å, 141.8°).
In the crystal packing (Fig. 4) layers of PIM molecules are alternate to double layers of DAN-A and DAN-B molecules along [1 0 0] direction. In the perimidine layer molecules are π···π stacked along c with interplanar separation of approximately 3.4 Å.